首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibition of Aflatoxin Production by Surfactants   总被引:5,自引:3,他引:2       下载免费PDF全文
The effect of 12 surfactants on aflatoxin production, growth, and conidial germination by the fungus Aspergillus flavus is reported. Five nonionic surfactants, Triton X-100, Tergitol NP-7, Tergitol NP-10, polyoxyethylene (POE) 10 lauryl ether, and Latron AG-98, reduced aflatoxin production by 96 to 99% at 1% (wt/vol). Colony growth was restricted by the five nonionic surfactants at this concentration. Aflatoxin production was inhibited 31 to 53% by lower concentrations of Triton X-100 (0.001 to 0.0001%) at which colony growth was not affected. Triton X-301, a POE-derived anionic surfactant, had an effect on colony growth and aflatoxin production similar to that of the five POE-derived nonionic surfactants. Sodium dodecyl sulfate (SDS), an anionic surfactant, and dodecyltrimethylammonium bromide, a cationic surfactant, suppressed conidial germination at 1% (wt/vol). SDS had no effect on aflatoxin production or colony growth at 0.001%. The degree of aflatoxin inhibition by a surfactant appears to be a function of the length of the hydrophobic and hydrophilic chains of POE-derived surfactants.  相似文献   

2.
研究了不同浓度表面活性剂Tween-80,Triton X-100,SDS对大肠杆菌生产α-环糊精葡萄糖基转移酶(α-CGT酶)的影响。结果表明:发酵初始添加Tween-80和Triton X-100的最适浓度分别为2%,0.5%,最终胞外酶活分别达2.03U/ml和4.92U/ml,相对于未添加表面活性剂时提高4.6倍和12.67倍,且改变添加时间不能提高酶的产量;发酵36 h添加0.02%SDS对α-CGT酶产量促进最大,最终胞外酶活达5.31U/ml,较对照组提高12.75倍。表面活性剂对α-CGT酶生产的促进作用可能是由大肠杆菌细胞内外膜渗透性增加所致,使细胞周质空间中α-CGT酶能更加快速地渗透到胞外。  相似文献   

3.
AmyP是一个来自海洋宏基因组文库的α-淀粉酶。AmyP不仅对log Pow值从4.5到-0.24的各种有机溶剂均具有良好的耐受性,而且能被正辛醇、正辛烷和甲苯提高活性为139%、118%和119%。正辛醇影响AmyP的淀粉水解产物、葡萄糖的含量增加、麦芽三糖的含量降低。非离子型的表面活性剂Tween-20、Tween-80和Triton X-100存在条件下,AmyP的活性反而有不同程度的提高。但是,AmyP对阴离子型的SDS和阳离子型CTAB的耐受性稍差。结果表明AmyP是一个同时具有有机溶剂和表面活性剂耐受性的新型α-淀粉酶。  相似文献   

4.
Exposure to anionic (sodium dodecyl sulfate, SDS), cationic (cetyl trimethyl ammonium bromide CTAB) and non ionic (Triton X-100) surfactants at a sub lethal concentration of 1 ppm resulted in severe oxidative stress in the hepatic, renal and cardiac tissues of fresh water adapted Oreochromis mossambicus. Hepatic catalase showed significant increase (P<0.001) in all the surfactant exposed fish, but the renal enzyme was significantly increased only in CTAB dosed fish (P<0.001) and the cardiac enzyme showed significant increase in Triton (P<0.05) and CTAB dosed fish (P<0.001). SOD levels were significantly increased (P<0.001) in hepatic, renal and cardiac tissues of all the surfactant-treated fish. Glutathione reductase also was significantly increased (P<0.001) in the hepatic and renal tissues of surfactant dosed fish except cardiac tissues of CTAB exposed animals. Glutathione levels in the tissues studied were significantly higher in the surfactant treated animals (P<0.001) whereas malondialdehyde levels were significantly elevated only in the hepatic tissues of animals exposed to Triton (P<0.001). The surfactants based on their charge, antioxidant profile and in vivo metabolism may be arranged in the order of decreasing toxicity as CTAB > Triton > SDS. Thus it may be inferred from the present study that the antioxidant defenses and the in vivo metabolism of the surfactants are key factors in deciding the surfactant toxicity.  相似文献   

5.
The adsorption behavior of five surfactants, cetyltrimethylammonium bromide (CTAB), Triton X-100, Tween 80, sodium dodecyl sulfate (SDS), and rhamnolipid, on a Pseudomonas aeruginosa strain and the effect of temperature and ionic strength (IS) on the adsorption were studied. The change of cell surface lypohydrophilic property caused by surfactant adsorption was also investigated. The results showed that the adsorption kinetics of the surfactants on the cell followed the second-order law. CTAB adsorption was the fastest one under the experimental conditions, and it took longest for SDS adsorption to equilibrate because of electric repulsion. The adsorption of Triton X-100 and Tween 80 was characterized by short equilibration time, and rhamnolipid adsorption reached equilibrium in about 90 min. The adsorption isotherms of all the surfactants on the bacterium fitted Freundlich equation well, but the adsorption capacity and mode were variations for the surfactants as indicated by k and n parameters in the equations. The adsorption mode for all the surfactants except SDS is probably hydrophilic interaction because the adsorption totally turned the cell surface to be more hydrophobic. Neither the temperature nor the IS had significant effect on CTAB adsorption, but higher IS significantly enhanced SDS adsorption and modestly strengthened adsorption of Triton X-100, Tween 80, and rhamnolipid. Higher temperature strengthened adsorption of SDS but weakened the adsorption of Triton X-100, Tween 80, and rhamnolipid.  相似文献   

6.
Useful materials can be made from cycloamylose (CA) and the functional properties of CA could be improved by complexation with surfactants. Isothermal titration calorimetry (ITC) was used to investigate interactions between CA and surfactants in buffered solutions. Three surfactants with C12 non-polar tail groups and charged [anionic: sodium dodecyl sulfate (SDS); cationic: dodecyl trimethylammonium bromide (DTAB)] or non-charged headgroups [non-ionic: polyoxyethylene 23 lauryl ether (Brij35)] were used in this study. The effects of temperature, pH, and salt concentration were also studied. All three surfactants bound to CA; however, Brij35 binding to CA was negligible. Enthalpy changes associated with binding of surfactants to CA were exothermic except for interactions measured at 50 °C. There was no effect of pH on surfactant demicellization or CA binding. Salt concentration affected surfactant demicellization, but the amount of SDS bound to CA at saturation was unaffected by salt. When the titration curves obtained for CA with SDS and DTAB were fitted, it could be analyzed using a model based on a single set of identical sites.  相似文献   

7.
A partially purified lipase produced by the thermophile Geobacillus thermoleovorans CCR11 was immobilized by adsorption on porous polypropylene (Accurel EP-100) in the presence and absence of 0.1% Triton X-100. Lipase production was induced in a 2.5% high oleic safflower oil medium and the enzyme was partially purified by diafiltration (co. 500,000 Da). Immobilization conditions were established at 25 °C, pH 6, and a protein concentration of 0.9 mg/mL in the presence and absence of 0.1% Triton X-100. Immobilization increased enzyme thermostability but there was no change in neither the optimum pH nor in pH resistance irrelevant to the presence of the detergent during immobilization. Immobilization with or without Triton X-100 allowed the reuse of the lipase preparation for 11 and 8 cycles, respectively. There was a significant difference between residual activity of immobilized and soluble enzyme after 36 days of storage at 4 °C (P < 0.05). With respect to chain length specificity, the immobilized lipase showed less activity over short chain esters than the soluble lipase. The immobilized lipase showed good resistance to desorption with phosphate buffer and NaCl; minor loses with detergents were observed (less than 50% with Triton X-100 and Tween-80), but activity was completely lost with SDS. Immobilization of G. thermoleovorans CCR11 lipase in porous polypropylene is a simple and easy method to obtain a biocatalyst with increased stability, improved performance, with the possibility for re-use, and therefore an interesting potential use in commercial conditions.  相似文献   

8.
In this study we evaluated effects of surfactants on motility parameters and DNA integrity of spermatozoa of freshwater teleost fish. Common carp (Cyprinus carpio) and brown trout (Salmo trutta fario) spermatozoa were exposed to either sodium dodecyl sulphate (SDS, anionic surfactant) or octoxynol 9 ( Triton X-100, nonionic surfactant). Both surfactants added at activation caused a decrease in sperm motility characteristics measured by computer-assisted sperm analysis (CASA). Intraspecific differences in speed and trajectory of movement were detected. Triton X-100 and SDS when added to non activated sperm were also effective in the decrease of sperm motility and caused an increase of DNA fragmentation. Our results suggest that not only sperm motility apparatus but also DNA are targets for surfactant action. Therefore any exposure of spermatozoa to surfactants, in aquaculture conditions or natural environment, would have a negative impact on fish reproduction.  相似文献   

9.
《Process Biochemistry》1999,34(1):87-92
The addition of the surfactants Triton X-100, CHAPS, Tween-80 and sodium taurocholate to Clostridium thermosulfurogenes SV2 culture individually resulted in a marked increase in the yields of thermostable β-amylase and pullulanase. The stimulation of enzymes production was greater when the surfactants were added after 18 h of incubation of the culture. Upon treatment with 1.0 mM Triton X-100, 0.1 mM CHAPS, 0.1 mM Tween-80 and 0.1 mM sodium taurocholate, C. thermosulfurogenes SV2 produced 140, 34, 88 and 28% more β-amylase and 114, 146, 47 and 28% more pullulanase than the control (lacking surfactants), respectively. Besides stimulation, the surfactants caused an increased secretion of the enzymes into the extracellular fluid. These surfactants also further enhanced the stability of the enzymes. All the surfactants tested were found to have a little inhibitory effect on the growth of the bacterium.  相似文献   

10.
The aim of this work was to evaluate the effect of several non-ionic surfactants (Tween-80, Triton X-100 and Tergitol NP-10) on the ability of different bacteria (Enterobacter sp., Pseudomonas sp. and Stenotrophomonas sp.) to degrade polycyclic aromatic hydrocarbons (PAHs). Bacterial cultures were performed at 25 °C in an orbital shaker under dark conditions in BHB medium containing 1% of surfactant and 500 mg l−1 of each PAH. Experiments performed with Tween-80 showed the highest cell density values and maximum specific growth rate because this surfactant was used as a carbon source by all bacteria. High degree of PAHs degradation (>90%) was reached in 15 days in all experiments. Toxicity increased at early times using Tween-80 but decreased to low levels in a short time after the firsts 24 h. On the other hand, Triton X-100 and Tergitol NP-10 were not biodegraded and toxicity kept constant along time. However, PAHs-degradation rate was higher, especially by the action of Enterobacter sp. with Tween-80 or Triton X-100. Control experiments performed without surfactant showed a significant decrease in biomass growth rate with a subsequent loss of biodegradation activity likely due to a reduced solubility and bioavailability of PAHs in absence of surfactant.  相似文献   

11.
以陆地棉岱字-15号棉纤维细胞为材料,用3H-葡聚糖示踪方法测定β-1,3-葡聚糖和纤维素的合成。PEG4000促进β-1,3-葡聚糖和纤维素的合成,对刺激纤维素的合成更有效;随着非离子型表面活性剂 Trion X-100和Tween 20浓度的升高,抑制β-1,3-葡聚糖和纤维素的合成程度也增加,但抑制纤维素的合成更为强烈;而阴离子表面活性剂SDS则有所不同,在较高浓度下,又出现对β-1,3-葡聚糖合成抑制的减弱,这可能与SDS载负电荷的缘故有关。结果提示,完整的细胞膜有利于纤维素的合成,细胞膜损伤则利于β-1,3-葡聚糖的合成。  相似文献   

12.
AIMS: Selection of suitable surfactants for enhancing and stabilizing alpha-amylase of Geobacillus thermoleovorans. METHODS AND RESULTS: Geobacillus thermoleovorans was cultivated in shake flasks containing 50 ml of starch-yeast extract-tryptone (SYT) medium with/without surfactants. Titres of the enzyme in media were monitored. The enzyme was also preserved at 4 degrees C with/without surfactants and enzyme activities were determined. Among polyethylene glycol (PEGs) of different molecular weights, PEG 8000 (0.5%, w/v) caused a slight increase in the enzyme titre, while Tween-20, Tween-40 and Tween-60 (0.03%, w/v) exerted a significant stimulatory effect on enzyme secretion. In the presence of SDS, Tween-80 and cholic acid (0.03%, w/v), the enzyme production was nearly twofold higher than that in the control. The anionic (SDS, cholic acid) and non-ionic (Tweens) detergents increased the cell membrane permeability, and thus, enhanced alpha-amylase secretion. Furthermore, anionic surfactants exhibited stabilizing effect on the enzyme during preservation at 4 degrees C. CONCLUSIONS: PEG 8000 and the ionic detergents (SDS, cholic acid and Tween-80) were more effective in the solubilization of cell membrane components, and enhancing enzyme yields than the cationic detergents such as CTAB (N,Cetyl-N,N,N-trimethyl ammonium bromide). Further, these surfactants were found to stabilize the enzyme at 4 degrees C. SIGNIFICANCE AND IMPACT OF THE STUDY: The secretion of Ca2+-independent hyperthermostable alpha-amylase was enhanced in the presence of certain anionic and non-ionic detergents in the medium. Furthermore, the surfactants stabilized the enzyme during preservation at 4 degrees C. The use of this enzyme in starch hydrolysis eliminates the addition of Ca2+ in starch liquefaction and its subsequent removal by ion exchange from sugar syrups.  相似文献   

13.
The crystalline acid carboxypeptidase from Penicillium janthinellum IFO-8070 was stabilized by the addition of nonionic surfactants, such as Triton X-100, Brij 35, Span 40, and Tween 20. In the presence of these stabilizers, extremely diluted enzyme (0.3 μg/ml of 50 mm sodium acetate buffer, pH 3.7) was almost completely stable after 2 days incubation at 25°C. About 35% and 20% of the enzyme activities were activated by the addition of Triton X-100 and Brij 35, respectively. Triton X-100 completely retarded inactivation at freezing (?15°C). On the other hand, anionic surfactants of SLS and LBSA, and cationic surfactant of cetyltrimethylammonium bromide strongly inactivated the enzyme. The inhibition of the fatty acid series was roughly proportional to the molecular weight of the inhibitor. Di-, and Tri-carboxylic acids also inhibited the enzyme activity.  相似文献   

14.
SDS and Triton X-100 added at their critical micelle concentrations (CMCs), increased phenanthrene solubility in the presence of sediments and inhibited phenanthrene biodegradation. Triton X-100 caused more inhibition than SDS. 16S rDNA analyses revealed that both surfactants changed the microbial communities of phenanthrene-degrading cultures. Further, after the surfactant additions, parts of the microbial populations were not detected and methane production decreased. Surfactant applications, necessary to achieve actual CMCs, alter microbial community structure and diminish methanogenic activity under anaerobic conditions. We propose that this change may be related to the inhibitory effects of SDS and Triton X-100 on phenanthrene biodegradation under methanogenic conditions.  相似文献   

15.
The hydrophilic–lipophilic balance (HLB) number system was used to optimize a compatible non-ionic surfactant, TDA (polyoxyethylene tridecyl ether) in formulations for two Beauveria bassiana strains, NI8 and GHA. The optimal HLB number for TDA was determined on the basis of wetting times for conidial powders. The results indicated that optimal HLB number of TDA for B. bassiana strain NI8 was 8, while the optimum HLB number for strain GHA was 10. The optimized TDA surfactants required significantly less wetting times than the commonly used laboratory surfactants, Triton X-100, Span 80, and Tween 80. These optimized TDA surfactants were further characterized on their ability to produce conidial suspensions of the two strains after 5 min of mixing, TDA HLB 8 and TDA HLB 10 produced suspensions of 1.8 × 108 and 1.6 × 108 conidia/ml for NI8 and GHA, respectively. These conidial levels were significantly higher than those in Triton X-100, Span 80, and Tween 80 suspensions after the same mixing time. Germination assays showed that TDA HLB 8 promoted significantly higher germination rates of strain NI8 than those observed in other commonly used laboratory surfactants. However, the germination rates of the GHA strain were unaffected by any of the surfactants tested. The efficacy of the conidial suspensions was confirmed with assays against Lygus lineolaris. Bioassay results indicated that there were no significant differences in mortalities because of surfactants. These results suggest optimization based upon HLB number will not negatively impact parameters associated with efficacy, while providing desirable physical properties.  相似文献   

16.
An extracellular lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) from Pseudomonas aeruginosa KKA-5 hydrolyzed castor oil by 90%. Purification of this castor oil-hydrolyzing lipase included ammonium sulfate precipitation and successive hydroxylapatite column chromatography. The enzyme was purified 518-fold. It was homogeneous electrophoretically and its molecular weight was estimated to be 30 kDa. The enzyme was stable up to 45°C and retained its activity in the alkaline pH range. Lipase was highly stable in the presence of aqueous organic solvents like methanol and ethanol. It was weakly inhibited in the presence of acetone. The anionic surfactant, sodium dodecyl sulfate, was inhibitory while the cationic surfactants, Triton X-100 and Tween-80 appreciably enhanced activity. Lipase was stabilized significantly by Ca2+. Inactivation of the enzyme by EDTA was overcome by sequential CaCl2 treatment. This finding suggests the existence of a calcium-binding site in Pseudomonas aeruginosa KKA-5 lipase. Received 22 January 1998/ Accepted in revised form 27 April 1998  相似文献   

17.
Detergents such as Triton X-100 are often used in drug discovery research to weed out small molecule promiscuous and non-specific inhibitors which act by aggregation in solution and undesirable precipitation in aqueous assay buffers. We evaluated the effects of commonly used detergents, Triton X-100, Tween-20, Nonidet-40 (NP-40), Brij-35, and CHAPS, on the enzymatic activity of West Nile virus (WNV) protease. Unexpectedly, Triton X-100, Tween-20, and NP-40 showed an enhancement of in vitro WNV protease activity from 2 to 2.5-fold depending on the detergent and its concentration. On the other hand, Brij-35, at ?0.001% enhanced the protease activity by 1.5-fold and CHAPS had the least enhancing effect. The kinetic analysis showed that the increase in protease activity by Triton X-100 was dose-dependent. Furthermore, at Triton X-100 and Tween-20 concentrations higher than 0.001%, the inhibition of compound B, one of the lead compounds against WNV protease identified in a high throughput screen (IC50 value of 5.7 ± 2.5 μM), was reversed. However, in the presence of CHAPS, compound B still showed good inhibition of WNV protease. Our results, taken together, indicate that nonionic detergents, Triton X-100, Tween, and NP-40 are unsuitable for the purpose of discrimination of true versus promiscuous inhibitors of WNV protease in high throughput assays.  相似文献   

18.

As Brassicaceae species are mostly cross-pollinated, breeding homozygous parental lines by traditional approaches is time-consuming and costly. Alternatively, microspore culture has been widely applied to produce double haploid lines in a short time. This study aimed to establish a highly efficient microspore culture protocol for purple flowering stalk. Among the five genotypes studied, the highest and lowest embryo induction rates were observed in J18 and J17 (13.5 and 7.67 embryos per bud, respectively). Microspores of genotypes J17 and J18 were successfully induced to produce embryos in NLN-13 medium, but the frequency of microspore embryogenesis was low. Three non-ionic surfactants (Pluronic F-68, Triton X-100, Tween-20) were evaluated independently for their effect on microspore embryogenesis of purple flowering stalk. Microspores of the two genotypes were cultivated in NLN-13 medium supplemented with different concentrations (0.0001%, 0.001%, 0.01%, 0.1%, 0.5%, and 1% (w/v)) of the three non-ionic surfactants to enhance microspore embryogenesis and plant regeneration. In both genotypes, supplementation with any of the three non-ionic surfactants at 0.0001% significantly increased the frequency of microspore embryogenesis; furthermore, at that concentration, Tween-20 significantly increased the number of plants regenerated from induced embryoids by 29.9% and 30% in J17 and J18, respectively. Moreover, the rate of double haploid formation among regenerated plants of the five genotypes was above 60%, which allowed the creation of 93 double haploid lines.

  相似文献   

19.
Transient genetic transformation of plant organs is an indispensable way of studying gene function in plants. This study was aimed to develop an optimized system for transient Agrobacterium-mediated transformation of the Arabidopsis leaves. The β-glucuronidase (GUS) reporter gene was employed to evaluate growth and biochemical parameters that influence the levels of transient expression. The effects of plant culture conditions, Agrobacterial genetic backgrounds, densities of Agrobacterial cell suspensions, and of several detergents were analyzed. We found that optimization of plant culture conditions is the most critical factor among the parameters analyzed. Higher levels of transient expression were observed in plants grown under short day conditions (SDs) than in plants grown under long day conditions (LDs). Furthermore, incubation of the plants under SDs at high relative humidity (85–90%) for 24 h after infiltration greatly improved the levels of transient expression. Under the optimized culture conditions, expression of the reporter gene reached the peak 3 days after infiltration and was rapidly decreased after the peak. Among the five Agrobacterial strains examined, LAB4404 produced the highest levels of expression. We also examined the effects of detergents, including Triton X-100, Tween-20, and Silwet L-77. Supplementation of the infiltration media either with 0.01% Triton X-100 or 0.01% Tween-20 improved the levels of expression by approximately 1.6-fold. Our observations indicate that transient transformation of the Arabidopsis leaves in the infiltration media supplemented with 0.01% Triton X-100 and incubation of the infiltrated plants under SDs at high relative humidity are necessary for maximal levels of expression.  相似文献   

20.
The amyloid β‐peptide fragment comprising residues 25–35 (Aβ25‐35) is known to be the most toxic fragment of the full length Aβ peptide which undergoes fibrillation very rapidly. In the present work, we have investigated the effects of the micellar environment (cationic, anionic, and nonionic) on preformed Aβ25‐35 fibrils. The amyloid fibrils have been prepared and characterized by several biophysical and microscopic techniques. Effects of cationic dodecyl trimethyl ammonium bromide (DTAB), cetyl trimethylammonium bromide (CTAB), anionic sodium dodecyl sulfate (SDS), and nonionic polyoxyethyleneoctyl phenyl ether (Triton X‐100 or TX) on fibrils have been studied by Thioflavin T fluorescence, UV–vis spectroscopy based turbidity assay and microscopic analyses. Interestingly, DTAB and SDS micelles were observed to disintegrate prepared fibrils to some extent irrespective of their charges. CTAB micelles were found to break down the fibrillar assembly to a greater extent. On the other hand, the nonionic surfactant TX was found to trigger the fibrillation process. The presence of a longer hydrophobic tail in case of CTAB is assumed to be a reason for its higher fibril disaggregating efficacy, the premise of their formation being largely attributed to hydrophobic interactions. Proteins 2016; 84:1213–1223. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号