首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of engineered salt bridges on the stability of subtilisin BPN'   总被引:1,自引:0,他引:1  
Variants designed using PROTEUS have been produced in an attempt to engineer stabilizing salt bridges into subtilisin BPN'. All the mutants constructed by site-directed mutagenesis were secreted by Bacillus subtilis, except L75K. Q19E, expressed as a single variant and also in a double variant, Q19E/Q271E, appears to form a stabilizing salt bridge based on X-ray crystal structure determination and differential scanning calorimeter measurements. Although the double mutant was found to be less thermodynamically stable than the wild-type, it did exhibit an autolytic stability about two-fold greater under hydrophobic conditions. Four variants, A98K, S89E, V26R and L235R, were found to be nearly identical to wild-type in thermal stability, indicative of stable structures without evidence of salt bridge formation. Variants Q271E, V51K and T164R led to structures that resulted in varying degrees of thermodynamic and autolytic instability. A computer-modeling analysis of the PROTEUS predictions reveals that the low percentage of salt bridge formation is probably due to an overly simplistic electrostatic model, which does not account for the geometry of the pairwise interactions.  相似文献   

2.
Protein engineering of disulfide bonds in subtilisin BPN'   总被引:7,自引:0,他引:7  
C Mitchinson  J A Wells 《Biochemistry》1989,28(11):4807-4815
Five single-disulfide mutants were studied in subtilisin BPN', a cysteine-free, secreted serine protease from Bacillus amyloliquefaciens. The disulfides were engineered between residues 26-232, 29-119, 36-210, 41-80, and 148-243. These bonds connected a variety of secondary structural elements, located in buried or exposed positions at least 10 A from the catalytic Ser-221, and linked residues that were separated by 39 up to 206 amino acids. All disulfide bonds formed in the enzyme when the expressed protein was secreted from Bacillus subtilis, and the disulfides had only minor effects on the enzyme kinetics. Although these disulfide bonds varied by over 50-fold in their equilibrium constants for reduction with dithiothreitol, there was no correlation between the strength of the disulfide bond and the stability it imparted to the enzyme to irreversible inactivation. In some cases, the disulfide-bonded protein was stabilized greatly relative to its reduced counterpart. However, no disulfide mutant was substantially more stable than wild-type subtilisin BPN'. Some of these results can be rationalized by destabilizing effects of the cysteine mutations that disrupt interactions present in the folded enzyme structure. It is also possible that the rate of irreversible inactivation depends upon the kinetics and not the thermodynamics of unfolding and so the entropically stabilizing effect expected from a disulfide bond may not apply.  相似文献   

3.
4.
The crystal structure of the complex of a bacterial alkaline serine proteinase, subtilisin BPN', with its proteinaceous inhibitor SSI (Streptomyces subtilisin inhibitor) was solved at 2.6 A resolution. Compared with other similar complexes involving serine proteinases of the trypsin family, the present structure is unique in several respects. (1) In addition to the usual antiparallel beta-sheet involving the P1, P2 and P3 residues of the inhibitor, the P4, P5 and P6 residues form an antiparallel beta-sheet with a previously unnoticed chain segment (residues 102 through 104, which was named the S4-6 site) of subtilisin BPN'. (2) The S4-6 site does not exist in serine proteinases of the trypsin family, whether of mammalian or microbial origin. (3) Global induced-fit movement seems to occur on SSI: a channel-like structure in SSI where hydrophobic side-chains are sandwiched between two lobes becomes about 2 A wider upon complexing with subtilisin. (4) The complex is most probably a Michaelis complex, as in most of the other complexes. (5) The main role of the "secondary contact region" of SSI seems to be to support the reactive site loop ("primary contact region"). Steric homology of the two contact regions between the inhibitors of the SSI family and the pancreatic secretory trypsin inhibitor-ovomucoid inhibitor family is so high that it seems to indicate divergent evolutionary processes and to support the general notion as to the relationship of prokaryotic and eukaryotic genes put forward by Doolittle (1978).  相似文献   

5.
In this paper we present a molecular dynamics (MD) simulation of subtilisin BPN' in a crystalline environment containing four protein molecules and solvent. Conformational and dynamic properties of the molecules are compared with each other and with respect to the X-ray structure to test the validity of the force field. The agreement between simulated and experimental structure using the GROMOS force field is better than that obtained in the literature using other force fields for protein crystals. The overall shape of the molecule is well preserved, as is the conformation of alpha-helices and beta-strands. Structural differences are mainly found in loop regions. Solvent networks found in the X-ray structure were reproduced by the simulation, which was unbiased with respect to the crystalline hydration structure. These networks seem to play an important role in the stability of the protein; evidence of this is found in the structure of the active site. The weak ion binding site in the X-ray structure of subtilisin BPN' is occupied by a monovalent ion. When a calcium ion is placed in the initial structure, three peptide ligands are replaced by 5 water ligands, whereas a potassium ion retains (in part) its original ligands. Existing force fields yield a reliable method to probe local structure and short-time dynamics of proteins, providing an accuracy of about 0.1 nm.  相似文献   

6.
The hydrolysis of 30 substituted phenyl hippurates (X-C6H4OCOCH2NHCOC6H5) by subtilisin BPN' was studied and from the results the following quantitative structure-activity relationship was derived: log 1/Km = 0.39 sigma + 0.16 B5.4 + 0.29 pi'3 + 3.58. In this expression Km is the Michaelis constant, sigma is the Hammett constant, B5.4 is the sterimol steric parameter of X in the 4-position and pi'3 is the hydrophobic parameter for the more hydrophobic of the two possible meta substituents. The other meta substitutent is assigned a pi value of 0. This mathematical model is qualitatively compared with a molecular graphics model constructed from the X-ray crystallographic coordinates of subtilisin BPN'. The results with subtilisin BPN' are compared with our earlier study of similar substrates with Carlsberg subtilisin.  相似文献   

7.
The crystal structure of subtilisin BPN' complexed with a proteinaceous inhibitor SSI (Streptomyces subtilisin inhibitor) was refined at 1.8 A resolution to an R-factor of 0.177 with a root-mean-square deviation from ideal bond lengths of 0.014 A. The work finally established that the SSI-subtilisin complex is a Michaelis complex with a distance between the O gamma of active Ser221 and the carbonyl carbon of the scissile peptide bond being an intermediate value between a covalent bond and a van der Waals' contact, 2.7 A. This feature, as well as the geometry of the catalytic triad and the oxyanion hole, is coincident with that found in other highly refined crystal structures of the complex of subtilisin Novo, subtilisin Carlsberg, bovine trypsin or Streptomyces griseus protease B with their proteinaceous inhibitors. The enzyme-inhibitor beta-sheet interaction is composed of two separate parts: that between the P1-P3 residues of SSI and the 125-127 chain segment (the "S1-3 site") of subtilisin and that between the P4-P6 residues of SSI and th 102-104 chain segment (the "S4-6 site") of subtilisin. The latter beta-interaction is unique to subtilisin. In contrast, the beta-sheet interaction previously found in the complex of subtilisin Novo and chymotrypsin inhibitor 2 or in the complex of subtilisin Carlsberg and Eglin C is distinct from the present complex in that the two types of beta-interactions are not separate. As for the flexibility of the molecules comprising the present complex, the following observations were made by comparing the B-factors for free and complexed SSI and comparing those for free and complexed subtilisin BPN'. The rigidification of the component molecules upon complex formation occurs in a very localized region: in SSI, the "primary" and "secondary" contact regions and the flanking region; in subtilisin BPN', the S1-3 and S4-6 sites and the flanking region.  相似文献   

8.
P Carter  L Abrahmsén  J A Wells 《Biochemistry》1991,30(25):6142-6148
A mutant of the serine protease, subtilisin BPN', in which the catalytic His64 is replaced by Ala (H64A), is very specific for substrates containing a histidine, presumably by the substrate-bound histidine assisting in catalysis [Carter, P., & Wells, J.A. (1987) Science (Washington, D.C.) 237, 394-399]. Here we probe the catalytic mechanism of H64A subtilisin for cleaving His and non-His substrates. We show that the ratio of aminolysis to hydrolysis is the same for ester and amide substrates as catalyzed by the H64A subtilisin. This is consistent with formation of a common acyl-enzyme intermediate for H64A subtilisin, analogous to the mechanism of the wild-type enzyme. However, the catalytic efficiencies (kcat/KM) for amidase and esterase activities with His-containing substrates are reduced by 5000-fold and 14-fold, respectively, relative to wild-type subtilisin BPN, suggesting that acylation is more compromised than deacylation in the H64A mutant. High concentrations of imidazole are much less effective than His substrates in promoting hydrolysis by the H64A variant, suggesting that the His residue on the bound (not free) substrate is involved in catalysis. The reduction in catalytic efficiency kcat/KM for hydrolysis of the amide substrate upon replacement of the oxyanion stabilizing asparagine (N155G) is only 7-fold greater for wild-type than H64A subtilisin. In contrast, the reductions in kcat/KM upon replacement of the catalytic serine (S221A) or aspartate (D32A) are about 3000-fold greater for wild-type than H64A subtilisin, suggesting that the functional interactions between the Asp32 and Ser221 with the substrate histidine are more compromised in substrate-assisted catalysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We have devised a procedure using monovalent phage display to select for stable mutants in the pro-domain of the serine protease, subtilisin BPN'. In complex with subtilisin, the pro-domain assumes a compact structure with a four-stranded antiparallel beta-sheet and two three-turn alpha-helices. When isolated, however, the pro-domain is 97% unfolded. These experiments use combinatorial mutagenesis to select for stabilizing amino acid combinations at a particular structural locus and determine how many combinations are close to the maximum protein stability. The selection for stability is based on the fact that the independent stability of the pro-domain is very low and that binding to subtilisin is thermodynamically linked to folding. Two libraries of mutant pro-domains were constructed and analyzed to determine how many combinations of amino acids at a particular structural locus result in the maximum stability. A library comprises all combinations of four amino acids at a structural locus. Previous studies using combinatorial genetics have shown that many different combinations of amino acids can be accommodated in a selected locus without destroying function. The present results indicate that the number of sequence combinations at a structural locus, which are close to the maximum stability, is small. The most striking example is a selection at an interior locus of the pro-domain. After two rounds of phagemid selection, one amino acid combination is found in 40% of sequenced mutants. The most frequently selected mutant has a deltaG(unfolding) = 4 kcal/mol at 25 degrees C, an increase of 6 kcal/mol relative to the naturally occurring sequence. Some implications of these results on the amount of sequence information needed to specify a unique tertiary fold are discussed. Apart from possible implications on the folding code, the phage display selection described here should be useful in optimizing the stability of other proteins, which can be displayed on the phage surface.  相似文献   

10.
11.
The crystal structures of two thermally stabilized subtilisin BPN' variants, S63 and S88, are reported here at 1.8 and 1.9 A resolution, respectively. The micromolar affinity calcium binding site (site A) has been deleted (Delta75-83) in these variants, enabling the activity and thermostability measurements in chelating conditions. Each of the variants includes mutations known previously to increase the thermostability of calcium-independent subtilisin in addition to new stabilizing mutations. S63 has eight amino acid replacements: D41A, M50F, A73L, Q206W, Y217K, N218S, S221C, and Q271E. S63 has 75-fold greater stability than wild type subtilisin in chelating conditions (10 mm EDTA). The other variant, S88, has ten site-specific changes: Q2K, S3C, P5S, K43N, M50F, A73L, Q206C, Y217K, N218S, and Q271E. The two new cysteines form a disulfide bond, and S88 has 1000 times greater stability than wild type subtilisin in chelating conditions. Comparisons of the two new crystal structures (S63 in space group P2(1) with A cell constants 41.2, 78.1, 36.7, and beta = 114.6 degrees and S88 in space group P2(1)2(1)2(1) with cell constants 54.2, 60.4, and 82.7) with previous structures of subtilisin BPN' reveal that the principal changes are in the N-terminal region. The structural bases of the stabilization effects of the new mutations Q2K, S3C, P5S, D41A, Q206C, and Q206W are generally apparent. The effects are attributed to the new disulfide cross-link and to improved hydrophobic packing, new hydrogen bonds, and other rearrangements in the N-terminal region.  相似文献   

12.
Introduction of a disulfide bond by site-directed mutagenesis was found to enhance the stability of subtilisin BPN' (EC 3.4.21.14) under a variety of conditions. The location of the new disulfide bond was selected with the aid of a computer program, which scored various sites according to the amount of distortion that an introduced disulfide linkage would create in a 1.3-A X-ray model of native subtilisin BPN'. Of the several amino acid pairs identified by this program as suitable candidates, Thr-22 and Ser-87 were selected by using the additional requirement that the individual cysteine substitutions occur at positions that exhibit some degree of variability in related subtilisin amino acid sequences. A subtilisin variant containing cysteine residues at positions 22 and 87 was created by site-directed mutagenesis and was shown to have an activity essentially equivalent to that of the wild-type enzyme. Differential scanning calorimetry experiments demonstrated the variant protein to have a melting temperature 3.1 degrees C higher than that of the wild-type protein and 5.8 degrees C higher than that of the reduced form (-SH HS-) of the variant protein. Kinetic experiments performed under a variety of conditions, including 8 M urea, showed that the Cys-22/Cys-87 disulfide variant undergoes thermal inactivation at half the rate of that of the wild-type enzyme. The increased thermal stability of this disulfide variant is consistent with a decrease in entropy for the unfolded state relative to the unfolded state that contains no cross-link, as would be predicted from the statistical thermodynamics of polymers.  相似文献   

13.
The viscosity dependence of enzymatic catalysis was examined in subtilisin BPN' catalyzed hydrolysis of N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide and N-succinyl-Ala-Ala-Pro-Phe-thiobenzyl ester. The viscosity of the reaction medium was varied by added glycerol, ethylene glycol, sucrose, glucose, fructose, poly(ethylene glycol) and Ficoll-400. Responses of the Michaelis-Menten parameters associated with hydrolysis were calculated from data obtained by spectrophotometric techniques. The reactions with these two substrates have catalytic rates well below the diffusion-controlled limit and thus enable us to study the viscosity effects on catalytic steps of non-transport nature. It was found that the Km values for both amide and ester reactions remained relatively independent of cosolvents. On the other hand, while the kcat values for amide were insensitive to cosolvents, those for ester were substantially attenuated except in the case of poly(ethylene glycol). The observed rate attenuations cannot be explained by changes in proton activity, water activity, dielectric constant of the reaction medium or shifts of any kinetically important pKa. Instead, the results can be adequately described by microviscosity effects on the unimolecular deacylation step with a coupling constant of 0.65 +/- 0.11. In addition, the different viscosity dependence in the acylation vs deacylation step can be rationalized in terms of fluctuation-dependent chemical dynamics of proton transfers in the context of the Bogris-Hynes model.  相似文献   

14.
The denaturation of subtilisin BPN' (EC 3.4.21.14) in guanidine hydrochloride was studied in order to find possible reasons for the exceptional stability of this enzyme against the action of denaturing agents including guanidine hydrochloride. Chemically modified subtilisins, i.e., phenylmethanesulfonylsubtilisin and thio-subtilisin, were completely denatured in 2 M guanidine hydrochloride at pH 7 without autolysis but they were stable in 0.5 M guanidine hydrochloride for at least 60 h. On the other hand, once completely denatured, the subtilisins remained inactive and in highly unfolded conformations for 60 h or longer after transfer into 0.5 M guanidine solution at pH 7 or 9. No enzymatic activity was regained when the guanidine concentration was lowered to almost zero. We concluded from these and other results described in this paper that this enzyme was thermodynamically unstable in 2 M guanidine hydrochloride at 20 degrees C and at pH 7. We wish to point out the possibility that the denaturation of this enzyme could indeed be irreversible.  相似文献   

15.
Structure of the complex of Streptomyces subtilisin inhibitor (SSI) with subtilisin BPN' was studied by examining the thermal denaturation and reducibility of disulfide bonds. The denaturation temperature of the complex was significantly higher than that of the enzyme. Two disulfide bonds localized in the inhibitor side were completely reduced in the complex, whereas only one of them was reduced in the free SSI. Gel filtration of the reduced complex solution showed clearly that the main products of reduction of the complex were two peptide fragments of SSI divided at the active site. The resistive disulfide bond in the complexed inhibitor became accessible as a result of a large conformational change due to splitting of the half-reduced inhibitor.  相似文献   

16.
17.
Interaction of human plasma alpha 1-proteinase inhibitor (alpha 1PI) with subtilisin BPN' was assessed by spectrophotometric determination of the inhibitory capacity and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). During the course of incubation of the enzyme and the inhibitor (E : I = 1 : 7.5) at pH 8.0 about 17% of the enzyme activity which had been inhibited initially was regenerated, indicating a temporary type of inhibition. The results of the titration experiments indicate that 9.8 mol of the inhibitor is required to inhibit 1 mol of the enzyme completely. However, patterns of 5% disc SDS-PAGE under non-reducing conditions revealed only an equimolar complex (Mr80K) of alpha 1PI with the enzyme and no other higher Mr component than the native inhibitor (Mr 56K). On the other hand, complete dissociation of the complex occurred under reducing conditions, producing an enzymatically modified inhibitor. When 5 21% gradient slab SDS-PAGE was employed, no complex formation was observed under either reducing or non-reducing conditions. With the gradient gel system, dissociation of the equimolar complex produced different forms of the inhibitor, that is, regeneration of an intact alpha 1PI under non-reducing conditions and an enzymatically modified form under reducing conditions. All these results indicate that the complex formed between subtilisin BPN' and human alpha 1PI is not so stable as that of the inhibitor with bovine chymotrypsin and that no covalent bond may be involved in the complex formation. The results also indicate that human alpha 1PI is not an effective inhibitor of subtilisin BPN' and behaves like a substrate for the enzyme.  相似文献   

18.
M M Santoro  D W Bolen 《Biochemistry》1992,31(20):4901-4907
Guanidine hydrochloride (GdnHCl) and thermally induced unfolding measurements on the oxidized form of Escherichia coli thioredoxin at pH 7 were combined for the purpose of assessing the functional dependence of unfolding free energy changes on denaturant concentration over an extended GdnHCl concentration range. Conventional analysis of GdnHCl unfolding exhibits a linear plot of unfolding delta G vs [GdnHCl] in the transition zone. In order to extend unfolding delta G measurements outside of that narrow concentration range, thermal unfolding measurements were performed using differential scanning calorimetry (DSC) in the presence of low to moderate concentrations of GdnHCl. The unfolding delta G values from the DSC measurements were corrected to 25 degrees C using the Gibbs-Helmholtz equation and mapped onto the delta G vs [GdnHCl] plot. The dependence of unfolding delta G on [GdnHCl] was found to be linear over the full denaturant concentration range, provided that the chloride ion concentration was kept at a threshold of greater than or equal to 1.5 M. In the DSC experiments performed in the presence of GdnHCl, chloride concentrations were maintained at 1.5 M by addition of appropriate amounts of NaCl. The linear extrapolation method (LEM) gives an unfolding free energy change in the absence of denaturant (delta G degrees N-U) in excellent agreement with the delta G determined by DSC measurement in 1.5 M NaCl. The various methods give a consensus unfolding delta G value of 8.0 kcal/mol at 25 degrees C in the absence of denaturant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Stratton JR  Pelton JG  Kirsch JF 《Biochemistry》2001,40(35):10411-10416
The low-barrier hydrogen bond (LBHB) between the Asp and His residues of the catalytic triad in a serine protease was perturbed via the D32C mutation in subtilisin BPN' (Bacillus protease N'). This mutant enzyme catalyzes the hydrolysis of N-Suc-Ala-Ala-Pro-Phe-SBzl with a k(cat)/K(m) value that is only 8-fold reduced from that of the wild-type (WT) enzyme. The value of k(cat)/K(m) for the corresponding p-nitroanilide (pNA) substrate is only 50-fold lower than that of the WT enzyme (DeltaDeltaG++ = 2.2 kcal/mol). The pK(a) controlling the ascending limb of the pH versus k(cat)/K(m) profile is lowered from 7.01 (WT) to 6.53 (D32C), implying that any hydrogen bond replacing that between Asp32 and His64 of the WT enzyme most likely involves the neutral thiol rather than the thiolate form of Cys32. It is shown by viscosity variation that the reaction of WT subtilisin with N-Suc-Ala-Ala-Pro-Phe-SBzl is 50% (sucrose) to 100% (glycerol) diffusion-controlled, while that of the D32C construct is 29% (sucrose) to 76% (glycerol) diffusion-controlled. The low-field NMR resonance of 18 ppm that has been assigned to a proton shared by Asp32 and His64, and is considered diagnostic of a LBHB in the WT enzyme, is not present in D32C subtilisin. Thus, the LBHB is not an inherent requirement for substantial rate enhancement for subtilisin.  相似文献   

20.
We have determined by (15)N, (1)H, and (13)C NMR, the chemical behavior of the six histidines in subtilisin BPN' and their PMSF and peptide boronic acid complexes in aqueous solution as a function of pH in the range of from 5 to 11, and have assigned every (15)N, (1)H, C(epsilon 1), and C(delta2) resonance of all His side chains in resting enzyme. Four of the six histidine residues (17, 39, 67, and 226) are neutrally charged and do not titrate. One histidine (238), located on the protein surface, titrates with pK(a) = 7.30 +/- 0.03 at 25 degrees C, having rapid proton exchange, but restricted mobility. The active site histidine (64) in mutant N155A titrates with a pK(a) value of 7.9 +/- 0.3 and sluggish proton exchange behavior, as shown by two-site exchange computer lineshape simulation. His 64 in resting enzyme contains an extremely high C(epsilon 1)-H proton chemical shift of 9.30 parts per million (ppm) owing to a conserved C(epsilon 1)-H(.)O=C H-bond from the active site imidazole to a backbone carbonyl group, which is found in all known serine proteases representing all four superfamilies. Only His 226, and His 64 at high pH, exist as the rare N(delta1)-H tautomer, exhibiting (13)C(delta1) chemical shifts approximately 9 ppm higher than those for N(epsilon 2)-H tautomers. His 64 in the PMSF complex, unlike that in the resting enzyme, is highly mobile in its low pH form, as shown by (15)N-(1)H NOE effects, and titrates with rapid proton exchange kinetics linked to a pK(a) value of 7.47 +/- 0.02.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号