首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
The extraction by soil and absorption by plants of applied zinc and cadmium   总被引:5,自引:0,他引:5  
In five consecutive years lettuce, spinach, spring wheat, endive and maize were grown in pots and the effects of native and soil-applied Zn and Cd on plant Zn and Cd concentrations were studied. The normal interactive pattern was antagonistic, Zn reducing plant Cd uptake, and conversely, but less so. Only in loam soil Zn and Cd were synergistic to some extent, plant Zn uptake increasing with applied Cd.When relating total soil Cd/Zn to plant Cd/Zn separate sets of data could be distinguished for loam and sandy soil, each fitting a straight line. The use of 0.1 M CaCl2 instead of total extractable soil Cd/Zn makes the two sets of data to coalesce around a single straight line. All crops were found to show a positive linear relationship between 0.1 M CaCl2-extractable soil Cd/Zn and plant Cd/Zn.  相似文献   

3.
In a pot culture experiment, five different species of Brassica (Brassica juncea, Brassica campestris, Brassica carinata, Brassica napus, and Brassica nigra) were grown for screening possible accumulators of heavy metals, viz. Zn, Cu, Ni, and Pb. The plants were grown to maturity in a soil irrigated with sewage effluents for more than two decades in West Delhi, India. The soil analysis showed enhanced accumulation of Zn, Cu, Ni, and Pb in this sewage-irrigated soil. Among all species, B. carinata showed the highest concentration (mg kg(-1)) as well as uptake (microg pot(-1)) of Ni and Pb at maturity. Although B. campestris showed a higher concentration of Zn in its shoots (stem plus leaf), B. carinata extracted the largest amount of this metal due to greater biomass production. However, B. juncea phytoextracted the largest amount of Cu from the soil. In general, the highest concentration and uptake of metal was observed in shoots compared to roots or seeds of the different species. Among the Brassica spp., B. carinata cv. DLSC1 emerged as the most promising, showing greater uptake of Zn, Ni, and Pb, while B. juncea cv. Pusa Bold showed the highest uptake of Cu. The B. napus also showed promise, as it ranked second with respect to total uptake of Pb, Zn, and Ni, and third for Cu. Total uptake of metals by Brassica spp. correlated negatively with available as well as the total soil metal concentrations. Among the root parameters, root length emerged as the powerful parameter to dictate the uptake of metals by Brassica spp. Probably for the first time, B. carinata was reported as a promising phytoextractor for Zn, Ni, and Pb, which performed better than B. juncea.  相似文献   

4.
Abstract

Using biodegradable chelators to assist in phytoextraction may be an effective approach to enhance the heavy-metal remediation efficiencies of plants. A pot experiment was conducted to investigate the effects of ethylenediamine disuccinic acid (EDDS), citric acid (CA), and oxalic acid (OA) on the growth of the arsenic (As) hyperaccumulator Pteris vittata L., its arsenic (As), cadmium (Cd), and lead (Pb) uptake and accumulation, and soil microbial responses in multi-metal(loid)-contaminated soil. The addition of 2.5-mmol kg?1 OA (OA-2.5) produced 26.7 and 14.9% more rhizoid and shoot biomass, respectively compared with the control, while EDDS and CA treatments significantly inhibited plant growth. The As accumulation in plants after the OA-2.5 treatment increased by 44.2% and the Cd and Pb accumulation in plants after a 1-mmol kg?1 EDDS treatment increased by 24.5 and 19.6%, respectively. Soil urease enzyme activities in OA-2.5 treatment were significantly greater than those in the control and other chelator treatments (p?<?0.05). A PCR–denatured gradient gel electrophoresis analysis revealed that with the addition of EDDS, CA and OA enhanced soil microbial diversity. It was concluded that the addition of OA-2.5 was suitable for facilitating phytoremediation of soil As and did not have negative effects on the microbial community.  相似文献   

5.
Yu  Pei-Fang  Juang  Kai-Wei  Lee  Dar-Yuan 《Plant and Soil》2004,258(1):333-340
Chromium in soils is present in the form of Cr(VI) oxyanions or Cr(III) cations. The toxicity and mobility of Cr(VI) are higher than those of Cr(III), thus it is essential that the availability of Cr(VI) in soils be accurately estimated in order to assess the phytotoxicity of Cr and its resultant health hazards to animals and humans. In this study, the Cu-saturated selective ion exchange resin (DOWEX M4195) was used as an infinite sink to test the feasibility of using the resin for extracting available Cr(VI) from soil. In the experiments, the results show that the resin had a high affinity for Cr(VI) and that Cr(VI) adsorbed by resins could be desorbed by using 10% NaCl (pH 4). In addition, the adsorption and desorption of Cr(VI) were not affected by pH levels, the forms of Cr(VI) or the presence of major anions in the soil solution. The above results indicate that the Cu-saturated resin can selectively adsorb Cr(VI) from solution. In the soil extraction experiments, three Cr(VI)-spiked soils were processed using the Cu-saturated resin extraction method. The results show that amounts of soil Cr extractable by the resin had a significant negative correlation to the height of wheat seedlings grown in the Neubauer test. Comparing this to the commonly used extractant, 0.1 M HCl, the amount of soil Cr, extractable by the resin, had a higher correlation to plant height. The results suggest that the selective ion exchange resin method developed in this study is useful in evaluating the quantities of plant-available Cr(VI) in soil and can, therefore, assess the phytotoxicity of Cr in soil.  相似文献   

6.
In two long-term field experiments the zinc (Zn)/cadmium (Cd) hyperaccumulator Sedum plumbizincicola (S. plumbizincicola) was examined to optimize the phytoextraction of metal contaminated soil by two agronomic strategies of intercropping with maize (Zea mays) and plant densities. Soil total Zn and Cd concentrations decreased markedly after long-term phytoextraction. But shoot biomass and Cd and Zn concentrations showed no significant difference with increasing remediation time. In the intercropping experiment the phytoremediation efficiency in the treatment “S. plumbizincicola intercropped with maize” was higher than in S. plumbizincicola monocropping, and Cd concentrations of corn were below the maximum national limit. In the plant density experiment the phytoremediation efficiency increased with increasing plant density and 440,000 plants ha?1 gave the maximum rate. These results indicated that S. plumbizincicola at an appropriate planting density and intercropped with maize can achieve high remediation efficiency to contaminated soil without affecting the cereal crop productivity. This cropping system combines adequate agricultural production with soil heavy metal phytoextraction.  相似文献   

7.
The Cu-saturated selective ion exchange resin (DOWEX M4195) extraction method was used to investigate the effects of two amendments, 5 and 15% organic matter in the form of hog-dung compost (HC) or cattle-dung compost (CC), on Cr(VI) bioavailability in three soils spiked with various levels of Cr(VI). The results showed that addition of composts could decrease the amounts of resin-extractable Cr(VI) in Cr(VI)-spiked soils, and the CC amendment decreased resin-extractable Cr(VI) more than the HC amendment. The X-ray Absorption Near-edge Structure spectroscopy (XANES) method was used to examine the distribution of Cr(III) and Cr(VI) species in Cr(VI)-spiked soils that were affected by compost amendments, and to elucidate the mechanisms for the decrease of resin-extractable Cr(VI) due to the application of composts. The XANES results suggested that the decrease in the amounts of resin-extractable Cr(VI) after compost addition was mainly due to the reduction of Cr(VI) to Cr(III). The amounts of soil resin-extractable Cr(VI) were also correlated with wheat seedling growth in order to evaluate the effect of compost amendments on decreasing the phytotoxicity of soil Cr(VI). The results showed that there was a sigmoidal relationship between soil resin-extractable Cr(VI) and the plant height of wheat seedlings and the obtained effective concentrations of resin-extractable Cr(VI) resulting in 10 and 50% growth inhibition (EC10 and EC50) were 76 and 191 mg kg−1 respectively. The above results suggested that the resin extraction method was a useful tool for assessing Cr(VI) phytotoxicity and that addition of composts would enhance Cr(VI) reduction to Cr(III) in soils and thus relieve Cr(VI) phytotoxicity.  相似文献   

8.
通过室内模拟实验,研究了孔石莼和重金属(铜、镉、锌和铅)共同作用下,海水无机碳体系及碳源汇格局的变化.结果表明,t=7d时,无机碳体系各参数的变化幅度(Δ)与重金属种类和浓度有关.与对照相比,低浓度(<1μmol · L-1)的重金属添加组中,DIC、HCO-3 和PCO2的下降幅度都很明显(P<0.01* *).当铜、镉浓度大于"转折浓度"后, DIC、HCO-3和Pco2 均要大于初始值,其增幅随着重金属浓度的增加而增大.对于锌和铅,二者浓度高达50μmol · L-1时,水体中无机碳各参数与初始值相比仍呈现下降趋势.此外,当重金属浓度和种类不同时,水体中的碳源汇格局亦做不同的变化.当铜和镉浓度小于转折浓度时,水体表现为大气CO2的汇;而当铜和镉超出转折浓度时,水体会由大气CO2的汇过渡到源,并且当水体成为CO2的源后,其CO2的释放量是随着铜、镉浓度的增加而增大.在本实验设计的各浓度锌、铅添加组水体始终表现为碳汇,但当锌、铅浓度分别高于15μmol · L-1和20μmol · L-1时,其碳汇强度开始小于对照组(P<0.05*).  相似文献   

9.
重金属超富集植物及植物修复技术研究进展   总被引:306,自引:7,他引:306  
韦朝阳  陈同斌 《生态学报》2001,21(7):1196-1203
植物修复技术(Phytoremediation)是近年来发展起来的一种主要用于清除土壤重金属污染的绿色生态技术,重金属超富集植物(hyperaccumulator)及植物修复技术是当前学术界研究的热点领域,目前虽已有Cd、Co、Cr、Cu、Mn、Ni、Pb、Zn等超富集植物发现的报道,但尚无一例报道来自于中国,中国具有广袤的国土面积、丰富的植物类型和多种(处)古老的矿山开采与冶炼场所,在中国开展超富集植物的寻找,研究与开发工作,将会有重要突破,并具有重要的理论与实践意义,本文拟就国内外在这一领域的研究进展作一简要综述。  相似文献   

10.
Chromium present in the forms of Cr(VI) or Cr(III) in soils. Since the toxicity and mobility of Cr(VI) are higher than those of Cr(III), it would be important to estimate soil Cr(VI) accurately in order to assess the phytotoxicity of Cr. Soil redox potential can influence the distribution of Cr between Cr(VI) and Cr(III) forms, and thus an in situ method which is not affected by the soil redox condition is needed for determining Cr(VI) availability in paddy fields. In this study, the Cu-saturated selective ion exchange resin (DOWEX M4159), serving as an infinite sink, was embedded in soils to extract available Cr(VI) from three representative saturated soils with different amounts of Cr(VI). The results suggested that Cr(VI) reduction occurred in the flooded soils, and the acid environment favored the adsorption and reduction of Cr(VI). There was a significant dose-response relationship between the soil resin-extractable Cr(VI) and the plant height of rice seedlings for test soils. The experimental results suggested that the embedded selective ion exchange resin method could be a suitable in situ method for assessing the phytotoxicity of Cr in flooded soils.  相似文献   

11.
The distribution of metals within the hepatopancreas of Oniscus asellus (Crustacea, Isopoda) from two uncontaminated sites, and two sites contaminated with zinc, cadmium and lead, has been studied by atomic absorption spectrophotometry, light microscopy, transmission and scanning electron microscopy and X-ray microanalysis. The hepatopancreas contains two types of intracellular granule. The first type, in the S cells, are spherical granules which contain copper, sulphur and calcium. In woodlice from contaminated sites, these ‘copper’ granules, also contain zinc, cadmium and lead. The second type, in the B cells, are flocculent deposits which contain iron. In woodlice from contaminated sites, these ‘iron’ granules also contain zinc and lead. Moribund woodlice from contaminated sites have large numbers of ‘copper’ and ‘iron’ granules in the hepatopancreas and a fine deposit of zinc and lead on the membranes of the cells. There are numerous microorganisms in close association with the microvillous border of the hepatopancreas of woodlice from all four sites. Within the microorganisms of Oniscus asellus from contaminated sites, there are deposits of material which contain zinc, lead, calcium and phosphorus ‘Copper’ and ‘iron’ granules could have evolved as storage sites for essential metals to be utilized when demand from the body exceeds uptake from the food. Woodlice in contaminated sites may be able to ‘detoxify’ potentially harmful amounts of essential and non-essential metals by storing them in a relatively insoluble form within these granules.  相似文献   

12.
The cadmium (Cd) tolerance and metal-accumulation characteristics of 29 species (18 families) of weed were studied by using outdoor pot-culture experiments. The results of this screening showed that Bidens pilosa and Kalimeris integrifolia (both Asteraceae) expressed some properties that are characteristic of Cd hyperaccumulators. In 10 mg/kg Cd-spiked soil, they accumulated a good deal of Cd in shoots (28 and 25 mg/kg DW, respectively) with high Cd enrichment factors (EFs; concentration in plant/soil). Cd accumulations in shoots were greater than those in roots (translocation factor (TF) >1, concentration in shoot/root) and the shoot biomasses did not decreased significantly compared to the unspiked control. The other weed species showed little accumulation of Cd, Pb, Cu, or Zn. In a concentration-gradient experiment, the Cd accumulation potentials of B. pilosa and K. integrifolia were examined further. Cd concentrations in leaves of B. pilosa growing in soils spiked with 25, 50, and 100 mg/kg Cd were up to 145, 160, and 192 mg/kg, respectively, and the Cd content in stems in the 100 mg/kg Cd-spiked soil was 115 mg/kg, all greater than the 100 mg/kg notional criterion for Cd hyperaccumulation. The Cd EFs and TFs were all greater than 1. The shoot biomasses did not decrease significantly compared to the controls. B. pilosa was thus shown to have some characteristics of a true Cd hyperaccumulator plant.  相似文献   

13.
Interactions of cadmium (Cd) ions with bovine serum albumin (BSA), bovine hepatic metallothionein (MT), calf thymus histone and deoxyribonucleic acid (DNA), and bovine hepatic chromatins were studied in the presence and absence of divalent zinc (Zn), copper (Cu), mercury (Hg), or lead (Pb) ions, using equilibrium dialysis at pH 7 and at 37°C. The BSA had 3.5 Cd-binding sites with an apparent affinity constant of 1×105. The other metal ions inhibited the binding by reducing the affinity constant and the number of Cd-binding sites in BSA. There were 6 high affinity and 13 low affinity Cd-binding sites in the MT. Zinc ions had poor efficacy in reducing the binding of Cd to the MT. However, the Cu2+ and Hg2+ ions inhibited the Cd binding to a considerable extent, the former ions being more potent in this respect. Histone did not bind Cd. There were two kinds of Cd-binding sites in DNA: One mole of Cd per four moles DNA-phosphorus at low affinity sites, and one mole of Cd per 6.7 moles DNA-phosphorus at high affinity sites. Their apparent association constants were 8.3×105 and 4.4×106 M, respectively. The other metal ions had inhibitory effects on the binding of Cd to DNA. Histone reduced the Cd-DNA interactions to only a minor extent. The other metal ions reduced the binding of Cd to DNA-histone complex to a small extent. Cadmium binds to the euchromatin (Euch), heterochromatin (Het), and Euch-Het mixture almost equally. The other metal ions reduced the binding maximally in Euch-Het followed next in order by Het and Euch. Cupric ions were the most potent inhibitors of the interactions of Cd with the nuclear materials.  相似文献   

14.
Mercury (Hg), arsenic (As), cadmium (Cd), and lead (Pb) are the major toxic metals released by coal mining activities in the surrounding environment. These metals get accumulated in the soils. The plants grown on the contaminated soil uptake these toxic metals in their roots and aerial parts. This study monitored the bioaccumulation of Hg and other three toxic metals in coal mine soil. The pot study of Hg accumulation in Brassica juncea showed that the extent of Hg uptake by roots and shoots of the plants grown on was high in the mature plant and Hg content in root was higher than the shoot. In the soil of unreclaimed overburden (OB) dump, the toxic metal content was higher than that of reclaimed OB dump which posed high ecological risk in the soil of unreclaimed OB dump. Bioaccumulation coefficient (BAC) value showed that Hg was not accumulated in the leaves of Dalbergia sissoo L., Gmelina arborea, Peltaphorum inerme L., Cassia seamea L, and Acacia mangium L grown on coal mine soil.  相似文献   

15.
This study investigated the concentrations of Co, Cr, Cu, Mn, Ni, Pb and Zn in surface soil and corn cob samples collected from agricultural fields near a coal mine from Huaibei, China. Meanwhile, the mobility and availability of heavy metals in soil samples were evaluated by a modified three-step The European Community Bureau of Reference (BCR) sequential extraction procedure. The total concentrations of metals in soil pose no ecological threats to the local plants. Transfer factors of essential metals, Cu and Zn, as well as those of non-essential metal Pb, were higher than those of the remained metals. The results of BCR fractionation analysis revealed that the acid soluble, reducible and oxidizable fractions of the Mn, Pb and Zn were higher than those of the residual fraction, suggesting that these elements may be more bioavailable. The pH and organic matter contents of soil were significant parameters affecting speciation of metals in soil samples. Hierarchical cluster analysis indicated significant correlations between metal levels in corn grains and more available (acid soluble and reducible) fractions in soil, indicating that heavy metals in the first two fractions were more available for corn crops. The elevated mobility and bioavailability of Pb in soil are of great concern in the study area.  相似文献   

16.
17.
Sedum alfredii Hance is a newly reported zinc (Zn) and cadmium (Cd) hyperaccumulator native to China. In this study,four populations of S. alfredii were collected from Yejiwei (YJW), Jinchuantang (JCT) and Qiaokou (QK) lead (Pb)/Zn mines located in Hunan Province as well as Quzhou (QZ) Pb/Zn mine located in Zhejiang Province for exploring the intraspecies difference of this plant in metal accumulation. Although they grew in the Pb/Zn spoils with relatively similar levels of Zn,Cd and Pb, remarkable differences among the four populations in tissue heavy metal concentrations were observed. The shoot Zn concentration of QZ population (11 116 mg/kg) was highest and nearly five times higher than that of the JCT population (1930 mg/kg). Furthermore, the shoot Cd concentration observed in the QZ population (1 090 mg/kg) was also highest and 144 times higher than that found in the JCT population (7.5 mg/kg). As for Pb concentrations In the shoot of different populations, a fourfold difference between the highest and the lowest was also found. Such difference on metal accumulation was opulation-specific and may be significantly explained by differences in the soil properties such as pH, organic matter (OM), and electrical conductivity (EC). Taking biomass and metal concentration in plants into consideration, the QZ, YJW and QK populations may have high potential for Zn phytoremediation, the QZ population may have the highest potential in Cd phytoremediation, and the QK population may be the most useful in Pb phytoremediation.  相似文献   

18.
Levels of zinc, copper, lead and cadmium have been determined in some medicinally important leaves by differential pulse anodic stripping voltammetry (DPASV). High pressure digestion with nitric acid (HPA) was used for sample digestion. The accuracy of the method was verified by the parallel analysis of leaves with inductively coupled plasma atomic emission spectroscopy (ICP-AES) and recovery studies by the analysis of standard reference materials. Based on elemental levels the utility of these leaves in medicine are discussed. Statistical treatment has been used in order to understand the correlation between elements in these leaves.  相似文献   

19.
Abstract

A pot experiment was carried out to evaluate the effect of Pseudomonas fluorescens and Trichoderma harzianum inoculation on the uptake of zinc (Zn) and cadmium (Cd) by Indian mustard (Brassica juncea) from the soil having three different concentrations of Zn (300, 600, 900 mg/kg) and Cd (5, 10, 15 mg/kg) separately. Microbial inoculation resulted in significantly better plant growth, available metal content and their uptake than control (without microbes). Available Zn was enhanced, ca.1.6- and 1.4-fold and Cd ca. 2.5- and 1.8-fold, by P. fluorescens and T. harzianum, respectively. P. fluorescens resulted in an increase in Zn uptake by 113.9, 51.9 and 58.4% and T. harzianum by 42.6, 32.1 and 33.9% over control from soils having 300, 600 and 900 mg Zn, respectively, while of the corresponding results for Cd were 110.2, 48.9 and 58.1% with P. fluorescens and 42.6, 30.9 and 33.4% with T. harzianum from soil having 5, 10 and 15 mg Cd, respectively, after 90 days of treatment. In general the rate of metal uptake was higher during the initial 30 days and declined later.  相似文献   

20.
耐铜植物茵陈蒿根际细菌群落结构及影响因素   总被引:1,自引:0,他引:1  
邵宗圆  王悦  张菊  杨程  周刚  杨如意 《生态学报》2017,37(22):7679-7688
采用Mi Seq高通量测序技术对耐铜植物茵陈蒿根际的细菌16S r DNA基因V3—V4区片段进行了测序,研究了细菌群落结构的变化,并分析了其与土壤环境因子的关系。研究表明,采样点Cu3中细菌群落的多样性、丰富度、均匀度、ACE指数、Chao1指数等均显著低于Cu1和Cu2,但Cu3的覆盖度高于Cu1。排名前10的优势细菌门总相对丰度均在95%以上,其中8个优势细菌门在3个采样点中是相同的,包括Proteobacteria(变形菌门)、Acidobacteria(酸杆菌门)、Bacteroidetes(拟杆菌门)、Gemmatimonadetes(芽单胞菌门)、Actinobacteria(放线菌门)、Verrucomicrobia(疣微菌门)、Planctomycetes(浮霉菌门)和Unclassified(未分类门)等。采样点Cu1中变形菌门、拟杆菌门和芽单胞菌门的相对丰度显著高于其他两个采样点,而酸杆菌门、放线菌门、疣微菌门、绿弯菌门(Chloroflexi)和未分类门则刚好相反,表明细菌对胁迫环境的适应能力有明显差异。主坐标和冗余分析表明,3个采样点的细菌群落结构发生了明显改变。土壤环境因子与细菌群落的变化关系密切,8个因子的特征值共解释了97.5%的总方差。其中,总铜、总磷、p H、有效磷和有机质为显著性因子,可以解释93.9%的群落变化,但影响不同采样点细菌群落的主导因子有所差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号