首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD38, a multifunctional enzyme that catalyzes the synthesis of intracellular Ca(2+) messengers, cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP), is known to be expressed on platelets. However, the role of CD38 in platelets remains unclear. Our present results show that treatment of platelets with thrombin results in a rapid and sustained Ca(2+) signal, resulting from a coordinated interplay of Ca(2+)-mobilizing messengers, inositol 1,4,5-trisphosphate, cADPR, and NAADP. By dissecting the signaling pathway using various agents, we delineated that cADPR and NAADP are sequentially produced through CD38 internalization by protein kinase C via myosin heavy chain IIA following phospholipase C activation in thrombin-induced platelets. An inositol 1,4,5-trisphosphate receptor antagonist blocked the thrombin-induced formation of cADPR and NAADP as well as Ca(2+) signals. An indispensable response of platelets relying on cytosolic calcium is the surface exposure of phosphatidylserine (PS), which implicates platelet procoagulant activity. Scrutinizing this parameter reveals that CD38(+/+) platelets fully express PS on the surface when stimulated with thrombin, whereas this response was decreased on CD38(-/-) platelets. Similarly, PS exposure and Ca(2+) signals were attenuated when platelets were incubated with 8-bromo-cADPR, bafilomycin A1, and a PKC inhibitor. Furthermore, in vivo, CD38-deficient mice exhibited longer bleeding times and unstable formation of thrombus than wild type mice. These results demonstrate that CD38 plays an essential role in thrombin-induced procoagulant activity of platelets and hemostasis via Ca(2+) signaling mediated by its products, cADPR and NAADP.  相似文献   

2.
Arterial thrombosis, a major cause of myocardial infarction and stroke, is initiated by activation of blood platelets by subendothelial collagen. The protein kinase C (PKC) family centrally regulates platelet activation, and it is becoming clear that the individual PKC isoforms play distinct roles, some of which oppose each other. Here, for the first time, we address all four of the major platelet-expressed PKC isoforms, determining their comparative roles in regulating platelet adhesion to collagen and their subsequent activation under physiological flow conditions. Using mouse gene knock-out and pharmacological approaches in human platelets, we show that collagen-dependent α-granule secretion and thrombus formation are mediated by the conventional PKC isoforms, PKCα and PKCβ, whereas the novel isoform, PKCθ, negatively regulates these events. PKCδ also negatively regulates thrombus formation but not α-granule secretion. In addition, we demonstrate for the first time that individual PKC isoforms differentially regulate platelet calcium signaling and exposure of phosphatidylserine under flow. Although platelet deficient in PKCα or PKCβ showed reduced calcium signaling and phosphatidylserine exposure, these responses were enhanced in the absence of PKCθ. In summary therefore, this direct comparison between individual subtypes of PKC, by standardized methodology under flow conditions, reveals that the four major PKCs expressed in platelets play distinct non-redundant roles, where conventional PKCs promote and novel PKCs inhibit thrombus formation on collagen.  相似文献   

3.
During thrombus formation, thrombin, which is abundantly present at sites of vascular injury, activates platelets in part via autocrine-produced ADP. We investigated the signaling pathways by which thrombin and ADP in synergy induced platelet Ca(2+) elevation and procoagulant activity, and we monitored the consequences for the coagulation process. Even at high thrombin concentration, autocrine and added ADP enhanced and prolonged Ca(2+) depletion from internal stores via stimulation of the P2Y(12) receptors. This P2Y(12)-dependent effect was mediated via two distinct signaling pathways. The first is enhanced Ca(2+) mobilization by the inositol 1,4,5-trisphosphate receptors due to inhibition of protein kinase A. The second pathway concerns prolonged activation of phosphoinositide 3-kinase (PI3-K) and phospholipase C. Experiments with phosphoinositide 3-kinase isoform-selective inhibitors and p110gamma deficient platelets demonstrated that the phosphoinositide 3-kinase beta and not the phosphoinositide 3-kinase gamma isoform is responsible for the prolonged Ca(2+) response and for the subsequent increases in procoagulant activity and coagulation. Taken together, these results demonstrate a dual P2Y(12)-dependent signaling mechanism, which increases the platelet-activating effect of thrombin by prolongation of Ca(2+) elevation, thereby facilitating the coagulation process.  相似文献   

4.
Protein kinase C (PKC) is a family of serine/threonine kinases that play isoform-specific inhibitory and stimulatory roles in platelet activation. We show here that the pan-PKC inhibitor Ro31-8220 can be used to dissect these events following platelet activation by ADP. Submaximal concentrations of Ro31-8220 potentiated aggregation and dense granule secretion to ADP in plasma anticoagulated with citrate, in D-Phe-Pro-Arg-chloromethyl ketone-anticoagulated plasma, which has physiological levels of Ca(2+), and in washed platelets. Potentiation was retained on inhibition of cyclooxygenase and was associated with an increase in intracellular Ca(2+). Potentiation of aggregation and secretion was abolished by a maximally effective concentration of Ro31-8220, consistent with a critical role of PKC in secretion. ADP-induced secretion was potentiated in the presence of an inhibitor of PKCβ but not in the presence of available inhibitors of other PKC isoforms in human and mouse platelets. ADP-induced secretion was also potentiated in mouse platelets deficient in PKCε but not PKC. These results demonstrate that partial blockade of PKC potentiates aggregation and dense granule secretion by ADP in association with increased Ca(2+). This provides a molecular explanation for the inability of ADP to induce secretion in plasma in the presence of physiological Ca(2+) concentrations, and it reveals a novel role for PKC in inhibiting platelet activation by ADP in vivo. These results also demonstrate isoform-specific inhibitory effects of PKC in platelets.  相似文献   

5.
Adherent platelets were examined for their ability to form microvesicles and procoagulant sites for thrombin formation. Epifluorescence and phase-contrast microscopy were employed to visualize shape changes, changes in intracellular Ca(2+) levels ([Ca(2+)](i)), vesiculation of the plasma membrane and appearance of anionic phospholipids in the outer leaflet of the plasma membrane, as probed by annexin V binding. In the absence of extracellular Ca(2+) two stable populations of adherent platelets were observed. The majority of the adherent platelets were fully spread and about 10% remained in a non-spread dendritic state. In the presence of extracellular Ca(2+) vesiculation at the surface of spread platelets occurred at a rather slow rate (10% of the platelets after 20 min) concomitantly with an increase in [Ca(2+)](i) and binding of annexin V. However, a small fraction of the adherent platelets ( approximately 1%) responded much faster. Ionomycin-enhanced influx of Ca(2+) in dendritic platelets resulted in a rapid transformation of these platelets into inflated, balloon-shaped, platelets having a diameter of 2.0+/-0.7 microm without notable microvesicle formation. In contrast, fully spread platelets retained their shape but obtained frayed edges as a result of microvesicle formation. Confocal scanning fluorescence microscopy indicated that annexin V bound to very distinct sites at the outer plasma membrane of spread as well as balloon-shaped platelets. Inhibition of platelet calpain activity suppressed ionomycin-enhanced microvesicle formation and ballooning of platelets, but not annexin V binding. These findings indicate that vesiculation and ballooning, but not the exposure of phosphatidylserine at the outer leaflet of the adherent platelet membrane, are associated with cytoskeleton destruction. Altogether, the data suggest a similar relationship between [Ca(2+)](i) and the formation of platelet procoagulant sites as reported for platelets in suspension. However, the present investigations on single adherent platelets reveal for the first time that adhesion and spreading of platelets is not necessarily associated with the appearance of procoagulant sites. Secondly, an unexpected diversity was observed among adherent platelets with respect to sensitivity to Ca(2+)-induced generation of procoagulant sites and Ca(2+)-induced vesiculation of plasma membrane. It is tempting to speculate that this diversity is of importance for the procoagulant response of platelets to a hemostatic challenge elicited by an injured vessel wall.  相似文献   

6.
Platelet aggregation, secretion and thrombus formation play a critical role in primary hemostasis to prevent excessive blood loss. On the other hand, uncontrolled platelet activation leads to pathological thrombus formation resulting in myocardial infarction or stroke. Stimulation of heterotrimeric G-proteins by soluble agonists or immunoreceptor tyrosine based activation motif-coupled receptors that interact with immobilized ligands such as the collagen receptor glycoprotein (GP) VI lead to the activation of phospholipases that cleave membrane phospholipids to generate soluble second messengers. Platelets contain the phospholipases (PL) D1 and D2 which catalyze the hydrolysis of phosphatidylcholine to generate the second messenger phosphatidic acid (PA). The production of PA is abrogated by primary alcohols that have been widely used for the analysis of PLD-mediated processes. However, it is not clear if primary alcohols effectively reduce PA generation or if they induce PLD-independent cellular effects. In the present study we made use of the specific PLD inhibitor 5-fluoro-2-indolyl des-chlorohalopemide (FIPI) and show for the first time, that FIPI enhances platelet dense granule secretion and aggregation of human platelets. Further, FIPI has no effect on cytosolic Ca(2+) activity but needs proper Rho kinase signaling to mediate FIPI-induced effects on platelet activation. Upon FIPI treatment the phosphorylation of the PKC substrate pleckstrin was prominently enhanced suggesting that FIPI affects PKC-mediated secretion and aggregation in platelets. Similar effects of FIPI were observed in platelets from mouse wild-type and Pld1(-/-) mice pointing to a new role for PLD2 as a negative regulator of platelet sensitivity.  相似文献   

7.
In order to better understand the molecular mechanisms of platelet granule secretion, we evaluated the effect of activation-induced degranulation on three functional platelet SNARE proteins, SNAP-23, VAMP-3, and syntaxin 4. Initial studies showed that SNAP-23 is lost upon SFLLRN-induced platelet activation. Experiments with permeabilized platelets demonstrated that proteolysis of SNAP-23 was Ca(2+)-dependent. Ca(2+)-dependent proteolysis of SNAP-23 was inhibited by the cell-permeable calpain inhibitors, calpeptin and E-64d, as well as by the naturally occurring calpain inhibitor, calpastatin. In addition, purified calpain cleaved SNAP-23 in permeabilized platelets in a dose-dependent manner. In intact platelets, calpeptin prevented SFLLRN-induced degradation of SNAP-23. In contrast, calpeptin did not prevent SFLLRN-induced degradation of VAMP-3 and syntaxin 4 did not undergo substantial proteolysis following platelet activation. Calpain-induced cleavage of SNAP-23 was a late event occurring between 2.5 and 5 min following exposure of permeabilized platelets to Ca(2+). Experiments evaluating platelet alpha-granule secretion demonstrated that incubation of permeabilized platelets with 10 microM Ca(2+) prior to exposure to ATP inhibited ATP-dependent alpha-granule secretion from permeabilized platelets. SNAP-23 was cleaved under these conditions. Incubation of permeabilized platelets with either calpeptin or calpastatin prevented Ca(2+)-mediated degradation of SNAP-23 and reversed Ca(2+)-mediated inhibition of ATP-dependent alpha-granule secretion. Thus, activation of calpain prior to secretion results in loss of SNAP-23 and inhibits alpha-granule secretion. These studies suggest a mechanism whereby calpain activation serves to localize platelet secretion to areas of thrombus formation.  相似文献   

8.
Bile secretion is regulated by different signaling transduction pathways including protein kinase C (PKC). However, the role of different PKC isoforms for bile formation is still controversial. This study investigates the effects of PKC isoform selective activators and inhibitors on PKC translocation, bile secretion, bile acid uptake, and subcellular transporter localization in rat liver, isolated rat hepatocytes and in HepG2 cells. In rat liver activation of Ca(2+)-dependent cPKCalpha and Ca(2+)-independent PKCepsilon by phorbol 12-myristate 13-acetate (PMA, 10nmol/liter) is associated with their translocation to the plasma membrane. PMA also induced translocation of the cloned rat PKCepsilon fused to a yellow fluorescent protein (YFP), which was transfected into HepG2 cells. In the perfused liver, PMA induced marked cholestasis. The PKC inhibitors G?6850 (1 micromol/liter) and G?6976 (0.2 micromol/liter), a selective inhibitor of Ca(2+)-dependent PKC isoforms, diminished the PMA effect by 50 and 60%, respectively. Thymeleatoxin (Ttx,) a selective activator of Ca(2+)-dependent cPKCs, did not translocate rat PKCepsilon-YFP transfected in HepG2 cells. However, Ttx (0.5-10 nmol/liter) induced cholestasis similar to PMA and led to a retrieval of Bsep from the canalicular membrane in rat liver while taurocholate-uptake in isolated hepatocytes was not affected. G?6976 completely blocked the cholestatic effect of Ttx but had no effect on tauroursodeoxycholate-induced choleresis. The data identify Ca(2+)-dependent PKC isoforms as inducers of cholestasis. This is mainly due to inhibition of taurocholate excretion involving transporter retrieval from the canalicular membrane.  相似文献   

9.
Treatment of platelets with fluoride (10 mM) was found to result in a transient increase in Ca2+-permeability of the platelet plasma membrane. This phenomenon was used to provide supplementary evidence for the suggestions made earlier (Comfurius et al. (1985) Biochim. Biophys. Acta 815, 143; Verhallen et al. (1987) Biochim. Biophys. Acta 903, 206), that cytoskeletal disrupture by calpain is involved in the process leading to transbilayer movement of phosphatidylserine during expression of platelet procoagulant activity. This was achieved by relating both calpain activity and exposure of phosphatidylserine with platelet procoagulant activity. It was found that only upon addition of extracellular Ca2+ to fluoride-treated platelets, procoagulant activity, expressed as prothrombinase activity, and calpain activity, estimated from protein patterns after gel electrophoresis, were generated. Both Ca2+-inducible prothrombinase activity and calpain activity followed an identical time-course during incubation with fluoride: after a time-lag of about 10 min they sharply increased towards a peak level. Upon further incubation with fluoride, both activities decreased towards a final plateau, still above basal level. The presence of leupeptin during incubation with fluoride was found to inhibit Ca2+-inducible calpain activity and prothrombinase activity in an identical way. Ca2+-inducible exposure of phosphatidylserine, as determined with extracellular phospholipase A2, showed a similar pattern as Ca2+-inducible calpain activity and prothrombinase activity. From the strict parallelism between prothrombinase activity, calpain activity and exposure of phosphatidylserine, it is concluded that calpain plays an important role in the activation-dependent transbilayer movement of phosphatidylserine during expression of platelet procoagulant activity. It is suggested that degradation of the platelet membrane-skeleton by calpain disturbs the structural organization of the lipid bilayer of the platelet plasma membrane leading to enhanced transbilayer movement of phospholipids and appearance of phosphatidylserine at the platelet outer surface.  相似文献   

10.
PKC and the intracellular calcium signal are two well-known intracellular signaling pathways implicated in the induction of mast cell exocytosis. Both signals are modified by the presence or absence of HCO(3)(-) ions in the external medium. In this work, we studied the regulation of the exocytotic process by PKC isozymes and its relationship with HCO(3)(-) ions and PKC modulation of the calcium entry. The calcium entry, induced by thapsigargin and further addition of calcium, was inhibited by PMA, a PKC activator, and enhanced by 500 nM GF109203X, which inhibits Ca(2+)-independent PKC isoforms. PMA inhibition of the Ca(2+) entry was reverted by 500 and 50 nM GF109203X, which inhibit Ca(2+)-independent and Ca(2+)-dependent isoforms, respectively, and G?6976, a specific inhibitor of Ca(2+)-dependent PKCs. Thus, activation of Ca(2+)-dependent and Ca(2+)-independent PKC isoforms inhibit Ca(2+) entry in rat mast cells, either in a HCO(3)(-)-buffered or a HCO(3)(-)-free medium. PMA, GF109203X, G?6976 and rottlerin, a specific inhibitor of PKC delta, were also used to study the role of PKC isoforms in the regulation of exocytosis induced by thapsigargin, ionophore A23187 and PMA. The results demonstrate that Ca(2+)-dependent PKC isoforms inhibit exocytosis in a HCO(3)(-)-dependent way. Moreover, Ca(2+)-independent PKC delta was the main isoform implicated in promotion of Ca(2+)-dependent mast cell exocytosis in the presence or absence of HCO(3)(-). The role of PKC isoforms in the regulation of mast cell exocytosis depends on the stimulus and on the presence or absence of HCO(3)(-) ions in the medium, but it is independent of PKC modulation of the Ca(2+) entry.  相似文献   

11.
Experiments were performed to elucidate the role of cyclic guanosine monophosphate (cGMP) on platelet activation induced by protein kinase C (PKC) activators and calcium ionophore. Human platelets were pretreated with acetylsalicylic acid and with hirudin and apyrase. Aggregation and ATP secretion in response to the PKC activators 4 beta-phorbol 12-myristate 13-acetate (PMA) and 1-oleoyl 2-acetylglycerol (OAG) were inhibited by the nitrovasodilator sodium nitroprusside (SNP), an activator of guanylate cyclase, and by 8-bromo-cyclic GMP (8-Br-cGMP). The experiments were performed in the presence of M&B 22948, an inhibitor of cGMP phosphodiesterase. SNP and 8-Br-cGMP also inhibited platelet aggregation and secretion evoked by the ionophore ionomycin. In fura-2 loaded platelets SNP did not affect basal cytosolic Ca2+ level nor the rise induced by low concentrations of ionomycin, both in the presence and absence of extracellular Ca2+. The phosphorylation of the 47 and 20 kDa protein induced by ionomycin or PMA were not significantly decreased by SNP or 8-Br-cGMP. The present results suggest that cGMP is able to inhibit both the PKC and the Ca(2+)-dependent pathways leading to platelet activation by interfering, similarly to cAMP, with processes following protein phosphorylation, close to the effector systems.  相似文献   

12.
A calcium binding protein of Mr = 54,000 has been isolated from human blood platelets. This protein has been shown to enhance Ca2+-induced aggregation of phosphatidylserine liposomes, suggesting that it may be a member of a recently recognized class of binding proteins known to interact with phospholipids and the membrane in a Ca2+ dependent manner. Because of the "synexin-like" activity of this protein it may be involved in Ca2+ regulated platelet secretion as well as cell motility.  相似文献   

13.
BACKGROUND: Platelet activation leads to the loss of a natural asymmetry of membrane phospholipids (PL) and the subsequent exposure of negatively charged PL in platelets with procoagulant activity that can be monitored routinely with annexin V (AN-V). METHODS: Flow cytometric analysis of merocyanine 540 (MC540) binding may be the alternate choice for the monitoring of platelet procoagulant activity. Due to the increased partition of negatively charged phosphatidylserine (PS) in the membrane outer leaflet of activated platelets, the interaction with MC540 is reduced. RESULTS: Collagen, which facilitated platelet PL bilayer symmetrization, vastly reduced MC540 fluorescence and augmented AN-V binding to platelets. Such a collagen-induced symmetrization was further augmented in the presence of thrombin receptor-activating peptide (TRAP, SFLLRNPNDKYEPF). In the presence of VO(4) ((-3)) (the inhibitor of aminophospholipid translocase), the rebuilt of membrane asymmetry was attenuated, which resulted in further reduced MC540 fluorescence and enhanced AN-V binding in activated cells. In platelets incubated with thapsigargin, the inhibitor of platelet tubular system Ca(2+) ATP-ase, which elevates intraplatelet Ca(2+) concentration, TRAP increased AN-V and reduced MC540 binding. The chelating of Ca(2+) with EGTA outside of activated platelets reduced AN-V binding, but did not affect MC540-positive platelets. The fluctuations in reduced staining with MC540 paralleled enhanced AN-V binding (r = -0.481, P < 0.01), especially for strong "procoagulant" activating agents. CONCLUSIONS: (1) MC540 may be used in whole blood flow cytometry for the monitoring of platelet membrane symmetrization as an alternate or compounding method to AN-V. (2) Platelet staining with MC540 is sensitive to the fluctuations in the intraplatelet [Ca(2+)] during platelet activation. (3) Use of MC540 is characterized by improved diagnostic precision and reliability compared with AN-V.  相似文献   

14.
Voltage-dependent Ca(2+) channel (Ca(v)1.2, L-type Ca(2+) channel) function is highly regulated by hormones and neurotransmitters in large part through the activation of kinases and phosphatases. Regulation of Ca(v)1.2 by protein kinase C (PKC) is of significant physiologic importance, mediating, in part, the cardiac response to hormonal regulation. Although PKC has been reported to mediate activation and/or inhibition of Ca(v)1.2 function, the molecular mechanisms mediating the response have not been definitively elucidated. We show that PKC forms a macromolecular complex with the alpha(1c) subunit of Ca(v)1.2 through direct interaction with the C terminus. This interaction leads to phosphorylation of the channel in response to activators of PKC. We identify Ser(1928) as the residue that is phosphorylated by PKC in vitro and in vivo. Ser(1928) has been identified previously as the site mediating, in part, the protein kinase A up-regulation of channel activity. Thus, the protein kinase A and PKC signaling pathways converge on the Ca(v)1.2 complex at Ser(1928) to increase channel activity. Our results identify two mechanisms leading to regulation of Ca(v)1.2 activity by PKC: pre-association of the channel with PKC isoforms and phosphorylation of specific sites within the alpha(1c) subunit.  相似文献   

15.
The effects of the fibrinogen-derived tetrapeptide, Arg-Gly-Asp-Ser (RGDS), on platelet activation processes was studied. At concentrations of 100-300 microM, RGDS completely prevented platelet aggregation induced by all the common platelet agonists, 'weak' and 'strong'. In agreement with earlier views on the aggregation-dependency of weak agonist-induced thromboxane synthesis and 5-hydroxytryptamine (5HT) secretion, RGDS (100-300 microM) inhibited these events induced by ADP, adrenaline and low concentrations of thrombin and collagen but not that induced by high concentrations of thrombin and collagen. 5HT secretion induced by the protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), was also not affected by RGDS, but proteolytic degradation of the translocated membrane-bound enzyme in PMA-treated platelets, due to the actions of the Ca2+-dependent protease (Ca-DP), was completely prevented such that in the presence of RGDS, sustained increases in membrane-bound PKC activity were observed. PMA alone caused only transient increases in membrane-bound PKC. This effect of RGDS was similar to the effect of E64-d, a recently described inhibitor of Ca-DP in platelets, or the effects seen with PMA in unstirred non-aggregating platelets. It is concluded that RGDS inhibits the actions of Ca-DP in platelets via inhibition of aggregation.  相似文献   

16.
A rise in intracellular calcium concentration ([Ca(2+)](i)) is necessary for platelet activation. A major component of the [Ca(2+)](i) elevation occurs through store-operated Ca(2+) entry (SOCE). The aim of this study was to understand the contribution of the classical PKC isoform, PKCα to platelet SOCE, using platelets from PKCα-deficient mice. SOCE was reduced by approximately 50% in PKCα(-/-) platelets, or following treatment with bisindolylmaleimide I, a PKC inhibitor. However, TG-induced Mn(2+) entry was unaffected, which suggests that divalent cation entry through store-operated channels is not directly regulated. Blocking the autocrine action of secreted ADP or 5-HT on its receptors did not reproduce the effect of PKCα deficiency. In contrast, SN-6, a Na(+)/Ca(2+) exchanger inhibitor, did reduce SOCE to the same extent as loss of PKCα, as did replacing extracellular Na(+) with NMDG(+). These treatments had no further effect in PKCα(-/-) platelets. These data suggest that PKCα enhances the extent of SOCE in mouse platelets by regulating Ca(2+) entry through the Na(+)/Ca(2+) exchanger.  相似文献   

17.
Platelets are activated by adhesion to vascular collagen via the immunoglobulin receptor, glycoprotein VI (GPVI). This causes potent signaling toward activation of phospholipase Cγ2, which bears similarity to the signaling pathway evoked by T- and B-cell receptors. Phosphoinositide 3-kinase (PI3K) plays an important role in collagen-induced platelet activation, because this activity modulates the autocrine effects of secreted ADP. Here, we identified the PI3K isoforms directly downstream of GPVI in human and mouse platelets and determined their role in GPVI-dependent thrombus formation. The targeting of platelet PI3Kα or -β strongly and selectively suppressed GPVI-induced Ca2+ mobilization and inositol 1,4,5-triphosphate production, thus demonstrating enhancement of phospholipase Cγ2 by PI3Kα/β. That PI3Kα and -β have a non-redundant function in GPVI-induced platelet activation and thrombus formation was concluded from measurements of: (i) serine phosphorylation of Akt, (ii) dense granule secretion, (iii) intracellular Ca2+ increases and surface expression of phosphatidylserine under flow, and (iv) thrombus formation, under conditions where PI3Kα/β was blocked or p85α was deficient. In contrast, GPVI-induced platelet activation was insensitive to inhibition or deficiency of PI3Kδ or -γ. Furthermore, PI3Kα/β, but not PI3Kγ, contributed to GPVI-induced Rap1b activation and, surprisingly, also to Rap1b-independent platelet activation via GPVI. Together, these findings demonstrate that both PI3Kα and -β isoforms are required for full GPVI-dependent platelet Ca2+ signaling and thrombus formation, partly independently of Rap1b. This provides a new mechanistic explanation for the anti-thrombotic effect of PI3K inhibition and makes PI3Kα an interesting new target for anti-platelet therapy.  相似文献   

18.
To determine the role and mechanisms of action by which dopaminergic innervation modulates ductal secretion in bile duct-ligated rats, we determined the expression of D1, D2, and D3 dopaminergic receptors in cholangiocytes. We evaluated whether D1, D2 (quinelorane), or D3 dopaminergic receptor agonists influence basal and secretin-stimulated choleresis and lumen expansion in intrahepatic bile duct units (IBDU) and cAMP levels in cholangiocytes in the absence or presence of BAPTA-AM, chelerythrine, 1-(5-isoquinolinylsulfonyl)-2-methyl piperazine (H7), or rottlerin. We evaluated whether 1) quinelorane effects on ductal secretion were associated with increased expression of Ca(2+)-dependent PKC isoforms and 2) increased expression of PKC causes inhibition of PKA activity. Quinelorane inhibited secretin-stimulated choleresis in vivo and IBDU lumen space, cAMP levels, and PKA activity in cholangiocytes. The inhibitory effects of quinelorane on secretin-stimulated ductal secretion and PKA activity were blocked by BAPTA-AM, chelerythrine, and H7. Quinelorane effects on ductal secretion were associated with activation of the Ca(2+)-dependent PKC-gamma but not other PKC isoforms. The dopaminergic nervous system counterregulates secretin-stimulated ductal secretion in experimental cholestasis.  相似文献   

19.
Gastric acid secretion is not only stimulated via the classical known neuronal and hormonal pathways but also by the Ca(2+)-Sensing Receptor (CaSR) located at the basolateral membrane of the acid-secretory gastric parietal cell. Stimulation of CaSR with divalent cations or the potent agonist Gd(3+) leads to activation of the H(+)/K(+)-ATPase and subsequently to gastric acid secretion. Here we investigated the intracellular mechanism(s) mediating the effects of the CaSR on H(+)/K(+)-ATPase activity in freshly isolated human gastric glands. Inhibition of heterotrimeric G-proteins (G(i) and G(o)) with pertussis toxin during stimulation of the CaSR with Gd(3+) only partly reduced the observed stimulatory effect. A similar effect was observed with the PLC inhibitor U73122. The reduction of the H(+)/K(+)-ATPase activity measured after incubation of gastric glands with BAPTA-AM, a chelator of intracellular Ca(2+), showed that intracellular Ca(2+) plays an important role in the signalling cascade. TMB-8, a ER Ca(2+)store release inhibitor, prevented the stimulation of H(+)/K(+)-ATPase activity. Also verapamil, an inhibitor of L-type Ca(2+)-channels reduced stimulation suggesting that both the release of intracellular Ca(2+) from the ER as well as Ca(2+) influx into the cell are involved in CaSR-mediated H(+)/K(+)-ATPase activation. Chelerythrine, a general inhibitor of protein kinase C, and Go 6976 which selectively inhibits Ca(2+)-dependent PKC(alpha) and PKC(betaI)-isozymes completely abolished the stimulatory effect of Gd(3+). In contrast, Ro 31-8220, a selective inhibitor of the Ca(2+)-independent PKCepsilon and PKC-delta isoforms reduced the stimulatory effect of Gd(3+) only about 60 %. On the other hand, activation of PKC with DOG led to an activation of H(+)/K(+)-ATPase activity which was only about 60 % of the effect observed with Gd(3+). Incubation of the parietal cells with PD 098059 to inhibit ERK1/2 MAP-kinases showed a significant reduction of the Gd(3+) effect. Thus, in the human gastric parietal cell the CaSR is coupled to pertussis toxin sensitive heterotrimeric G-Proteins and requires calcium to enhance the activity of the proton-pump. PLC, ERK 1/2 MAP-kinases as well as Ca(2+) dependent and Ca(2+)-independent PKC isoforms are part of the down-stream signalling cascade.  相似文献   

20.
Cytoplasmic Ca2+ is a major regulator of exocytosis in secretory cells; however, the Ca(2+)-dependent mechanisms that trigger secretion have not been elucidated. Protein kinase C (PKC) has been proposed to be an important Ca(2+)-dependent component of this regulation; however, the effects of this enzyme on the exocytotic apparatus have not been identified. We developed a PKC-deficient, semi-intact PC12 cell system in which direct stimulatory effects of purified PKC on Ca(2+)-dependent norepinephrine secretion were studied. The reconstitution of optimal Ca(2+)-activated norepinephrine secretion by semi-intact PC12 cells required the addition of MgATP and cytosolic proteins. PKC-deficient cytosol exhibited reduced reconstituting activity that was fully restored by the addition of purified PKC. The restoration of Ca(2+)-dependent norepinephrine secretion by PKC required the presence of other proteins in the cytosol, in particular, a high molecular weight protein. The high molecular weight protein was identified as p145, a recently characterized 145-kDa brain protein. The addition of PKC enhanced phosphorylation of p145 under conditions of fully reconstituted Ca(2+)-activated norepinephrine secretion. The results indicate that 1) PKC is neither necessary nor sufficient for Ca(2+)-activated secretion, whereas other cytosolic proteins are required; and 2) the stimulation of Ca(2+)-activated secretion by PKC is dependent upon cytosolic proteins such as p145 and may be largely mediated through the phosphorylation of p145.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号