首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《Hormones and behavior》2009,55(5):676-683
Chinning consists of rubbing the chin against an object, thereby depositing secretions from the submandibular glands. As mating, chinning is stimulated in male and female rabbits by testosterone and estradiol, respectively. To investigate the brain sites where steroids act to stimulate chinning and mating we implanted into the ventromedial hypothalamus (VMH) or the medial preoptic area (MPOA) of gonadectomized male and female rabbits testosterone propionate (TP; males) or estradiol benzoate (EB; females) and quantified chinning and sexual behavior. EB implants into the VMH or MPOA reliably stimulated chinning in females. Most of those implanted into the VMH and around half of the ones receiving EB into MPOA or diagonal band of Broca (DBB) showed lordosis. Chinning, but not sexual behavior, was stimulated in males by TP implants into the MPOA or DBB. Neither chinning nor mounting were reliably displayed by males following TP implants into the VMH. Results indicate that, in females, the VMH is an estrogen-sensitive brain area that stimulates both chinning and lordosis while the MPOA seems to contain subpopulations of neurons involved in either behavior. In males, androgen-sensitive neurons of the MPOA, but not the VMH, are involved in chinning stimulation but it is unclear if these areas also participate in the regulation of copulatory behavior.  相似文献   

2.
Chinning consists of rubbing the chin against an object, thereby depositing secretions from the submandibular glands. As mating, chinning is stimulated in male and female rabbits by testosterone and estradiol, respectively. To investigate the brain sites where steroids act to stimulate chinning and mating we implanted into the ventromedial hypothalamus (VMH) or the medial preoptic area (MPOA) of gonadectomized male and female rabbits testosterone propionate (TP; males) or estradiol benzoate (EB; females) and quantified chinning and sexual behavior. EB implants into the VMH or MPOA reliably stimulated chinning in females. Most of those implanted into the VMH and around half of the ones receiving EB into MPOA or diagonal band of Broca (DBB) showed lordosis. Chinning, but not sexual behavior, was stimulated in males by TP implants into the MPOA or DBB. Neither chinning nor mounting were reliably displayed by males following TP implants into the VMH. Results indicate that, in females, the VMH is an estrogen-sensitive brain area that stimulates both chinning and lordosis while the MPOA seems to contain subpopulations of neurons involved in either behavior. In males, androgen-sensitive neurons of the MPOA, but not the VMH, are involved in chinning stimulation but it is unclear if these areas also participate in the regulation of copulatory behavior.  相似文献   

3.
Cycloheximide(Cyclo), an inhibitor of protein synthesis by a direct action on protein synthesis at the ribosomal level, was used to reversibly inhibit estrogen-induced sexual receptivity. Cyclo (100 μg per rat) was infused into the preoptic area(POA) of ovariectomized rats at varying times before, simultaneously with, and after 3 μg of subcutaneous estradiol benzoate (EB). All animals received 0.5 mg progesterone (P) 36 hr after EB, and were tested for sexual receptivity 4–6 hr after P. The females were placed with stud males and a lordosis quotient was computed for each female (lordosis quotient = number of lordosis responses/20 mounts by the male × 100). Females receiving Cyclo 6 hr before, simultaneously with, or 12 hr after EB showed significantly lower levels of sexual receptivity when compared to females receiving Cyclo 36 hr before and 18 and 24 hr after EB. When those animals that showed low levels of sexual behavior after Cyclo infusion were reprimed with EB and P 7 days later and presented with a male they showed high levels of sexual receptivity. Thus, the effect of Cyclo was reversible. Only Cyclo infusions into the POA (bilateral) and third ventricle were effective in suppressing sexual behavior. Caudate nucleus, lateral ventricle, and unilateral POA infusions were without effect.The data presented are in agreement with earlier work that utilized actinomycin D to inhibit steroid-induced sexual behavior. Cyclo was found to be less toxic than actinomycin D. All of the available evidence is consistent with the hypothesis that estrogen stimulates RNA and/or protein synthesis in its facilitation of sexual behavior in the female rat.  相似文献   

4.
Opioid regulation of reproduction has been widely studied. However, the role of opioid receptor-like 1 receptor (NOP; also referred to as ORL-1 and OP4) and its endogenous ligand orphanin FQ/nociceptin (OFQ/N) have received less attention despite their extensive distribution throughout nuclei of the limbic-hypothalamic system, a circuit that regulates reproductive behavior in the female rat. Significantly, the expression of both receptor and ligand is regulated in a number of these nuclei by estradiol and progesterone. Activation of NOP in the ventromedial nucleus of the hypothalamus (VMH) of estradiol-primed nonreceptive female rats facilitates lordosis. NOPs are also expressed in the medial preoptic nucleus (MPN), however, their roles in reproductive behavior have not been studied. The present experiments examined the role of NOP in the regulation of lordosis in the MPN and tested whether endogenous OFQ/N in the MPN and VMH mediates reproductive behavior. Activation of NOP by microinfusion of OFQ/N in the MPN facilitated lordosis in estradiol-primed sexually nonreceptive female rats. Passive immunoneutralization of OFQ/N in either the MPN or the VMH reduced lordosis in estradiol-primed females, but had no effect on lordosis in estradiol+progesterone-primed sexually receptive rats. These studies suggest that OFQ/N has a central role in estradiol-only induced sexual receptivity, and that progesterone appears to involve additional circuits that mediate estradiol+progesterone sexual receptivity.  相似文献   

5.
The ability of developing ovariectomized (OVX) guinea pigs to display lordosis following a variety of steroid treatments which are behaviorally effective in adults was examined. Females OVX at 11 days of age did not display lordosis at 20 days of age, following treatment with several dose combinations of estradiol benzoate (EB, 10-50 micrograms) and progesterone (0.5-5 mg). By 30 days of age, 25% of the animals responded to EB plus progesterone, and by 40 days of age, adult-typical responses were observed. The developmental profile of responsiveness to steroids was not altered by varying the age at OVX, or by allowing pups to remain with a lactating mother. OVX females given estradiol (E2) implants did not exhibit progesterone-facilitated lordosis earlier than those treated with EB: however, the former group did show an unusually high incidence of progesterone-independent lordosis at 40 days of age. Twenty-day-old females also did not respond behaviorally to discrete pulses of E2 followed by progesterone, a treatment which was very effective in adults. Finally, lordosis was not facilitated in EB-primed, 20-day-old females by the alpha-noradrenergic agonist, clonidine, a treatment which was effective in adult females. These data illustrate a variety of conditions under which juvenile female guinea pigs do not exhibit steroid-induced lordosis. Since 20-day-old, EB-treated females also did not exhibit clonidine-facilitated lordosis, incomplete development of the central steroid-responsive and/or noradrenergic systems may contribute to the inability to display steroid-induced estrous behavior at this age.  相似文献   

6.
Adult male Sprague-Dawley rats rarely exhibit progesterone-facilitated lordosis following steroid treatments which are effective in females. In contrast, progesterone-facilitated lordosis has been observed following priming with estradiol pulses in another strain. The aim of this study was to compare progesterone-facilitated feminine sexual behavior in adult male and female Sprague-Dawley rats following priming with estradiol benzoate (EB) or estradiol pulses. Female sexual behavior was measured in adult, gonadectomized males and females treated as follows: Two pulses of estradiol followed by progesterone or oil the next day; EB (two doses) for 3 days, and progesterone or oil the next day. These protocols were repeated at 4- or 6-day intervals, respectively. Progesterone-facilitated lordosis was observed consistently in both sexes treated with estradiol pulses. By the fifth test, lordosis quotients did not differ between the sexes, but the lordosis ratings in progesterone-treated males remained lower than those observed in females. Proceptivity (hop-darting) was facilitated by progesterone in females, but was never observed in males. Lordosis was induced in both sexes by 15 micrograms EB, but was not reliably facilitated by progesterone. Treatment with the lower dose of EB (1.5 micrograms) induced high levels of receptivity in females (occasionally facilitated by progesterone), but not in males regardless of subsequent treatment (i.e, progesterone or oil). These data suggest that progesterone-facilitated lordosis can be induced in male Sprague-Dawley rats, if a regimen of estradiol pulses is used. Thus, the brain of the adult male is not inflexibly differentiated with regard to progesterone facilitation of feminine receptive behavior.  相似文献   

7.
The anti-estrogen, CI 628, was used to suppress the lordosis response induced by sequential injections of estrogen and progesterone in ovariectomized (OVX) female rats. Appropriate doses of CI 628 completely abolished sexual receptivity in females administered estradiol benzoate (EB) in sesame oil. This behavioral effect could be attenuated by providing increased quantities of EB or decreased quantities of CI 628. Anti-estrogenic effects on lordosis induced by free estradiol in saline (E) were assessed after first establishing behaviorally equivalent doses of EB and E. This was accomplished by determining thresholds for E-induced lordosis. OVX females were approximately seven times less sensitive to E than to EB. CI 628 had no significant effects on E-induced lordosis, in contrast to the complete abolition of lordosis in females treated with behaviorally equivalent EB doses. A possible mechanism to explain this differential responsiveness of EB- and E-treated females is discussed.  相似文献   

8.
The purpose of the present study was to investigate the effect of time of β-endorphin (β-EP) administration on lordosis in ovariectomized female rats injected subcutaneously (sc) with estradiol benzoate (EB) and progesterone (Prog). Intracerebroventricular (icv) injections of β-EP and naloxone (NLX), an opioid receptor antagonist, were administered at the various stages of sc steroid hormone priming. Facilitation of lordosis induced by 10 μg β-EP was observed exclusively within the initial 6 h of estrogen action, after which inhibition of lordosis occurred. At 12 h after EB priming, at the time of sc Prog treatment (or 43 h after EB priming), icv injection of 10 μg β-EP significantly inhibited lordosis. Lordosis was significantly facilitated by icv injections of 1 and 10 μg β-EP at the time of sc EB priming, but not by 0.1 μg β-EP. A dose–response relationship was identified for lordosis in experimental animals receiving icv injection of β-EP. Lordosis was inhibited by icv injections of 1 and 10 μg β-EP at 1 h before the test (or 47 h after EB priming). Lordosis was significantly inhibited by icv injection of NLX at all stages. From the present results, it seems that two different mechanisms are involved in endorphinergic modulation of rats' sexual receptivity: (a) the endorphinergic system at the initial stages of estrogen action facilitates the estrogen activation of lordosis; (b) the endorphinergic system at the final stages of steroid action inhibits lordosis. Moreover, there exists a critical time between 6 and 12 h after estrogen priming for endorphinergic mediation to modulate estrogen action.  相似文献   

9.
The induction of sexual receptivity and its maintenance after copulation in ovariectomized female golden hamsters (Mesocricetus auratus) was found to be a function of the levels of ovarian hormones administered. Various combinations of estradiol benzoate (between 0.6 and 666 μg) and progesterone (between 0.05 and 5.0 mg) were administered in two experiments. Although some animals responded at 0.6 μg, higher levels of estradiol benzoate (1–6 μg or more) were more effective in inducing levels of lordosis equivalent to those seen in intact females in natural estrus. After mating, a depression in lordosis was observed in both ovariectomized and intact females. However, in ovariectomized females (excluding animals that did not respond initially) the duration of postcopulatory receptivity was a function of the level of progesterone administered. High levels of progesterone tended to prolong slightly the duration of postcopulatory receptivity.  相似文献   

10.
Estradiol rapidly activates a microcircuit in the arcuate nucleus of the hypothalamus (ARH) that is needed for maximal female sexual receptivity. Membrane estrogen receptor-α complexes with and signals through the metabotropic glutamate receptor-1a stimulating NPY release within the ARH activating proopiomelanocortin (POMC) neurons. These POMC neurons project to the medial preoptic nucleus (MPN) and release β-endorphin. Estradiol treatment induces activation/internalization of MPN μ-opioid receptors (MOR) to inhibit lordosis. Estradiol membrane action modulates ARH gamma-aminobutyric acid receptor-B (GABAB) activity. We tested the hypothesis that ARH GABAB receptors mediate estradiol-induced MOR activation and facilitation of sexual receptivity. Double-label immunohistochemistry revealed expression of GABAB receptors in NPY, ERα and POMC expressing ARH neurons. Approximately 70% of POMC neurons expressed GABAB receptors. Because estradiol initially activates an inhibitory circuit and maintains activation of this circuit, the effects of blocking GABAB receptors were evaluated before estradiol benzoate (EB) treatment and after at the time of lordosis testing. Bilateral infusions of the GABAB receptor antagonist, CGP52432, into the ARH prior to EB treatment of ovariectomized rats prevented estradiol-induced activation/internalization of MPN MOR, and the rats remained unreceptive. However, in EB-treated rats, bilateral CGP52432 infusions 30 min before behavior testing attenuated MOR internalization and facilitated lordosis. These results indicated that GABAB receptors were located within the lordosis-regulating ARH microcircuit and are necessary for activation and maintenance of the estradiol inhibition of lordosis behavior. Although GABAB receptors positively influence estradiol signaling, they negatively regulate lordosis behavior since GABAB activity maintains the estradiol-induced inhibition.  相似文献   

11.
Exposure to stress during puberty can lead to long-term behavioral alterations. Female mice, of the inbred C57BL/6 strain, have been shown to display lower levels of sexual receptivity in adulthood when exposed to shipping stress or to an immune challenge during puberty. The present study investigated whether this effect can be extended to CD1 outbred mice and examined a possible mechanism through which exposure to stressors could suppress sexual receptivity. The results revealed that CD1 mice injected with lipopolysaccharide (LPS) or exposed to shipping stress at 6 weeks old display lower levels of sexual receptivity in response to estradiol and progesterone in adulthood than control mice. Moreover, mice exposed to shipping stress at 8 weeks old also displayed reduced sexual receptivity, but those injected with LPS at that time showed slightly reduced effects, suggesting that the sensitive pubertal period extends to 8 weeks of age in this strain of mice. The examination of estrogen receptor-α (ER-α) expression revealed that mice exposed to shipping stress during the sensitive period (6 weeks) display lower levels of ER-α expression in the medial preoptic area and the ventromedial nucleus and the arcuate nucleus of the hypothalamus than mice shipped at a younger age. These findings support the prediction that exposure to shipping stress or LPS during puberty decreases behavioral responsiveness to estradiol and progesterone in adulthood in an outbred strain of mice through enduring suppression of ER-α expression in some brain areas involved in the regulation of female sexual behavior.  相似文献   

12.
Progesterone receptor immunoreactivity (PRir) in brain areas involved in reproductive behavior in eutherian species was examined for the first time in a female marsupial, the gray short-tailed opossum (Monodelphis domestica, hereinafter, opossum). PRir in nuclei of neurons, measured as area covered by stained nuclei, was seen in the arcuate nucleus (Arc); anteroventral periventricular nucleus (AVPv); bed nucleus of the stria terminalis (BST); medial preoptic area (MPOA), and ventromedial hypothalamus (VMH), but not in control areas adjacent to the hypothalamus or cortex. Female opossums are induced into cytological, urogenital sinus (UGS), estrus by male pheromones and into behavioral estrus, i.e., receptivity, by pairing with a male, and both estradiol (E) and progesterone (P) are involved in induction of receptivity in intact and ovariectomized females. PRir in the AVPv, MPOA, and VMH was very low in females that had never been exposed to males or their scent marks, i.e., naïve anestrous (NVA) females, and either previous or current exposure to males or their scent marks was associated with elevated PRir. PRir was significantly higher in the AVPv and MPOA of anestrous females with previous but no current exposure to males and their scent marks, i.e., experienced anestrous (EXPA) females, than in NVA females, but PRir was significantly lower in the MPOA and VMH of EXPA females than in females that were behaviorally receptive and had recently copulated, i.e., behavioral receptive estrous (BRE) females. PRir was higher in the VMH of both UGS estrous (UGSE) and BRE females compared to that in EXPA animals, but PRir did not differ between UGSE and BRE females in any of the 3 brain areas examined, including the MPOA These results provide evidence that pheromonal induction of estrus and sexual receptivity in opossums is associated with elevation of PRir in the VMH and MPOA and that prior exposure to males or their pheromones, even in the absence of current male stimuli, is associated with persistent elevation of PRir in the AVPv and MPOA.  相似文献   

13.
Ovariectomized rats were hormonally primed with various doses of estradiol benzoate (EB; 0.5-10 microg) in combination with various doses of progesterone (2.5-500 microg) to induce sexual receptivity. Females were then subjected to 5 min restraint and the effect on lordosis behavior was monitored for the next 30 min. Such mild stress has been previously shown to transiently reduce lordosis behavior of ovariectomized females hormonally primed only with 10 microg EB. In the current study, doses of progesterone of 25 microg or more in combination with 10 microg EB reduced the effects of restraint. Also priming doses of EB from 4.0 to 10 microg in combination with 250 microg progesterone prevented the lordosis-inhibiting effects of restraint. These findings reinforce prior observations of the dose-dependency of both estrogen and progesterone in the facilitation of lordosis behavior and introduce the female's lordosis response to mild restraint as a potentially useful index of the female's response to stress.  相似文献   

14.
Newborn female hamsters were treated with 0.1 or 1.0 ng of estradiol benzoate (EB), with 1.0 ng–2.0 μg of the synthetic estrogen RU-2858, or with 0.1 or 0.5 μg of the antiestrogen nafoxidine. When adult the animals were treated with EB and progesterone and tested for the display of lordosis and with testosterone propionate and tested for the display of mounting behavior. The EB doses used failed to alter sexual differentiation. RU-2858 masculinized and defeminized in a dose-dependent manner being most effective when given neonatally as two divided doses. Nafoxidine inhibited lordosis without enhancing mounting behavior. The findings support the hypothesis that estrogens may be involved in the normal sexual differentiation process.  相似文献   

15.
In the female rat, sexual receptivity (lordosis) can be facilitated by sequential activation of estrogen receptor (ER) α and G protein-coupled estrogen receptor 1 (GPER) by estradiol. In the estradiol benzoate (EB) primed ovariectomized (OVX) rat, EB initially binds to ERα in the plasma membrane that complexes with and transactivates metabotropic glutamate receptor 1a to activate β-endorphin neurons in the arcuate nucleus of the hypothalamus (ARH) that project to the medial preoptic nucleus (MPN). This activates MPN μ-opioid receptors (MOP), inhibiting lordosis. Infusion of non-esterified 17β-estradiol into the ARH rapidly reduces MPN MOP activation and facilitates lordosis via GPER. Tamoxifen (TAM) and ICI 182,780 (ICI) are selective estrogen receptor modulators that activate GPER. Therefore, we tested the hypothesis that TAM and ICI rapidly facilitate lordosis via activation of GPER in the ARH. Our first experiment demonstrated that injection of TAM intraperitoneal, or ICI into the lateral ventricle, deactivated MPN MOP and facilitated lordosis in EB-primed rats. We then tested whether TAM and ICI were acting rapidly through a GPER dependent pathway in the ARH. In EB-primed rats, ARH infusion of either TAM or ICI facilitated lordosis and reduced MPN MOP activation within 30 min compared to controls. These effects were blocked by pretreatment with the GPER antagonist, G15. Our findings demonstrate that TAM and ICI deactivate MPN MOP and facilitate lordosis in a GPER dependent manner. Thus, TAM and ICI may activate GPER in the CNS to produce estrogenic actions in neural circuits that modulate physiology and behavior.  相似文献   

16.
It has been shown previously that intracerebral actinomycin-D (Act-D) pellets inhibit estrogen facilitated female sexual behavior, but it was not possible to test the reversibility of this effect. In the present study an attempt was made to distinguish between the possible temporary interruption by Act-D of the biochemical action of estrogen which facilitates sexual receptivity and permanent toxic effects of the drug. Act-D in saline was infused into the third ventricle or the preoptic area (POA) to determine whether a reversible suppression of sexual behavior as measured by the lordosis quotient (LQ) could be produced. Ovariectomized rats were implanted with midline guide tubes entering the third ventricle (eight rats) or with bilateral tubes extending to the corpus callosum above the POA (67 rats). Each animal served as its own control since pretest and Act-D and recovery tests were performed 10–14 days apart in most subjects. For each behavioral test implanted subjects were primed with 3μg estradiol benzoate (EB) and 0.5 mg progesterone (P) 48 hr later. Behavioral tests, each involving 50 mounts, were performed 4–6 hr after P. Following the pretest the animals were retested under experimental conditions. Inner cannulae were inserted into the POA through the guide tubes and 0.11 μg Act-D infused 24 or 12 hr before, simultaneously with, or 6, 12, 18, or 26 hr after EB. A recovery test was performed 10–14 days later with no intracerebral infusion. The control procedure (infusion of of saline either simultaneously with or 12 hr after EB) did not alter the LQ. Act-D infusion produced a reversible suppression of lordosis which was dependent upon the time of administration of Act-D. Intraventricular infusion of Act-D 6 hr after EB reversibly inhibited lordosis behavior and no lesions were produced. Act-D infused into the POA simultaneously with EB or 6 hr later reversibly suppressed the LQ. In the 6 hr group, for example, the LQ fell from 78.3 to 35.7, but 10–14 days later reached 74.3. Although brain lesions of varying extent were produced by Act-D, the marked but reversible suppression of lordosis behavior is consistent with the view that Act-D inhibits estrogen facilitation of lordosis behavior by means of a biochemical rather than cytotoxic action.  相似文献   

17.
The ovarian hormones estrogen and progesterone are required for the complete display of sexual behavior in female rats. Paced mating produces a reward state in intact cycling and ovariectomized (OVX), hormonally primed females as evaluated by the conditioned place preference (CPP) paradigm. Most of the studies that have evaluated CPP induced by paced mating in OVX females have used relatively high doses of estradiol benzoate (EB). In the present study we determined if different doses of EB, combined with progesterone (P), could induce CPP after paced mating. For this purpose OVX female rats were divided in five groups that received one of different doses of estradiol benzoate (5, 2.5, 1.25 or 0.625 μg estradiol + 0.5 mg of progesterone) before being allowed to pace the sexual interaction and conditioned in a CPP paradigm. We found that the lowest dose of EB used (0.625 μg) significantly reduced the lordosis quotient and the lordosis coefficient. Even though these females paced the sexual interaction, they didn't change its original preference, suggesting that sexual interaction did not induce a positive affective, reward state. Females allowed to pace the sexual interaction with higher doses of EB developed CPP after paced mating. These results indicate that a threshold of estradiol is required for paced mating to induce CPP.  相似文献   

18.
A total of 54 ovariectomized female guinea pigs were divided into three groups and tested six times at 2-week intervals for their responsiveness to exogenous ovarian hormones (3 days of 4 micrograms/kg estradiol benzoate plus 1 day of 0.4 mg/kg progesterone) or control injections (0.2 ml oil vehicle). Two weeks after ovariectomy, treatment with estradiol significantly reduced food intake and body weight, and also produced vaginal membrane rupture in 98.1% of the females. When tested for sexual behavior at 4, 6, and 8 hr after the progesterone injection, 29 of the subjects (53.7%) displayed lordosis in response to manual stimulation. Twelve weeks after ovariectomy, the effects of estradiol on food intake, body weight, and vaginal membrane condition had not diminished. However, the overall proportion of females from which lordosis could be elicited declined to 27.8%. Biweekly injections of estradiol benzoate plus progesterone to one of the groups of females did not prevent this decline in the sexual response. Based on these results, it was concluded that the observed reduction in behavioral lordosis does not represent a general decline in the responsiveness of ovariectomized guinea pigs to estrogenic stimulation, but may involve changes in their responsiveness to progesterone or in other mechanisms more specifically associated with sexual behavior.  相似文献   

19.
Peripheral treatment with the serotonin releaser fenfluramine or the serotonin agonist quipazine abolished lordosis behavior in ovariectomized estradiol and progesterone-primed female guinea pigs. Quipazine was also effective when administered into a lateral cerebroventricle. The lowest dose of fenfluramine that induced myoclonus (10 mg/kg) was higher than the dose needed to inhibit lordosis (5 mg/kg). Therefore, it appears that myoclonus and lordosis are differentially sensitive to serotonin agonists. The effects of quipazine on lordosis were time dependent. Quipazine had no effect on lordosis when given prior to the onset of sexual receptivity. These data suggest that serotonin agonists might be effective only when progesterone has had sufficient time to induce sexual receptivity. Quipazine did not affect cytoplasmic progestin receptors in brain areas involved in steroid hormone effects on lordosis. This finding, and the finding that quipazine had no effect on lordosis when given prior to the onset of sexual receptivity, suggest increased serotonin transmission does not interfere with estrogen priming or sensitivity of hypothalamic cells to progesterone.  相似文献   

20.
The mechanisms involved in the control of precocious sexual receptivity were studied in 4-day cyclic female Wistar rats injected with 10 μg estradiol benzoate (EB) and caged with a male during the night from diestrus II to proestrus. Early mating frequencies were compared in intact females, in animals ovariectomized on the morning of diestrus I, in adrenalectomized and in adrenalectomized-ovariectomized females. No change in early sexual receptivity occurred either in ovariectomized, or in adrenalectomized animals. On the contrary, a significant decrease of precocious mating frequencies was noted in adrenalectomized-ovariectomized females. The role played by the ovary in the control of precocious receptivity was supposed to be due to the secretion of progesterone which has been evidenced on the late afternoon of diestrus II in estrogen treated females.Concerning the mechanisms by which the adrenals may compensate for the ovaries in the control of early sexual receptivity in estrogen-primed females it was observed that notwithstanding an inhibitory action exerted by EB on the adrenal progesterone secretion, a low rate of progesterone was maintained in the peripheral plasma which was compatible with early mating in ovariectomized animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号