首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glycosidic bond torsion angles and the conformations of the ribose of Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P (magnesium adenosine 5'-[beta, gamma-imido]triphosphate) bound to Ca2+ATPase, both native and modified with fluorescein isothiocyanate (FITC), in intact sarcoplasmic reticulum have been determined by the measurement of proton-proton transferred nuclear Overhauser enhancements by 1H-NMR spectroscopy. This method shows clearly the existence of a low-affinity ATP binding site after modification of the high-affinity site with FITC. For all three nucleotides bound to both the high-affinity (catalytic) site and the low-affinity site, we find that the conformation about the glycosidic bond is anti, the conformation of the ribose 3'-endo of the N type and the conformation about the ribose C4'-C5' bond either gauche-trans or trans-gauche. The values for the glycosidic bond torsion angles chi (O4'-C1'-N9-C4) for Mg2+ATP, Mg2+ADP and Mg2+AdoPP[NH]P bound to the low-affinity site of FITC-modified Ca2+ATPase are approximately equal to 270 degrees, approximately equal to 260 degrees and approximately equal to 240 degrees respectively. In the case of the nucleotides bound to the high-affinity (catalytic) site of native Ca2+ATPase, chi lies in the range 240-280 degrees.  相似文献   

2.
We have shown previously (Brooker, R.J., and Slayman, C.W. (1982) J. Biol. Chem. 257, 12051-12055; Brooker, R. J., and Slayman, C. W. (1983) J. Biol. Chem. 258, 222-226) that the plasma membrane [H+]-ATPase of Neurospora crassa is inhibited by N-ethylmaleimide (NEM), which reacts at an essential nucleotide-protectable site on the Mr = 104,000 polypeptide. The present study demonstrates that Mg2+ has a biphasic effect on NEM inhibition. At low concentrations (0.01-0.1 mM, Mg2+ decreases the sensitivity of the enzyme to NEM, while at high concentrations (greater than 1 mM), it enhances sensitivity. These effects are seen in the presence or absence of nucleotides (ATP, ADP). Mg2+ also acts in a concentration-dependent way to influence the degradation of the ATPase by trypsin. Low concentrations of Mg2+ have little or no effect on tryptic inactivation of ATPase activity or on the disappearance of the Mr = 104,000 polypeptide and the stepwise appearance of Mr = 100,000 and 91,000 tryptic fragments. High concentrations of Mg2+ decrease the rate of inactivation, and a new fragment of Mr = 98,000 is seen. Taken together, the NEM and trypsin results indicate that the Neurospora [H+]-ATPase possesses high and low affinity Mg2+ binding sites which affect the conformation of the enzyme. The divalent cation specificity of the sites has also been investigated. Co2+, Mn2+, and (to a lesser extent) Ni2+ mimic the behavior of Mg2+, but Ca2+ has a different effect, at least at the high affinity site. It appears to bind to that site, based on its ability to inhibit ATP hydrolysis (in the presence of Mg2+), but does not offer protection against NEM inhibition. The results suggest a way in which Ca2+ may serve as a physiological regulator of the ATPase.  相似文献   

3.
Echarte MM  Rossi RC  Rossi JP 《Biochemistry》2007,46(4):1034-1041
The plasma membrane calcium ATPase (PMCA) reacts with ATP to form acid-stable phosphorylated intermediates (EP) that can be measured using (gamma-32P)ATP. However, the steady-state level of EP at [ATP] higher than 100 microM has not yet been studied due to methodological problems. Using a microscale method and a purified preparation of PMCA from human red blood cells, we measured the steady-state concentration of EP as a function of [ATP] up to 2 mM at different concentrations of Mg2+, both at 4 and 25 degrees C. We have measured the Ca2+-ATPase activity (v) under the same conditions as those used for phosphorylation experiments. While the curves of ATPase activity vs [ATP] were well described by the Michaelis-Menten equation, the corresponding curves of EP required more complex fitting equations, exhibiting at least a high- and a low-affinity component. Mg2+ increases the apparent affinity for ATP of this latter component, but it shows no significant effect on its high-affinity one or on the Ca2+-ATPase activity. We calculated the turnover of EP (k(pEP)) as the ratio v/EP. At 1 mM Mg2+, k(pEP) increases hyperbolically with [ATP], while at 8 microM Mg2+, it exhibits a behavior that cannot be explained by the currently accepted mechanism for ATP hydrolysis. These results, together with measurements of the rate of dephosphorylation at 4 degrees C, suggest that ATP is acting in additional steps involving the interconversion of phosphorylated intermediates during the hydrolysis of the nucleotide.  相似文献   

4.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

5.
The Ca2+/Mg2+ ATPase of rat heart plasma membrane was activated by millimolar concentrations of Ca2+ or Mg2+; other divalent cations also activated the enzyme but to a lesser extent. Sodium azide at high concentrations inhibited the enzyme by about 20%; oligomycin at high concentrations also inhibited the enzyme slightly. Trifluoperazine at high concentrations was found inhibitory whereas trypsin treatment had no significant influence on the enzyme. The rate of ATP hydrolysis by the Ca2+/Mg2+ ATPase decayed exponentially; the first-order rate constants were 0.14-0.18 min-1 for Ca2+ ATPase activity and 0.15-0.30 min-1 for Mg2+ ATPase at 37 degrees C. The inactivation of the enzyme depended upon the presence of ATP or other high energy nucleotides but was not due to the accumulation of products of ATP hydrolysis. Furthermore, the inactivation of the enzyme was independent of temperature below 37 degrees C. Con A when added into the incubation medium before ATP blocked the ATP-dependent inactivation; this effect was prevented by alpha-methylmannoside. In the presence of low concentrations of detergent, the rate of ATP hydrolysis was reduced while the ATP-dependent inactivation was accelerated markedly. Both Con A and glutaraldehyde decreased the susceptibility of Ca2+/Mg2+ ATPase to the detergent. These results suggest that the Ca2+/Mg2+ ATPase is an intrinsic membrane protein which may be regulated by ATP.  相似文献   

6.
The inactivation of sarcoplasmic reticulum ATPase by fluorescein isothiocyanate (FITC) was shown to have a hyperbolic dependence on the concentration of FITC. The results were quantitatively accounted for by a model in which the reagent first binds reversibly (Kf = 70 microM) to the ATPase and then reacts irreversibly (kmax = 0.8 and 2 min-1 in the absence and presence of 1 mM Mg2+, respectively) to form inactive enzyme. Comparison with the rate constant for the reaction of the model compound alpha-acetyllysine with FITC showed that the FITC-reactive lysyl side-chain of the ATPase is not unusually reactive, indicating that the specificity of the reaction is due to affinity labeling behavior of the reagent. This was supported by protection experiments using ATP, ADP, AdoPP[NH]P, ITP, and TNP-ATP, all of which displayed protection constants similar to their known binding constants to the active site of the ATPase. Both inorganic phosphate and orthovanadate were effective in preventing inactivation by FITC, and calcium only partially reversed the effect of these anions, implying the existence of a ternary complex such as Ca2.E.Pi. Since all ligands (ATP, ADP and Pi) which bind or react at the catalytic site protect it, only the unliganded form appears to bind and react with FITC. Addition of calcium to the MgATP complex of the ATPase caused an increase in the FITC inactivation rate, implying that during turnover there is a larger fraction of unliganded enzyme present, i.e., substrate binding is weaker (Ks is larger). Protection was also observed with fluorescein and two related dyes, eosin and erythrosin. Like FITC, the isothiocyanates of these dyes were effective inactivators. In separate experiments, these two dyes were shown to promote photoinactivation of the ATPase. ATP exerted a protective effect with a concentration dependence consistent with high-affinity active-site binding.  相似文献   

7.
Treatment of sarcoplasmic reticulum membranes with 12 mM-methylbenzimidate (MBI) for 5 min, in the presence of 5 mM-ATP at pH 8.5, resulted in a 2-3-fold stimulation of ATP hydrolysis and over 90% inhibition of Ca2+ accumulation. This phenomenon was strictly dependent upon the presence of nucleotides with the following order of effectiveness: adenosine 5'-[beta, gamma-imido]triphosphate greater than or equal to ATP greater than UTP greater than ADP greater than AMP. Divalent cations such as Ca2+, Mg2+ and Mn2+, when present during the MBI treatment, prevented both the stimulation of ATPase activity and the inhibition of Ca2+ accumulation. Modification with MBI had no effect on E-P formation from ATP, ADP-ATP exchange, Ca2+ binding or ATP-Pi exchange catalysed by the membranes. Membranes modified with MBI in the presence of ATP and then passively loaded with Ca2+ released about 80% of their Ca2+ content within 3 s. Control membranes released only 3% of their Ca2+ during the same time period. MBI modification inhibited Ca2+ accumulation by proteoliposomes reconstituted with the partially purified ATPase but not with the purified ATPase fraction. These results suggest that MBI in the presence of ATP stimulates Ca2+ release by modifying a protein factor(s) other than the (Ca2+ + Mg2+)-ATPase.  相似文献   

8.
Kinetic Characterization of Ca2+ Transport in Synaptic Membranes   总被引:2,自引:0,他引:2  
Lysed synaptosomal membranes were prepared from brain cortices of HA/ICR Swiss mice, and the ATP-stimulated Ca2+ uptake, Ca2+-stimulated Mg2+-dependent ATPase activity, and the Ca2+-stimulated acyl phosphorylation of these membranes were studied. The Km values for free calcium concentrations ([Ca2+]f) for these processes were 0.50 microM, 0.40 microM, and 0.31 microM, respectively. Two kinetically distinct binding sites for ATP were observed for the ATP-stimulated Ca2+ uptake and the Ca2+-stimulated Mg2+-ATPase activity. The high-affinity Km values for ATP for these two processes were 16.3 microM and 28 microM, respectively. These results indicate that the processes studied operate in similar physiological concentration ranges for the substrates [Ca2+]f and ATP under identical assay conditions and, further, that these processes may be functionally coupled in the membrane.  相似文献   

9.
Exposure of sarcoplasmic reticulum to trypsin in the presence of 1 M sucrose results in degradation of the Mr = 102,000 ATPase enzyme to two fragments of Mr = 55,000 and 45,000 with subsequent appearance of fragments of Mr = 30,000 and 20,000. These fragments were purified by column chromatography in sodium dodecyl sulfate. Antibodies were raised against the ATPase and the Mr = 55,000, 45,000, and 20,000 fragments. There was no antigenic cross-reactivity between the Mr = 55,000 and 45,000 fragments, indicating that they were derived from a single linear cleavage of the larger enzyme. There was antigenic cross-reactivity between the Mr = 20,000 and 55,000 fragments, indicating an origin of the Mr = 20,000 fragment in the Mr = 55,000 fragment. None of the antibodies inhibited (Ca2+ + Mg2+)-dependent ATPase or Ca2+ transport. The Mr = 20,000 fragment and the Mr = 55,000 fragment were active in Ca2+ ionophore assays. The active site of ATP hydrolysis was labeled with [gamma-32P]ATP and the site of ATP binding was labeled with tritiated N-ethylmaleimide. In both cases radioactivity was found in the intact ATPase and in the Mr = 55,000 and 30,000 fragments, indicating that the Mr = 30,000 fragment was also derived from the Mr = 55,000 fragment. Amino acid composition data showed that the Mr = 45,000 fragment contained about 60% nonpolar and 40% polar amino acids, while the Mr = 55,000 fragment and the Mr = 20,0000 fragment contained about equal amounts of polar and nonpolar amino acids. Studies of the reaction of various antibodies at the external surface of sarcoplasmic reticulum vesicles showed that the ATPase was exposed, whereas calsequestrin and the high affinity Ca2+-binding protein were not. The use of antibodies against the various fragments indicated that the Mr = 55,000 fragment was in large part exposed, whereas the Mr = 20,000 and the 45,000 fragments were only poorly exposed. It is probable that the site of ATP hydrolysis in the Mr = 55,000 fragment is external, whereas the ionophore site is only partially exposed and the Mr = 45,000 fragment is largely buried within the membrane.  相似文献   

10.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

11.
Pretreatment of sarcoplasmic membranes with acetic or maleic anhydrides, which interact principally with amino groups, resulted in an inhibition of Ca2+ accumulation and ATPase activity. The presence of ATP, ADP or adenosine 5'-[beta, gamma-imido]triphosphate in the modification medium selectively protected against the inactivation of ATPase activity by the anhydride but did not protect against the inhibition of Ca2+ accumulation. Acetic anhydride modification in the presence of ATP appeared to increase specifically the permeability of the sarcoplasmic reticulum membrane to Ca2+ but not to sucrose, Tris, Na+ or Pi. The chemical modification stimulated a rapid release of Ca2+ from sarcoplasmic reticulum vesicles passively or actively loaded with calcium, from liposomes reconstituted with the partially purified ATPase fraction but not from those reconstituted with the purified ATPase. The inactivation of Ca2+ accumulation by acetic anhydride (in the presence of ATP) was rapid and strongly pH-dependent with an estimated pK value above 8.3 for the reactive group(s). The negatively charged reagents pyridoxal 5-phosphate and trinitrobenzene-sulphonate, which also interact with amino groups, did not stimulate Ca2+ release. Since these reagents do not penetrate the sarcoplasmic reticulum membranes, it is proposed that Ca2+ release is promoted by modification of internally located, positively charged amino group(s).  相似文献   

12.
The covalent binding of dialdehyde derivatives of ATP and ADP (o-ATP and o-ADP) results in inactivation of chloroplast CF1-ATPase, the degree of inactivation being increased at a rise in temperature and pH. o-ADP causes predominant inhibition of the Mg2+-dependent, while o-ATP--of both Mg2+- and Ca2+-dependent activities of CF1-ATPase. The substrates and reaction products prevent the enzyme inactivation, whereas the stimulators of the Mg2+-dependent ATPase activity enhance it. The effect of these stimulators is correlated with predominant incorporation of [3H] o-nucleotide into the beta-subunit of CF1. In the absence of the stimulators o-ADP is predominantly bound to the alpha-subunit of CF1. The binding of o-ADP and o-ATP to the beta-subunit is increased in the presence of Mg2+. A comparative analysis of the labelled nucleotides incorporation into individual subunits and the changes in the catalytic and regulatory properties of the enzyme demonstrated that the catalytic and stimulator-sensitive "regulatory" sites of the enzyme are located on the beta-subunits.  相似文献   

13.
Inactivation of sarcoplasmic ATPase in the solubilized state was studied in the absence and presence of Ca2+, Mg2+ and glycerol. The effects of the detergents octa(ethyleneglycol) mono-n-dodecyl ether (C12E8), 1-O-tetradecylpropanediol-(1,3)-3-phosphorylcholine and myristoylglycerophosphocholine were compared. All three detergents caused a rapid decline of the dinitrophenyl phosphatase activity of the unprotected enzyme. The stabilizing effect of Ca2+ ions was kinetically analysed. It was found that the stability of the solubilized enzyme depends on the Ca2+ concentration in a manner which is best explained by assuming rapid inactivation of Ca2+-free enzyme accompanied by slow inactivation of a calcium-enzyme complex (E1Ca). The apparent affinity constants obtained are in the order of 10(6)M-1, suggesting that high-affinity Ca2+ binding must be involved. No indications of a contribution were found, either of low-affinity Ca2+-binding sites of the conformational state E2 or of the high-affinity calcium complex E1Ca2. If Ca2+ was replaced by Mg2+, which exerts a weaker protection, the apparent affinity constants for Mg2+ are in the range of 1 mM-1. The stoichiometry of the effect of Mg2+ depends on the detergent.  相似文献   

14.
The activity of a purified cytosolic aminopeptidase (Mr 79,000) from monkey brain was stimulated about 4-fold by ATP-Mg2+. The stimulation was seen with either synthetic aminopeptidase substrates or natural peptides such as enkephalins. Both ATP and Mg2+ were required for stimulation, and ADP did not inhibit the stimulation. Non-hydrolysable analogues of ATP, deoxy-ATP and other nucleoside triphosphates stimulated to a lesser extent compared with ATP, whereas nucleoside mono- or di-phosphates were ineffective. The enzyme did not exhibit any ATPase activity. An ATPase inhibitor, orthovanadate, had no inhibitory effect on the ATP-Mg2+ stimulation. The aminopeptidase was not autophosphorylated by [gamma-32P]ATP and Mg2+, but in the presence of cyclic AMP-dependent protein kinase underwent phosphorylation on serine residue(s). Phosphorylation resulted in inactivation of the aminopeptidase activity, and also resulted in a decreased stimulation of the enzyme by ATP-Mg2+.  相似文献   

15.
A Ca2+-ATPase (Ca2+- and Mg2+-requiring ATPase) was purified from a synaptic plasma-membrane fraction of rat brain. This enzyme had properties similar to those of plasma-membrane Ca2+-ATPases from other organs: its splitting of ATP was dependent on both Ca2+ and Mg2+, it bound in a Ca2+-dependent fashion to calmodulin-Sepharose and it cross-reacted with specific antibodies raised against human erythrocyte-membrane Ca2+-ATPase. It had an apparent Mr of 138 000, similar to those of plasma-membrane ATPases from human erythrocyte and from dog heart sarcolemma. Previous high-Ca2+-affinity ATPases observed in brain had Mr 100 000; in at least one case, such an ATPase probably represented a different type of enzyme, derived from coated vesicles.  相似文献   

16.
Interaction of adenosine-5'-O-(3-thiotriphosphate) (ATP gamma S) with Ca2+,Mg2+-ATPase of sarcoplasmic reticulum was studied. The nucleotide was slowly hydrolyzed by the ATPase at 30 degrees C at a rate of about 0.5% that of ATP hydrolysis. Whereas at 0 degrees C, ATP gamma S showed only a limited reactivity toward the ATPase in that a thiophosphorylated intermediate was formed and ADP was released, but hydrolysis of the intermediate to complete the catalytic cycle did not occur. A fairly stable analog of the E-P intermediate could thus be obtained. Presence of the thiophosphorylated intermediate was indicated by the [3H]ADP in equilibrium ATP gamma S exchange reaction and also by using [35S]ATP gamma S. When the ATPase was reacted with ATP gamma S at 0 degrees C in the presence of ferricyanide, EP-forming activity was rapidly lost. Free Ca2+ ions were required for this inactivation. Disulfide bond formation between a cysteinyl residue located near the substrate binding site and the enzyme-bound ATP gamma S or the thiophosphorylated intermediate was suggested by the fact that 2-mercaptoethanol reversed the inactivation. The reaction may prove to be a useful tool for affinity labeling of the active site of the ATPase.  相似文献   

17.
N,N'-dicyclohexylcarbodiimide (DCCD) and 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide (CMCD) inhibited calmodulin-dependent Ca2(+)+Mg2(+)-ATPase activity in erythrocyte ghost membranes. The extent of the inhibition caused by carbodiimides strongly depended on their hydrophobicity. Hydrophobic DCCD was a more potent inhibitor then hydrophilic CMCD. Calmodulin (CaM) protected the enzyme against the former carbodiimide, whereas Ca2+ did the same against the latter. In contrast to previous observations made by Villalobo et al., on the purified enzyme, neither carbodiimide affected the calmodulin-independent ATPase activity in ghost membranes. Inhibition of the calmodulin-dependent ATPase activity was due to a decrease of the maximum activity, whereas the Km value for Ca2+ remained unchanged. Titration of erythrocyte ghost membranes with CaM revealed a biphasic response of ATPase to this activator. Two affinity constants were found for CaM, 0.64 nM and 14 nM. DCCD affected the interaction with CaM at high- and low-affinity binding sites in a competitive manner. CMCD acted as a noncompetitive inhibitor for CaM low-affinity sites, whereas it behaved in a competitive way against CaM interaction with high-affinity sites. In E2 form (stabilized by vanadate and EGTA) ATPase was more sensitive to carbodiimides than in E1 form (induced by La3+).  相似文献   

18.
Sarcoplasmic reticulum vesicles were shown to possess a class of tightly bound calcium ions, inaccessible to the chelator, ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid at 0 degrees C or 25 degrees C, amounting to 4.5 nmol/mg of protein (approximately 0.5 mol/mol (Ca2+,Mg2+)-ATPase). The calcium ionophores, A23187 and X537A, induced rapid exchange of tightly bound calcium in the presence of chelator. Chelator alone at 37 degrees C, caused irreversible loss of bound calcium, which correlated with uncoupling of transport from (Ca2+,Mg2+)-ATPase activity. Uncoupling was not accompanied by increased permeability to [14C]inulin. Slow exchange of tightly bound calcium with medium calcium was unaffected by turnover of the ATPase or by tryptic cleavage into 55,000- and 45,000-dalton fragments. Binding studies with labeled calcium suggested that tight binding involves a two-step process: Ca2+ + E in equilibrium K E . Ca2+ leads to E < Ca2+ where E and < Ca2+ represent the ATPase and tightly bound calcium, and K = 1.6 X 10(3) M-1. It is suggested that tightly bound calcium is located in a hydrophobic pocket in, or in close proximity to the ATPase, and, together with tightly bound adenine nucleotides (Aderem, A., McIntosh, D. B., and Berman, M. C. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3622-03632), is related to the ability of the ATPase to couple hydrolysis of ATP to vectorial transfer of calcium across the membrane.  相似文献   

19.
Structural and functional properties of a Ca2+-ATPase from human platelets   总被引:3,自引:0,他引:3  
An antibody prepared against highly purified rabbit muscle Ca2+-ATPase from sarcoplasmic reticulum has been observed to cross-react with proteins in human platelet membrane vesicles. The antibody specifically precipitated Ca2+-ATPase activity from solubilized human platelet membranes and recognized two platelet polypeptides denatured in sodium dodecyl sulfate with Mr = 107,000 and 101,000. Ca2+-ATPase activity from Brij 78-solubilized platelet membranes was purified up to 10-fold. The purified preparation consisted mainly of two polypeptides with Mr approximately 100,000, and 40,000. The lower molecular weight protein appeared unrelated to Ca2+-ATPase activity. The Ca2+-ATPase in human platelet membrane vesicles exhibited "negative cooperativity" with respect to the kinetics of ATP hydrolysis. The apparent Km for Ca2+ activation of ATPase activity was 0.1 microM. Ca2+-dependent phosphorylation of platelet vesicles by [gamma-32P]ATP at 0 degrees C yielded a maximum of 0.2-0.4 nmol of PO4/mg of protein that was labile at pH 7.0 and 20 degrees C. This result suggests that only about 2-4% of the total protein in platelet membrane vesicles is the Ca2+-ATPase, which agrees with an estimate based on the specific activity of the Ca2+-ATPase in platelet membranes (20-50 nmol of ATP hydrolyzed/min/mg of protein at 30 degrees C). Calmodulin resulted in only a 1.6-fold stimulation of Ca2+-ATPase activity even after extensive washing of membranes with a calcium chelator or chlorpromazine. It is concluded that human platelets contain a Ca2+-ATPase immunochemically related to the Ca2+ pump from rabbit sarcoplasmic reticulum and that the enzymatic characteristics and molecular weight of the platelet ATPase are quite similar to those of the muscle ATPase.  相似文献   

20.
Binding of magnesium to myosin subfragment-1 ATPase   总被引:1,自引:0,他引:1  
Tyr 180 of chicken breast muscle alkali light chain A1 was nitrated with tetranitromethane. The nitroA1 was incorporated into chicken breast muscle subfragment-1 (S-1) by exchange with the intrinsic alkali light chain. In the presence of adenylylimidodiphosphate (AMPPNP) or ADP, the S-1 containing nitroA1 showed a difference visible absorption spectrum by Mg2+ or Ca2+. The difference spectrum has a trough around 435 nm, indicating a blue shift of the absorption spectrum due to the nitrophenol chromophore of the modified A1. The plot of delta A at 435 nm versus concentration of free Mg2+ fitted a single binding curve, independent of the total concentration of AMPPNP. These results reveal that free Mg2+ binds to the active site of S-1 ATPase, but not as Mg-AMPPNP complex. The dissociation constants of magnesium from S-1 complex were different with the two nucleotides and were 1.25 X 10(-8) M and 1.24 X 10(-7) with AMPPNP and ADP, respectively. The difference spectrum was also obtained in the presence of ATP. The delta epsilon value after adding ATP changed with the ATPase reaction. The steady state rate of S-1 ATPase was measured at various concentrations of free Mg2+. The dissociation constant of magnesium from the steady state complex, EPADP(a), was estimated as 6 X 10(-8) M. These results suggest that the affinity of magnesium at the active site of ATPase changes with the intermediate states of ATPase reaction. The affinity of calcium was lower than that of magnesium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号