首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bradykinin potentiating peptides (BPPs) from Bothrops jararaca venom were first described in the middle of 1960s and were the first natural inhibitors of the angiotensin-converting enzyme (ACE). BPPs present a classical motif and can be recognized by their typical pyroglutamyl (Pyr)/proline rich sequences presenting, invariably, a proline residue at the C-terminus. In the present study, we describe the isolation and biological characterization of a novel BPP isolated from the skin secretion of the Brazilian tree-frog Phyllomedusa hypochondrialis. This new BPP, named Phypo Xa presents the sequence Pyr-Phe-Arg-Pro-Ser-Tyr-Gln-Ile-Pro-Pro and is able to potentiate bradykinin activities in vivo and in vitro, as well as efficiently and competitively inhibit ACE. This is the first canonical BPP (i.e. Pyr-Aaa(n)-Gln-Ile-Pro-Pro) to be found not only in the frog skin but also in any other natural source other than the snake venoms.  相似文献   

2.
3.
Li Z  Huang H  Yang P  Yuan T  Shi P  Zhao J  Meng K  Yao B 《The FEBS journal》2011,278(17):3032-3040
β-Propeller phytases (BPPs) with tandemly repeated domains are abundant in nature. Previous studies have shown that the intact domain is responsible for phytate hydrolysis, but the function of the other domain is relatively unknown. In this study, a new dual-domain BPP (PhyH) from Bacillus sp. HJB17 was identified to contain an incomplete N-terminal BPP domain (PhyH-DI, residues 41-318) and a typical BPP domain (PhyH-DII, residues 319-644) at the C-terminus. Purified recombinant PhyH and PhyH-DII required Ca(2+) for phytase activity, showed activity at low temperatures (0-35 °C) and pH 6.0-8.0, and remained active (at 37 °C) after incubation at 60 °C and pH 6.0-12.0. Compared with PhyH-DII, PhyH is catalytically more active against phytate (catalytic constant 27.72 versus 4.17 s(-1)), which indicates the importance of PhyH-DI in phytate degradation. PhyH-DI was found to hydrolyze phytate intermediate D-Ins(1,4,5,6) P(4), and to act synergistically (a 1.2-2.5-fold increase in phosphate release) with PhyH-DII, other BPPs (PhyP and 168PhyA) and a histidine acid phosphatase. Furthermore, fusion of PhyH-DI with PhyP or 168PhyA significantly enhanced their catalytic efficiencies. This is the first report to elucidate the substrate specificity of the incomplete domain and the functional relationship of tandemly repeated domains in BPPs. We conjecture that dual-domain BPPs have succeeded evolutionarily because they can increase the amount of available phosphate by interacting together. Additionally, fusing PhyH-DI to a single-domain phytase appears to be an efficient way to improve the activity of the latter.  相似文献   

4.
Twelve-day-old embryonic chick mandibles were cultured in vitro for 6 days. Measurements of the weights of the explants, their mineral and protein components, and the EDTA-extractable proteins established that bone tissue synthesizes O-phosphoserine- and O-phosphothreonine-containing phosphoproteins which are similar to those present in embryonic and postnatal chicken bone matrix. The synthesis of the phosphoproteins was further confirmed by the demonstration that radioactively labeled O-phosphoserine and O-phosphothreonine were identified in bone and in the EDTA-extractable phosphoproteins after pulse-labeling chick mandibles in vitro with radioactively labeled serine and threonine, respectively.  相似文献   

5.
In crotaline venoms, angiotensin-converting enzyme inhibitors [ACEIs, also known as bradykinin potentiating peptides (BPPs)], are products of a gene coding for an ACEI/BPP-C-type natriuretic peptide (CNP) precursor. In the genes from Bothrops jararaca and Gloydius blomhoffii, ACEI/BPP sequences are repeated. Sequencing of a cDNA clone from venom glands of Crotalus durissus collilineatus showed that two ACEIs/BPPs are located together at the N-terminus, but without repeats. An additional sequence for CNP was unexpectedly found at the C-terminus. Homologous genes for the ACEI/BPP-CNP precursor suggest that most crotaline venoms contain both ACEIs/BPPs and CNP. The sequence of ACEIs/BPPs is separated from the CNP sequence by a long spacer sequence. Previously, there was no evidence that this spacer actually coded any expressed peptides. Aird and Kaiser (1986, unpublished) previously isolated and sequenced a peptide of 11 residues (TPPAGPDVGPR) from Crotalus viridis viridis venom. In the present study, analysis of the cDNA clone from C. d. collilineatus revealed a nearly identical sequence in the ACEI/BPP-CNP spacer. Fractionation of the crude venom by reverse phase HPLC (C(18)), and analysis of the fractions by mass spectrometry (MS) indicated a component of 1020.5 Da. Amino acid sequencing by MS/MS confirmed that C. d. collilineatus venom contains the peptide TPPAGPDGGPR. Its high proline content and paired proline residues are typical of venom hypotensive peptides, although it lacks the usual N-terminal pyroglutamate. It has no demonstrable hypotensive activity when injected intravenously in rats; however, its occurrence in the venoms of dissimilar species suggests that its presence is not accidental. Evidence suggests that these novel toxins probably activate anaphylatoxin C3a receptors.  相似文献   

6.
While beta-propeller phytases (BPPs) from Gram-positive bacteria do not carry disulfide bonding, their counterparts from Gram-negative bacteria contain cysteine residues that may form disulfide bonds. By molecular modeling, two amino acid residues of B. subtilis 168 phytase (168PhyA), Ser-161 and Leu-212, were mutated to cysteine residues. Although the double cysteine mutant was secreted from B. subtilis at an expression level that was 3.5 times higher than that of the wild type, the biochemical and enzymatic properties were unaltered. In CD spectrometric analysis, both enzymes exhibited similar apparent melting temperatures and mid-points of transition under thermal and guanidine hydrochloride induced denaturation, respectively. In enzyme assays, the mutant phytase exhibited a poor refolding ability after thermal denaturation. We postulate that the disulfide bond in BPP sequences from Gram-negative bacteria is beneficial to their stability in the periplasmic compartment. In contrast, the lack of periplasmic space in Bacillus species and the fact that Bacillus BPPs are released extracellularly may render disulfide bonds unnecessary. This may explain why in evolution, BPPs in Bacillus species do not carry disulfide bonds.  相似文献   

7.
1. Isolated intact pea (Pisum sativum) chloroplasts incorporate [32P]orthophosphate into several thylakoid polypeptides in the light. Transfer of the labelled chloroplasts to darkness results in rapid dephosphorylation of the polypeptides. The most rapidly dephosphorylated phosphoproteins are the 26000-Mr doublet derived from the light-harvesting chlorophyll a/b binding complex. 2. Incubation of isolated 32P-labelled thylakoids in buffer in the absence of stromal components also results in rapid protein dephosphorylation. Again, the most rapidly dephosphorylated phosphoproteins are the 26000-Mr light-harvesting doublet. Dephosphorylation of all thylakoid phosphoproteins is accelerated by addition of up to 10 mM MgCl2. 3. The enzyme responsible for dephosphorylation is a phosphatase rather than a phosphotransferase or the thylakoid protein kinase acting in reverse. The enzyme is specifically and totally inhibited by NaF and does not require phosphoryl group acceptors such as ADP. Unlike the protein kinase, the phosphatase is indifferent to light and the electron transport inhibitor 3(3,4-dichlorophenyl)-1,1-dimethylurea. 4. The phosphorylated regions of the thylakoid phosphoproteins protrude from the outer surface of the membrane and are removed by trypsin treatment.  相似文献   

8.
New aspects of the distribution and developmental appearance of the 44-kDa bone phosphoprotein (44K BPP, also called sialoprotein I or osteopontin) and bone gamma-carboxyglutamic acid (Gla)-containing protein (BGP, also called osteocalcin) during osteogenesis and dentinogenesis were investigated with immunocytochemical techniques using monospecific, affinity-purified polyclonal antibodies. Sections from newborn rat incisors and from various bone anlagen of newborn animals and fetuses were processed for detection of 44K BPP or BGP antigenicity. In addition, histochemical reactions for detection of alkaline phosphatase or calcium salts were performed on a number of the sections. The 44K BPP appears to be synthesized and secreted by chondrocytes only in the areas of cartilage-to-bone transition; these cells could participate indirectly in the process of bone formation by providing a suitable scaffold onto which primary marrow osteoblasts attach and spread. During osteogenesis, 44K BPP is found in bone-forming cells almost concomitantly with the appearance of alkaline phosphatase and before osteoid deposition, whereas BGP is still absent during early stages of mineralization. We hypothesize that this dramatic difference between the developmental appearance of 44K BPP and BGP reflects the delayed expression of the BGP gene relative to that of 44K BPP. In long-term cultures of bone marrow from adult mice, some fibroblastic cells expressed the 44K BPP phenotype; these cells could represent early osteogenic progenitor cells. Some experiments also suggested that, as with BGP, 44K BPP or an immunologically related protein is synthesized by some odontoblasts and secreted into predentin, prior to the onset of mineralization.  相似文献   

9.
10.
Angiotensin I-converting enzyme (ACE) is a dipeptidyl-carboxypeptidase expressed in endothelial, epithelial and neuroepithelial cells. It is composed of two domains, known as N- and C-domains, and it is primarily involved in blood pressure regulation. Although the physiological functions of ACE are not limited to its cardiovascular role, it has been an attractive target for drug design due to its critical role in cardiovascular and renal disease. We examined natural structures based on bradykinin-potentiating peptides (BPPs) extracted from Bothrops jararaca venom for ACE inhibition. Modeling, docking and molecular dynamics were used to study the conserved residues in the S2', S1' and S1 positions that allow enzyme-substrate/inhibitor contacts. These positions are conserved in other oligopeptidases, and they form tight and non-specific contacts with lisinopril, enalapril and BPP9a inhibitors. The only specific inhibitor for human somatic ACE (sACE) was BPP9a, which is instable in the N-sACE-BPP9a complex due to repulsive electrostatic interactions between Arg P4-Arg 412 residues. Specificity for the C-terminal domain in human sACE inhibition was confirmed by electrostatic interaction with the Asp 1008 residue. Peptide-like BPP structures, naturally developed by snakes across millions of years of evolution, appear to be good candidates for the development of domain-selective ACE inhibitors with high stability and improved pharmacological profiles.  相似文献   

11.
We demonstrate for the first time that the expression of tyrosine containing membrane phosphoproteins is elevated in estrogen-induced kidney tumors, which is evident from both the types of experiments, i.e., alkali-resistant phosphorylation of membrane proteins and immunoprecipitation of tyrosine containing phosphoproteins. Tyrosine phosphorylation of proteins or peptides was modulated by the growth factors (EGF, IGF-I) and by the inhibitors of tyrosine protein kinase(s). The kinetic analyses revealed that tumor membranes have high affinity and catalytically more efficient tyrosine phosphorylating kinase enzyme(s) compared to that of normal membranes which have low affinity and catalytically less efficient kinase enzyme(s). It is proposed that overexpression of tyrosine containing membranal phosphoproteins may be involved in the induction and growth of estrogen-induced renal neoplasm.  相似文献   

12.
Calcium binding properties of bone acidic glycoprotein-75, osteopontin, and bone sialoprotein were determined in 10 mM imidazole buffer (pH 6.8), containing either 60 mM KCl or 150 mM NaCl. Proteins assayed were first bound to nitrocellulose to mimic substrate-bound forms in vivo; retention of phosphoproteins was determined through use of radioiodinated tracers. Binding studies were carried out both as a function of calcium concentration and the amount of phosphoprotein. In the presence of 60 mM KCl, bone acidic glycoprotein-75 exhibited the largest calcium binding capacity (139 atoms/molecule at saturation), with bone sialoprotein intermediary (83 atoms/molecule) and osteopontin lowest (50 atoms/molecule). Sites detected for each phosphoprotein exhibited overall binding constants in the 0.5-1.0 mM extracellular range. In 150 mM NaCl and 1-2 mM total calcium, phosphoproteins bound between 72 and 19 mol of calcium/mol with the same relative order. Binding was proportional to amount of phosphoprotein in either salt condition. The presence of 5 mM calcium had a different effect on concentration-dependent binding to type I collagen for each phosphoprotein. Bone acidic glycoprotein-75 alone was found to undergo an unusual calcium-enhanced polymerization reaction, confirmed by light scattering measurements, wherein collagen binding was greatest with polymeric forms. These findings demonstrate that acidic phosphoproteins from bone bind calcium atoms with a range of capacities. Calcium appears to induce conformational changes in bone acidic glycoprotein-75 which influences its self-association and binding to different substrata.  相似文献   

13.
Snake venom peptidomes are valuable sources of pharmacologically active compounds. We analyzed the peptidic fractions (peptides with molecular masses < 10,000 Da) of venoms of Vipera ammodytes meridionalis (Viperinae), the most toxic snake in Europe, and Bothrops jararacussu (Crotalinae), an extremely poisonous snake of South America. Liquid chromatography/mass spectrometry (LC/MS), direct infusion electrospray mass spectrometry (ESI-MS) and matrix-assisted desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were applied to characterize the peptides of both snake venoms. 32 bradykinin-potentiating peptides (BPPs) were identified in the Crotalinae venom and their sequences determined. 3 metalloproteinase inhibitors, 10 BPPs and a Kunitz-type inhibitor were observed in the Viperinae venom peptidome. Variability in the C-terminus of homologous BPPs was observed, which can influence the pharmacological effects. The data obtained so far show a subfamily specificity of the venom peptidome in the Viperidae family: BPPs are the major peptide component of the Crotalinae venom peptidome lacking Kunitz-type inhibitors (with one exception) while the Viperinae venom, in addition to BPPs, can contain peptides of the bovine pancreatic trypsin inhibitor family. We found indications for a post-translational phosphorylation of serine residues in Bothrops jararacussu venom BPP (S[combining low line]QGLPPGPPIP), which could be a regulatory mechanism in their interactions with ACE, and might influence the hypotensive effect. Homology between venom BPPs from Viperidae snakes and venom natriuretic peptide precursors from Elapidae snakes suggests a structural similarity between the respective peptides from the peptidomes of both snake families. The results demonstrate that the venoms of both snakes are rich sources of peptides influencing important physiological systems such as blood pressure regulation and hemostasis. The data can be used for pharmacological and medical applications.  相似文献   

14.
Two phosphorylated proteins of approximately 66 kDa and approximately 60 kDa mass with different DEAE-Sephacel elution patterns were isolated from chicken bone and were shown to be genetically distinct by both biochemical and immunological analysis. A tryptic peptide from the 60 kDa protein was identified that was similar to a sequence of the rat bone sialoprotein II. Both proteins showed RGD inhibited cell-attachment with the MG-63 osteosarcoma cell, and the approximately 66 kDa phosphoprotein appeared to promote cell adhesion better than human vitronectin. The two phosphoproteins appear to share functional and biochemical characteristics and to be homologous to the mammalian bone phosphoproteins, osteopontin and bone sialoprotein II.  相似文献   

15.
Following the measurement of the phosphorylation of the substrate poly(Glu80Na,Tyr20) and the analysis of the alkali-resistant phosphorylation of endogenous proteins, the protein-tyrosine kinase of the canine prostate was partially characterized with regard to its subcellular localization, as well as certain kinetic and molecular properties. This kinase was mainly found in the cytosolic fraction (75%); however, its specific activity was similar to that of the residual enzyme present in the particulate fraction. Conditions for optimal activity of both fractions were determined. Under these conditions, several endogenous phosphoproteins (44-63 kilodaltons upon electrophoresis) were alkali resistant and phosphotyrosine was present in all of the major ones (pp63, pp57, pp52, and pp44). The particulate protein-tyrosine kinase activity was partially solubilized (58%) with 0.5% Triton X-100; this percentage was increased to 85% in the presence of 0.25 M KCl. Upon gel filtration, both cytosolic and particulate kinases showed an apparent molecular mass of 44 kilodaltons; these enzymes also phosphorylated similar major alkali-resistant phosphoproteins. The soluble protein-tyrosine kinase, with a sedimentation coefficient of 4.0S and an isoelectric point of 5.5, could be separated from arginine esterase and prostatic acid phosphatase.  相似文献   

16.
Current studies of protein phosphorylation focus primarily on the importance of specific phosphoproteins and their landscapes of phosphorylation in the regulation of different cellular functions. However, global changes in phosphorylation of extracellular matrix phosphoproteins measured “in bulk” are equally important. For example, correct global phosphorylation of different bone matrix proteins is critical to healthy tissue biomineralization. To study changes of bone matrix global phosphorylation, we developed a strategy that combines a procedure for in vitro phosphorylation/dephosphorylation of fully mineralized bone in addition to quantitation of the global phosphorylation levels of bone matrix proteins. For the first time, we show that it is possible to enzymatically phosphorylate/dephosphorylate fully mineralized bone originating from either cadaveric human donors or laboratory animals (mice). Using our strategy, we detected the difference in the global phosphorylation levels of matrix proteins isolated from wild-type and osteopontin knockout mice. We also observed that the global phosphorylation levels of matrix proteins isolated from human cortical bone were lower than those isolated from trabecular bone. The developed strategy has the potential to open new avenues for studies on the global phosphorylation of bone matrix proteins and their role in biomineralization as well for other tissues/cells and protein-based materials.  相似文献   

17.
MPM-2 antigens, a discrete set of phosphoproteins that contain similar phosphoepitopes recognized by the monoclonal antibody MPM-2, are phosphorylated during M-phase induction. Our previous studies suggested that certain MPM-2 antigens are involved in the appearance of maturation-promoting factor (MPF) activity. Because the central mitotic regulator cdc2 kinase has been shown to exhibit MPF activity, we explored the possibility that certain MPM-2 antigens are regulators of cdc2 kinase. We found that MPM-2 binding of its antigens would inhibit the autoamplification of cdc2 kinase in Xenopus oocytes and interfere with cyclin-activation of cdc2 kinase in Xenopus interphase egg extract. Immunodepletion of MPM-2 antigens from cyclin-induced M-phase egg extract caused the inactivation of cdc2 kinase, which was accompanied by an inhibitory phosphorylation of p34cdc2 on Thr 14 and Tyr 15, indicating that at least one MPM-2 antigen is a positive regulator of p34cdc2 dephosphorylation. We then showed that cdc25 from M-phase arrested egg extract is an MPM-2 antigen. These results suggest that phosphorylation of the epitope recognized by MPM-2 may be a crucial event in the activation of cdc25 and that the kinase(s) that phosphorylates this MPM-2 epitope may be an important regulator of cdc2 kinase activation.  相似文献   

18.
Summary Previous immunohistochemical data have shown that the 44-kDal bone phosphoprotein (44K BPP, also called sialoprotein I or oestopontin) recently isolated in our laboratory was synthesized by osteoblasts and osteocytes and was expressed early during differentiation of boneforming cells. We report here the presence of 44K BPP antigenicity at certain ectopic sites, namely, the proximal-convoluted tubule of the kidney, neurons, sensory and secretory cells in the internal ear. To insure specificity and reproducibility, different immunohistochemical methods were used and affinity-purified antibodies against two separate preparations of pure 44K BPP were tested. In the cells of the proximal-convoluted tubule, 44K BPP immunoreactivity was observed within apical endocytotic vacuoles and within lysosomes. This staining thus correlates with the degradation of the 44K BPP epitope which we previously demonstrated to occur in serum. On the other hand, in the neurons of the acoustic ganglion and the sensory cells of the macula, 44K BPP immunoreactivity was associated with the Golgi apparatus indicating synthesis and secretion by these cells. The finding that the 44K BPP (or a structurally related molecule) is synthesized by neurons and neuroepithelial cells deserves further investigation with respect to a possible embryologie relationship between neuroectodermal cells and the precursors of some bone forming-cells of the skull.  相似文献   

19.
Administration of T3 (20 micrograms/100 g BW) for 3 days increases phosphorylation of several proteins in rat liver cytosol in vitro. To help elucidate the mechanism of T3-induced phosphorylation, we studied which protein kinase(s) mediate phosphorylation of endogenous cytosolic proteins. Five different protein kinases were obtained by DEAE+ cellulose column chromatographic fractionation of liver cytosol. When their ability to phosphorylate heat-inactivated cytosol was investigated, casein kinase, a cAMP independent protein kinase, showed the strongest effect. Casein kinase, purified by phosphocellulose chromatography, phosphorylated more than 10 cytosolic proteins. Several T3-dependent (and cAMP independent) phosphoproteins were included among these. One protein with Mr 39 X 10(3), of which phosphorylation is stimulated by T3 within five hours after injection, was the most active substrate for casein kinase. The results suggest that casein kinase is the enzyme responsible for phosphorylation of many rat liver cytosolic proteins and that several phosphoproteins, apparently under T3-regulation, might be phosphorylated by this enzyme.  相似文献   

20.
Beta-propeller phytases (BPPs) are a special class of enzyme that are mainly isolated from Bacillus and are widely used in animal nutrition, human health and environmental protection. BPPs class exhibits both unique Ca2+-dependent catalytic property and highly strict substrate specificity for the calcium-phytate complex. This review describes the effect of Ca2+ on the catalytic activity, thermal stability, and structural conformation of BPPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号