首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Wild-type Escherichia coli grows more slowly on glucosamine (GlcN) than on N-acetylglucosamine (GlcNAc) as a sole source of carbon. Both sugars are transported by the phosphotransferase system, and their 6-phospho derivatives are produced. The subsequent catabolism of the sugars requires the allosteric enzyme glucosamine-6-phosphate (GlcN6P) deaminase, which is encoded by nagB, and degradation of GlcNAc also requires the nagA-encoded enzyme, N-acetylglucosamine-6-phosphate (GlcNAc6P) deacetylase. We investigated various factors which could affect growth on GlcN and GlcNAc, including the rate of GlcN uptake, the level of induction of the nag operon, and differential allosteric activation of GlcN6P deaminase. We found that for strains carrying a wild-type deaminase (nagB) gene, increasing the level of the NagB protein or the rate of GlcN uptake increased the growth rate, which showed that both enzyme induction and sugar transport were limiting. A set of point mutations in nagB that are known to affect the allosteric behavior of GlcN6P deaminase in vitro were transferred to the nagB gene on the Escherichia coli chromosome, and their effects on the growth rates were measured. Mutants in which the substrate-induced positive cooperativity of NagB was reduced or abolished grew even more slowly on GlcN than on GlcNAc or did not grow at all on GlcN. Increasing the amount of the deaminase by using a nagC or nagA mutation to derepress the nag operon improved growth. For some mutants, a nagA mutation, which caused the accumulation of the allosteric activator GlcNAc6P and permitted allosteric activation, had a stronger effect than nagC. The effects of the mutations on growth in vivo are discussed in light of their in vitro kinetics.  相似文献   

5.
The nag regulon located at 15.5 min on the Escherichia coli chromosome consists of two divergent operons, nagE and nagBACD, encoding genes involved in the uptake and metabolism of N-acetylglucosamine. Null mutations have been created in each of the genes by insertion of antibiotic resistance cartridges. The phenotypes of the strains carrying the insertions in nagE, B and A were consistent with the previous identification of gene products: nagE, EII(Nag), the N-acetylglucosamine specific transporter of the phosphotransferase system and nagB and nagA, the two enzymes necessary for the degradation of N-acetylglucosamine. Insertions in the nagC result in derepression of the nag genes, which is consistent with earlier observations that the nagC gene encodes the repressor of the regulon. Insertions in nagA also provoke a derepression, implying that nagA has a role in the regulation of the expression of the nag regulon as well as in the degradation of the amino-sugars. N-acetylglucosamine-6-phosphate, the intracellular product of N-acetylglucosamine transport and the substrate of the nagA gene product, is shown to be an inducer of the regulon and this suggests how nagA mutations result in derepression: the absence of N-acetylglucosamine-6-phosphate deacetylase allows N-acetylglucosamine-6-phosphate to accumulate and induce the regulon.  相似文献   

6.
7.
8.
9.
Transcription products from the rplKAJL-rpoBC gene cluster   总被引:12,自引:0,他引:12  
  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号