首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of the histone-deacetylases inhibitor trichostatin A (TSA) on the growth of three different human pancreatic endocrine carcinoma cell lines (CM, BON, and QGP-1) have been assessed via dosage-dependent growth inhibition curves. TSA determined strong inhibition of cell growth with similar IC(50) values for the different cell lines: 80.5 nM (CM), 61.6 nM (BON), and 86 nM (QGP-1), by arresting the cell cycle in G2/M phase and inducing apoptosis. 2DE and nano-RP-HPLC-ESI-MS/MS analysis revealed 34, 33, and 38 unique proteins differentially expressed after TSA treatment in the CM, BON, and QGP-1 cell lines, respectively. The most important groups of modulated proteins belong to cell proliferation, cell cycle, and apoptosis classes (such as peroxiredoxins 1 and 2, the diablo protein, and HSP27). Other proteins pertain to processes such as regulation of gene expression (nucleophosmin, oncoprotein dek), signal transduction (calcium-calmodulin), chromatin, and cytoskeleton organization (calgizzarin, dynein, and lamin), RNA splicing (nucleolin, HNRPC), and protein folding (HSP70). The present data are in agreement with previous proteomic analyses performed on pancreatic ductal carcinoma cell lines (Cecconi, D. et al.., Electrophoresis 2003; Cecconi, D. et al., J. Proteome Res. 2005) and place histone-deacetylases inhibitors among the potentially most powerful drugs for the treatment of pancreatic tumors.  相似文献   

2.
Neuroblastoma is a childhood tumor with a poor survival in advanced stage disease despite intensive chemotherapeutic regimes. The new histone deacetylase (HDAC) inhibitor BL1521 has shown promising results in neuroblastoma. Inhibition of HDAC resulted in a decrease in proliferation and metabolic activity, induction of apoptosis and differentiation of neuroblastoma cells. In order to elucidate the mechanism mediating the effects of BL1521 on neuroblastoma cells, we investigated the gene expression profile of an MYCN single copy (SKNAS) and an MYCN amplified (IMR32) neuroblastoma cell line after treatment with BL1521 using the Affymetrix oligonucleotide array U133A. An altered expression of 255 genes was observed in both neuroblastoma cell lines. The majority of these genes were involved in gene expression, cellular metabolism, and cell signaling. We observed changes in the expression of vital genes belonging to the cell cycle (cyclin D1 and CDK4) and apoptosis (BNIP3, BID, and BCL2) pathway in response to BL1521. The expression of 37 genes was altered by both BL1521 and Trichostatin A, which could indicate a common gene set regulated by different HDAC inhibitors. BL1521 treatment changed the expression of a number of MYCN-associated genes. Several genes in the Wnt and the Delta/Notch pathways were changed in response to BL1521 treatment, suggesting that BL1521 is able to induce the differentiation of neuroblastoma cells into a more mature phenotype.  相似文献   

3.
Valproic acid (VPA, 2-propylpentanoic acid) is an established drug in the long-term therapy of epilepsy. Recently, VPA was demonstrated to inhibit histone deacetylases (HDACs) class I enzyme at therapeutically relevant concentrations, thereby, mimicking the prototypical histone deacetylase inhibitors, tricostatin A (TSA) or suberoylanilide hydroxamic acid (SAHA). In the present study, we investigated the cellular effects of VPA, TSA and SAHA on four human melanoma cell lines (WM115, WM266, A375, SK-Mel28) with particular reference to the modulation of regulators of apoptosis, including Bcl-2, BclXL, Mcl-1, Apaf-1, BclXs, NOXA, TRAIL-R1, TRAIL-R2, caspase 8, and survivin). Firstly, we found that VPA induced apoptosis in two of the four human melanoma cell lines, while both TSA and SAHA exhibited an antiproliferative and apoptotic effects in all four cell lines, a different expression of Bcl-2 and BclX(L/S) occurred. On the other hand, SAHA and VPA modulated differently pro- and anti-apoptotic factors. In particular, the treatment with VPA enhanced the level of expression of survivin only in VPA-resistant cell lines, whereas down-regulation of survivin was induced by VPA and SAHA in VPA-sensitive cells. In the latter, since activation of caspase 8 was documented, a receptor-mediated apoptosis was suggested. Taken together, our results suggest that HDAC inhibitors may represent a promising therapeutic strategy to treat melanoma.  相似文献   

4.
We have previously reported that nickel (Ni)-silenced expression of the URA3 gene in yeast (Saccharomyces cerevisiae) and gpt transgene in G12 Chinese hamster cells. In both cases, close proximity to a heterochromatic region was required for gene silencing. Yeast exposed to Ni exhibited reduced acetylation of the lysine residues in the N-terminal tail of histone H4. Ni-induced silencing of the gpt gene in mammalian cells involved hypermethylation of promoter region DNA. Yeast do not employ DNA methylation to silence gene expression. To determine if histone deacetylation participates in Ni-induced silencing of the URA3 and gpt genes, we exposed yeast and G12 hamster cells to the histone deacetylase inhibitor trichostatin A (TSA) prior to and concurrently with Ni. Treatment of yeast cells with 0.2-0.6mM NiCl(2) resulted in reduced expression of the URA3 gene as assessed by increased resistance to 1g/l 5-fluorotic acid (5-FOA). This effect was lessened when yeast were pre-treated with 50 microg TSA/ml. Similarly, treatment of G12 cells with 5 ng/ml TSA during and after exposure to 0.3 microg Ni(3)S(2)/cm(2) reduced silencing of the gpt gene as gauged by resistance to 10 microg/ml 6-thioguanine (6-TG). The ability of TSA alone and in combination with the DNA-demethylating agent (5-AzaC) to reactivate the gpt gene in Ni-silenced variants was also assessed. Although treatment with 100 ng/ml TSA for 48 h was partially effective in reactivating the gpt gene, treatment with 5 microM 5-AzaC was more efficacious. The greatest gpt gene reversion frequencies were observed following a sequential 5-AzaC/TSA treatment. Taken all together, our data from mammalian cells suggests that both DNA methylation and histone deacetylation participate in Ni-induced silencing of the gpt gene with DNA hypermethylation playing the more dominant role in maintaining the silenced state.  相似文献   

5.
Eukaryotic chromatin structure limits the initiation of DNA replication spatially to chromosomal origin zones and temporally to the ordered firing of origins during S phase. Here, we show that the level of histone H4 acetylation correlates with the frequency of replication initiation as measured by the abundance of short nascent DNA strands within the human c-myc and lamin B2 origins, but less well with the frequency of initiation across the β-globin locus. Treatment of HeLa cells with trichostatin A (TSA) reversibly increased the acetylation level of histone H4 globally and at these initiation sites. At all three origins, TSA treatment transiently promoted a more dispersive pattern of initiations, decreasing the abundance of nascent DNA at previously preferred initiation sites while increasing the nascent strand abundance at lower frequency genomic initiation sites. When cells arrested in late G1 were released into TSA, they completed S phase more rapidly than untreated cells, possibly due to the earlier initiation from late-firing origins, as exemplified by the β-globin origin. Thus, TSA may modulate replication origin activity through its effects on chromatin structure, by changing the selection of initiation sites, and by advancing the time at which DNA synthesis can begin at some initiation sites.  相似文献   

6.
7.
8.
In Caenorhabditiselegans, motorneuron apoptosis is regulated via a ces-2–ces-1–egl-1 pathway. We tested whether human CEM lymphoblastic leukemia cells undergo apoptosis via an analogous pathway. We have previously shown that E4BP4, a ces-2 ortholog, mediates glucocorticoid (GC)-dependent upregulation of BIM, an egl-1 ortholog, in GC-sensitive CEM C7-14 cells and in CEM C1-15mE#3 cells, which are sensitized to GCs by ectopic expression of E4BP4. In the present study, we demonstrate that the human ces-1 orthologs, SLUG and SNAIL, are not significantly repressed in correlation with E4BP4 expression. Expression of E4BP4 homologs, the PAR family genes, especially HLF, encoding a known anti-apoptotic factor, was inverse to that of E4BP4 and BIM. Expression of pro- and anti-apoptotic genes in CEM cells was analyzed via an apoptosis PCR Array. We identified BIRC3 and BIM as genes whose expression paralleled that of E4BP4, while FASLG, TRAF4, BCL2A1, BCL2L1, BCL2L2 and CD40LG as genes whose expression was opposite to that of E4BP4.  相似文献   

9.
10.
11.
Somatic embryogenesis is used for vegetative propagation of conifers. Embryogenic cultures can be established from zygotic embryos; however, the embryogenic potential decreases during germination. In Arabidopsis, LEAFY COTYLEDON (LEC) genes are expressed during the embryonic stage, and must be repressed to allow germination. Treatment with the histone deacetylase inhibitor trichostatin A (TSA) causes de-repression of LEC genes. ABSCISIC ACID3 (ABI3) and its Zea mays ortholog VIVIPAROUS1 (VP1) act together with the LEC genes to promote embryo maturation. In this study, we have asked the question whether TSA treatment in a conifer affects the embryogenic potential and the expression of embryogenesis-related genes. We isolated two conifer LEC1-type HAP3 genes, HAP3A and HAP3B, from Picea abies and Pinus sylvestris. A comparative phylogenetic analysis of plant HAP3 genes suggests that HAP3A and HAP3B are paralogous genes originating from a duplication event in the conifer lineage. The expression of HAP3A is high, in both somatic and zygotic embryos, during early embryo development, but decreases during late embryogeny. In contrast, the expression of VP1 is initially low but increases during late embryogeny. After exposure to TSA, germinating somatic embryos of P. abies maintain the competence to differentiate embryogenic tissue, and simultaneously the germination progression is partially inhibited. Furthermore, when embryogenic cultures of P. abies are exposed to TSA during embryo maturation, the maturation process is arrested and the expression levels of PaHAP3A and PaVP1 are maintained, suggesting a possible link between chromatin structure and expression of embryogenesis-related genes in conifers.  相似文献   

12.
13.
(R)-Trichostatin A (TSA) is a Streptomyces product which causes the induction of Friend cell differentiation and specific inhibition of the cell cycle of normal rat fibroblasts in the G1 and G2 phases at the very low concentrations. We found that TSA caused an accumulation of acetylated histone species in a variety of mammalian cell lines. Pulse-labeling experiments indicated that TSA markedly prolonged the in vivo half-life of the labile acetyl groups on histones in mouse mammary gland tumor cells, FM3A. The partially purified histone deacetylase from wild-type FM3A cells was effectively inhibited by TSA in a noncompetitive manner with Ki = 3.4 nM. A newly isolated mutant cell line of FM3A resistant to TSA did not show the accumulation of the acetylated histones in the presence of a higher concentration of TSA. The histone deacetylase preparation from the mutant showed decreased sensitivity to TSA (Ki = 31 nM, noncompetitive). These results clearly indicate that TSA is a potent and specific inhibitor of the histone deacetylase and that the in vivo effect of TSA on cell proliferation and differentiation can be attributed to the inhibition of the enzyme.  相似文献   

14.
Herpesviruses establish latency in suitable host cells after primary infection and persist in their host organisms for life. Most of the viral genes are silenced during latency, also enabling the virus to escape from an immune response. This study addresses the control of viral gene silencing by epigenetic mechanisms, using Herpesvirus saimiri (HVS) as a model system. Strain C488 of this gamma-2-herpesvirus can transform human T cells to stable growth in vitro, and it persists in the nuclei of those latently infected T cells as a nonintegrating, circular, and histone-associated episome. The whole viral genome was probed for histone acetylation at high resolution by chromatin immunoprecipitation-on-chip (ChIP-on-chip) with a custom tiling microarray. Corresponding to their inactive status in human T cells, the lytic promoters consistently revealed a heterochromatic phenotype. In contrast, the left terminal region of the genome, which encodes the stably expressed oncogenes stpC and tip as well as the herpesvirus U RNAs, was associated with euchromatic histone acetylation marks representing "open" chromatin. Although HVS latency in human T lymphocytes is considered a stable and irreversible state, incubation with the histone deacetylase inhibitor trichostatin A resulted in changes reminiscent of the induction of early lytic replication. However, infectious viral particles were not produced, as the majority of cells went into apoptosis. These data show that epigenetic mechanisms are involved in both rhadinoviral latency and transition into lytic replication.  相似文献   

15.
Histone deacetylases can also influence acetylation of tubulin. In the present experiments, after 60 min of 10 microM trichostatin (TSA) treatment the structure and amount of tubulin and acetylated-tubulin were studied immunocytochemically, by using confocal microscopy and flow cytometry. In TSA-treated Tetrahymena cells deep fibres were never labeled with antibody to acetylated tubulin. Flow cytometry with anti acetylated-tubulin antibody demonstrated that in the contol cell populations there were weaker and stronger labelled parts. After TSA treatment in the weaker labeled part the cell number decreased, and in the stronger labeled part increased significantly: this means that after the histone deacetylase inhibitor TSA treatment the amount of acetylated-tubulin in numerous Tetrahymena cells is significantly elevated. Labeling with anti-tubulin antibody was not changed significantly. On the basis of these results we postulate that histone deacetylase also in Tetrahymena influences the acetylation of tubulin, and this enzyme is sensitive to TSA treatments.  相似文献   

16.
After in vitro maturation, the unfertilized pig oocytes underwent the process called ageing. This process involves typical events such as fragmentation, spontaneous parthenogenetic activation or lysis. Inhibition of histone deacetylase, using its specific inhibitor trichostatin A (TSA), significantly delayed the maturation of pig oocytes cultured in vitro. The ageing of oocytes matured under the effect of TSA is the same as the ageing in oocytes matured without TSA. The inhibition of histone deacetylase during oocyte ageing significantly reduced the percentage of fragmented oocytes (from 30% in untreated oocytes to 9% in oocytes aged under the effect of 100 nM of TSA). Oocytes matured in vitro and subsequently aged for 1 day under the effects of TSA retained their developmental capacity. After parthenogenetic activation, a significantly higher portion (27% vs. 15%) of oocytes developed to the blastocyst stage after 24 h ageing under 100 nM TSA when compared with oocytes activated after 24 h ageing in a TSA-free medium. The parthenogenetic development in oocytes aged under TSA treatment is similar to the development of fresh oocytes (29% of blastocyst) artificially activated immediately after in vitro maturation.  相似文献   

17.
Inhibition of histone deacetylases by trichostatin A (TSA) has pleiotropic effects on gene expression. We demonstrated that at low dose (0.1 microg) TSA increased the eNOS mRNA levels, which was followed by a time- and dose-dependent down-regulation. Cycloheximide, a protein synthesis inhibitor, completely abolished TSA-induced decrease in eNOS expression, indicating that new protein synthesis is required for the inhibiting effect. Mevastatin--an inhibitor HMG-CoA reductase and geranylgeranylation reaction dose-dependently antagonized TSA-induced reduction. This mevastatin-mediated antagonism was completely abolished by geranylgeranylpyrophosphate, suggesting that geranylgeranyl modification is needed to activate the eNOS mRNA destabilizing factor--a mechanism responsible for statin-mediated eNOS upregulation.  相似文献   

18.
19.
20.
The human pancreatic adenocarcinoma cell line T3M4 has been treated with two agents, gemcitabine (2',2'-difluorodeoxycytidine, a drug interfering with DNA synthesis) and trichostatin A (a drug interfering with histone acetylation), both separately and in association. The association of the two drugs showed a marked cooperative effect in inhibiting proliferation and inducing apoptosis of the cells. In an effort to identify differentially expressed proteins in the different drug treatments, the proteomic expression has been studied by two-dimensional gel electrophoresis comparing untreated cells with cells treated with trichostatin A and/or gemcitabine. A total of 81 differentially expressed polypeptide chains have been visualized by setting a 2.5-fold threshold value. Of these, 56 were identified via MALDI-TOF and Q-TOF MS analyses. Most of the regulated proteins are involved in two major biological processes, namely apoptotic cell death and proliferation. Our results demonstrate that the level of activation/repression of the proteins involved in these processes correlates with the growth inhibition and the apoptotic response of the cells subjected to single or combined drug treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号