首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Hansenula polymorpha RB11 pC10‐FMD (PFMD− GFP) (FMD promoter gfp gene) was simultaneously cultivated in the Respiration Activity Monitoring System (RAMOS) and in the microtiter plate cultivation system “BioLector” under phosphate limitation. The light scatter signal of the BioLector, for the determination of the biomass concentration in the wells, shows a significant decrease with the onset of the phosphate limitation until a stationary level is reached. At lower initial phosphate concentration this effect is more pronounced and longer time is required until the stationary level of the scattered light is achieved. The oxygen transfer rate signal of the RAMOS and the light scatter signal of the BioLector correlate with respect to the points of time where the maxima and the stationary levels of the courses are reached. In order to understand the effect causing this light scatter behavior, the forward and side scatter properties were investigated off line by flow cytometry. The decay in the light scatter of the BioLector seems to correlate with the formation of two subpopulations of different scatter intensities detected by a flow cytometer. With ongoing cultivation the fraction of cells possessing higher light scattering properties decreases until only a population of lower light scattering properties exists. The rate of transition of the yeast from one subpopulation to the other appears to be correlated with the rate of decrease in the BioLector light scatter signal. The formation of the subpopulations may be caused by an increased asymmetry in the cell cycle due to phosphate limitation. Biotechnol. Bioeng. 2009; 104: 554–561 © 2009 Wiley Periodicals, Inc.  相似文献   

2.
Stimulation of leucomycin production with Streptomyces kitasatoensis by magnesium phosphate (MgP), and a concomitant decrease of ammonium ion concentration in the culture supernatant have been reported from this laboratory. Cultural characteristics of the MgP-supplemented culture were further examined in relation to the stimulation of leucomycin production. When the leucomycin titer increased 4- to 5-fold in the presence of MgP, mycelial growth level and assimilation rate of a major carbon source (glycerol) increased about 2-fold. MgP-grown mycelia were not appreciably different in shape or in carbon and nitrogen contents from the control mycelia. Magnesium and phosphate ions were released from MgP into the medium, while the addition of magnesium or phosphate salts to the control medium was rather inhibitory for leucomycin production. The pH values of MgP-supplemented cultures were lower than those of the control culture. When modifications of the basal media and culture conditions were done so as to permit the pH-change almost identical with that of the control media, the leucomycin titer was still higher in the presence of MgP than in its absence. When uric acid, an insoluble compound, was used as the sole nitrogen source, the leucomycin production increased to a high level even in the absence of MgP, which was comparable to that seen when MgP was added to the ammonium lactate-containing medium. The ammonium ion concentration in the culture supernatant of the uric acid-containing medium was maintained at a considerably low level. While in the ammonium lactate-containing medium, leucomycin production was low and ammonium ion concentration remained at a high level. Thus, it was demonstrated that the stimulation of leucomycin production by MgP is related to the lowering of ammonium ion level, but not to the other factors examined such as growth level, carbon or phosphate regulation and pH-effect.  相似文献   

3.
Parameters Affecting Solvent Production by Clostridium pasteurianum   总被引:4,自引:1,他引:3       下载免费PDF全文
The effect of pH, growth rate, phosphate and iron limitation, carbon monoxide, and carbon source on product formation by Clostridium pasteurianum was determined. Under phosphate limitation, glucose was fermented almost exclusively to acetate and butyrate independently of the pH and growth rate. Iron limitation caused lactate production (38 mol/100 mol) from glucose in batch and continuous culture. At 15% (vol/vol) carbon monoxide in the atmosphere, glucose was fermented to ethanol (24 mol/100 mol), lactate (32 mol/100 mol), and butanol (36 mol/100 mol) in addition to the usual products, acetate (38 mol/100 mol) and butyrate (17 mol/100 mol). During glycerol fermentation, a completely different product pattern was found. In continuous culture under phosphate limitation, acetate and butyrate were produced only in trace amounts, whereas ethanol (30 mol/100 mol), butanol (18 mol/100 mol), and 1,3-propanediol (18 mol/100 mol) were the major products. Under iron limitation, the ratio of these products could be changed in favor of 1,3-propanediol (34 mol/100 mol). In addition, lactate was produced in significant amounts (25 mol/100 mol). The tolerance of C. pasteurianum to glycerol was remarkably high; growth was not inhibited by glycerol concentrations up to 17% (wt/vol). Increasing glycerol concentrations favored the production of 1,3-propanediol.  相似文献   

4.
The influence of initial glycerol and lactose concentrations on lovastatin and (+)‐geodin formation in batch cultures of Aspergillus terreus ATCC 20542 was presented. At first the experiments comprised lovastatin biosynthesis on glycerol as the sole carbon source. Lovastatin titers below 40 mg/L were found under these conditions and they were lower than previously obtained results when lactose was used as the sole carbon source. However, the application of the mixture of glycerol and lactose allowed in achieving higher lovastatin concentration in the broth. It even exceeded 122 mg/L when 10 g lactose and 15 g glycerol per liter were used. The calculated lovastatin volumetric and specific formation rates on glycerol or lactose and on the mixture of these two showed that lovastatin was faster produced on lactose than on glycerol. In the trophophase, the maximum volumetric lovastatin formation rate on lactose was up to four times higher than on glycerol and so was the lovastatin specific formation rate. Similar relations for the accompanying (+)‐geodin biosynthesis were also studied. When the mixture of lactose and glycerol was used, the transformation of (+)‐geodin to other polyketide metabolites also took place.  相似文献   

5.
Cell growth and extracellular pullulanase production ofBacillus stearothermophilus G-82 were investigated in batch culture using a defined medium with glucose, maltose, pullulan or amylopectin as carbon source. Maximum enzyme activity was with pullulan or amylopectin. Cell growth in batch culture was better under oxygen unlimited conditions, while higher total and specific enzyme activities, using pullulan or amylopectin, were obtained in oxygen-limited conditions. Enzyme accumulation took place in the late growth phase. The highest enzyme production of 300 U/I was reached when pullulan was used as carbon source in conditions of oxygen limitation.  相似文献   

6.
To improve the specific production rate of Rhizopus oryzae lipase (ROL) in Pichia pastoris, a protein that triggers the unfolded protein response in P. pastoris, the effect of sorbitol/methanol mixed substrates was tested in batch and fed-batch cultures. Remarkably, a different substrate consumption behaviour was observed depending on the host's phenotype (Mut(+) or Mut(s)) in batch cultures: when the methanol assimilation capacity is genetically reduced (Mut(s) phenotype), both substrates were consumed simultaneously, allowing not only a higher specific growth rate but also higher lipase levels (8.7-fold) compared to those obtained by cells growing on methanol as a sole carbon source in batch culture. This effect was not observed in Mut(+) phenotype, where the two substrates were consumed sequentially and the levels of heterologous product were only slightly higher (1.7-fold). A mixed substrate strategy was also applied to a Mut(s) fed-batch culture at a low methanol concentration set-point (0.5 gl(-1)). This resulted in a 2.2-fold increase in the heterologous protein level achieved, compared with the methanol-only feeding strategy. In addition, sorbitol co-feeding permitted the achievement of higher specific growth rates, and avoided the drastic decrease of the specific production rate observed after the start of the induction phase when methanol was used as sole carbon source This resulted in a significant increase in the overall bioprocess volumetric productivity (2.2-fold) and specific productivity (1.7-fold). Moreover, whereas increased ROL gene dosage in Mut(s) strains have been previously reported to be deleterious for P. pastoris cells growing on methanol, sorbitol co-feeding allowed for sustained cell growth and lipase production.  相似文献   

7.
A mutant strain of Streptomyces hygroscopicus was found to produce up to 9.0 units/L of an immunoregulant precursor, immunomycin, with up to 3.5% of a lower homolog impurity under either dual fed-batch or batch conditions. Glycerol and valine were key nutrients influencing productivity and impurity levels. Soybean oil was successfully substituted for glycerol as a carbon source to minimize shot additions to batch culture. The remainder of the production medium was composed largely of defined components with the exception of yeast extract. Valine limitation increased lower homolog formation while decreasing higher homolog formation; excess valine decreased lower homolog formation below 2-3% while increasing higher homolog formation. Higher homolog formation in the presence of valine seemed to be slower than lower homolog formation in the absence of valine. Valine was believed to be the major butyrate precursor; consequently its availability influenced the impurity profile. A preliminary cost analysis suggests that elimination of added valine from the cultivation and replacement of glycerol with soybean oil can result in a 6.6-fold reduction in media costs relative to the original fed-batch process. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

8.
Growth inhibition of Clostridium butyricum VPI 3266 by raw glycerol, obtained from the biodiesel production process, was evaluated. C. butyricum presents the same tolerance to raw and to commercial glycerol, when both are of similar grade, i.e. above 87% (w/v). A 39% increase of growth inhibition was observed in the presence of 100 g l–1 of a lower grade raw glycerol (65% w/v). Furthermore, 1,3-propanediol production from two raw glycerol types (65% w/v and 92% w/v), without any prior purification, was observed in batch and continuous cultures, on a synthetic medium. No significant differences were found in C. butyricum fermentation patterns on raw and commercial glycerol as the sole carbon source. In every case, 1,3-propanediol yield was around 0.60 mol/mol glycerol consumed.  相似文献   

9.
Oleic acid esters were shown to be the best carbon source for both cell growth and lipase production by Candida rugosa. Use of a cosolvent, dodecane, in fermentations improved the solubility of solid substrates and increased oxygen solubility. This resulted in the highest lipase activity in batch fermentation with glycerol trioleate and dodecane. Lipase activity reached 77.1 units ml–1.  相似文献   

10.
Effect of various fermentation media, carbon sources, nitrogen sources, phosphate concentration and culture requirements includes inoculum levels and age were determined on gentamicin production and biomass dry weight production for Micromonospora echinospora, a gentamicin producing strain. Of the substrates tested, starch as a sole carbon source promoted maximal gentamicin production, while maltose promoted maximal growth. Yeast extract as a sole nitrogen source promoted maximal growth, while soyabean meal for gentamicin production. Increasing phosphate concentration enhanced gentamicin production and observed optimum production at 1.2 g/1 (6% v/v) of phosphate having 72 h old inoculum in the medium. Highest gentamicin production was obtained after cultivation with shaking for 120 h in a medium containing starch 0.75% (w/v), soyabean meal 0.5%, K2HPO4 0.12%, CaCO3 0.4%, FeSO4 0.003% and CoCl2 0.0001%. The gentamicin production was 1.2-fold in this medium as compared to basal medium.  相似文献   

11.
Fermentation studies using batch culture indicated that exopolysaccharide production by Pseudomonas NCIBI1264 in a chemically defined medium increased under conditions of nitrogen limitation and excess carbon substrate at pH values above 6. The polysaccharide was formed from a variety of carbon substrates and its composition was not affected by the nature of the carbohydrate source. Polysacharide formation did not increase in media containing small amounts of phosphate, and, as in secondary metabolite production, it started late in the exponential growth phase continuing maximally after growth had ceased. The efficiency of glucose conversion into exopolysaccharide was low. Colorimetric, viscometric, and total carbon estimation techniques are described for determining exopolysaccharide levels in cell-free culture supernatants.  相似文献   

12.
Previous work demonstrated that acetate production was substantially lower in pyruvate kinase (pyk) mutant of Bacillus subtilis. The significantly lower acetate production in the pyk mutant is hypothesized to have positive effect on recombinant protein production either by lifting the inhibitory effect of acetate accumulation in the medium or redirecting the metabolic fluxes beneficial to biomass/protein synthesis. In this study, the impact of the pyk mutation on recombinant protein production was investigated. Green fluorescent protein (GFP+) was selected as a model protein and constitutively expressed in both the wild-type strain and a pyk mutant. In batch cultures, the pyk mutant produced 3-fold higher levels of recombinant protein when grown on glucose as carbon source. Experimental measurements and theoretical analysis show that the higher protein yield of the mutant is not due to removal of an acetate-associated inhibition of expression or gene dosage or protein stability but a much lower acetate production in the mutant allows for a greater fraction of carbon intake to be directed to protein synthesis.  相似文献   

13.
Summary A production method for alkaline serine protease with Bacillus licheniformis in a synthetic medium was developed. Employing closed-loop control of oxygen, nitrogen and carbon source the pO2 was held at 5%, the ammonium concentration kept below 1 mM and the glycerol concentration was maintained between 20 and 100 mM. Protease production was monitored by flow injection analysis. Thus, in a fed-batch procedure production could be increased 4.6-fold in comparison to an uncontrolled batch process. Offprint requests to: G. Bierbaum  相似文献   

14.
A glycerol-requiring mutant ofBacillus subtilis formed irregular spheres and showed disturbed septum formation, when subjected to growth limitation by the supply of glycerol. Under phosphate limitation the cells were also round and developed asymmetric septa. In magnesium-limited cultures the cells contained a thickened wall, as compared with that of the parent strain grown under the same conditions. Chemical analysis revealed the presence of teichoic acid as the major anionic polymer in the wall of the glycerol-, as well as the magnesium-limited cells of the glycerol-requiringB. subtilis mutant.Under phosphate limitation teichuronic acid was the only anionic polymer present in the wall. Thus, in this respect, there were no apparent differences between mutant organisms and the parent strain when grown under magnesium and phosphate limitation, respectively and the observed morphological deviations could not be correlated with an altered anionic polymer content of the wall.  相似文献   

15.
Pichia pastoris has become one of the major microorganisms for the production of proteins in recent years. This development was mainly driven by the readily available genetic tools and the ease of high‐cell density cultivations using methanol (or methanol/glycerol mixtures) as inducer and carbon source. To overcome the observed limitations of methanol use such as high heat development, cell lysis, and explosion hazard, we here revisited the possibility to produce proteins with P. pastoris using glucose as sole carbon source. Using a recombinant P. pastoris strain in glucose limited fed‐batch cultivations, very high‐cell densities were reached (more than 200 gCDW L?1) resulting in a recombinant protein titer of about 6.5 g L?1. To investigate the impact of recombinant protein production and high‐cell density fermentation on the metabolism of P. pastoris, we used 13C‐tracer‐based metabolic flux analysis in batch and fed‐batch experiments. At a controlled growth rate of 0.12 h?1 in fed‐batch experiments an increased TCA cycle flux of 1.1 mmol g?1 h?1 compared to 0.7 mmol g?1 h?1 for the recombinant and reference strains, respectively, suggest a limited but significant flux rerouting of carbon and energy resources. This change in flux is most likely causal to protein synthesis. In summary, the results highlight the potential of glucose as carbon and energy source, enabling high biomass concentrations and protein titers. The insights into the operation of metabolism during recombinant protein production might guide strain design and fermentation development. Biotechnol. Bioeng. 2010;107: 357–368. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
Obligate methanotrophic bacteria can utilize methane, an inexpensive carbon feedstock, as a sole energy and carbon substrate, thus are considered as the only nature-provided biocatalyst for sustainable biomanufacturing of fuels and chemicals from methane. To address the limitation of native C1 metabolism of obligate type I methanotrophs, we proposed a novel platform strain that can utilize methane and multi-carbon substrates, such as glycerol, simultaneously to boost growth rates and chemical production in Methylotuvimicrobium alcaliphilum 20Z. To demonstrate the uses of this concept, we reconstructed a 2,3-butanediol biosynthetic pathway and achieved a fourfold higher titer of 2,3-butanediol production by co-utilizing methane and glycerol compared with that of methanotrophic growth. In addition, we reported the creation of a methanotrophic biocatalyst for one-step bioconversion of methane to methanol in which glycerol was used for cell growth, and methane was mainly used for methanol production. After the deletion of genes encoding methanol dehydrogenase (MDH), 11.6 mM methanol was obtained after 72 h using living cells in the absence of any chemical inhibitors of MDH and exogenous NADH source. A further improvement of this bioconversion was attained by using resting cells with a significantly increased titre of 76 mM methanol after 3.5 h with the supply of 40 mM formate. The work presented here provides a novel framework for a variety of approaches in methane-based biomanufacturing.  相似文献   

17.
During the production of biodiesel, a significant amount of glycerol is generated which currently has little commercial value. A study on the growth and lipid production of Chlorella protothecoides using glycerol as the carbon source was performed to demonstrate the utility of recycling crude glycerol created during biodiesel production. Glycerol was examined as both the sole carbon source and in combination with glucose. Algae cultures grown on only glycerol in shake flasks showed a specific growth rate and final lipid yield of 0.1/h and 0.31 g lipid/g substrate, respectively. The values were similar to those observed on pure glucose, 0.096/h and 0.24 g lipid/g substrate. When the media contained a mixture of glycerol and glucose, simultaneous uptake of the two substrates was observed. Due to the difference in rates of lipid storage, lipid production was 0.077 g lipid/(l h) during growth on glycerol, while growth on glucose had a productivity of 0.096 g lipid/(l h). During growth on the 9:1 mixture of both glucose and glycerol, lipid productivity was 0.098 g lipid/(l h). In order to simulate the use of waste glycerol from biodiesel production the experiments were repeated and similar growth rates, yields, and lipid productivities were achieved. Therefore, we have demonstrated the promise for simultaneous high growth rates and lipid yields of C. protothecoides heterotrophically grown on mixtures of glycerol.  相似文献   

18.
Batch and fed-batch operation result in completely different physiological conditions for cultivated microorganisms or cells. To close the gap between screening, which is hitherto exclusively performed in batch mode, and fed-batch production processes, a special microtiter plate was developed that allows screening in fed-batch mode. The fed-batch microtiter plate (FB-MTP) enables 44 parallel fed-batch experiments at small scale. A small channel filled with a hydrogel connects a reservoir well with a culture well. The nutrient compound diffuses from the reservoir well through the hydrogel into the culture well. Hence, the feed rate can easily be adjusted to the needs of the cultured microorganisms by changing the geometry of the hydrogel channel and the driving concentration gradient. Any desired compound including liquid nutrients like glycerol can be fed to the culture. In combination with an optical measuring device (BioLector), online monitoring of these 44 fed-batch cultures is possible. Two Escherichia coli strains and a Hansenula polymorpha strain were successfully cultivated in the new FB-MTP. As a positive impact of the fed-batch mode on the used strains, a fourfold increase in product formation was observed for E. coli. For H. polymorpha, the use of fed-batch mode resulted in a strong increase in product formation, whereas no measurable product formation was observed in batch mode. In conclusion, the newly developed fed-batch microtiter plate is a versatile, easy-to-use, disposable system to perform fed-batch cultivations at small scale. Screening cultures in high-throughput under online monitoring are possible similar to cultivations under production conditions.  相似文献   

19.
Recombinant Escherichia coli engineered to contain the whole mevalonate pathway and foreign genes for β-carotene biosynthesis, was utilized for production of β-carotene in bioreactor cultures. Optimum culture conditions were established in batch and pH-stat fed-batch cultures to determine the optimal feeding strategy thereby improving production yield. The specific growth rate and volumetric productivity in batch cultures at 37°C were 1.7-fold and 2-fold higher, respectively, than those at 28°C. Glycerol was superior to glucose as a carbon source. Maximum β-carotene production (titer of 663 mg/L and overall volumetric productivity of 24.6 mg/L × h) resulted from the simultaneous addition of 500 g/L glycerol and 50 g/L yeast extract in pH-stat fed-batch culture.  相似文献   

20.
Metabolic flux analysis was used to reveal the metabolic distributions in Gluconacetobacter xylinus (CGMCC no. 2955) cultured on different carbon sources. Compared with other sources, glucose, fructose, and glycerol could achieve much higher bacterial cellulose (BC) yields from G. xylinus (CGMCC no. 2955). The glycerol led to the highest BC production with a metabolic yield of 14.7 g/mol C, which was approximately 1.69-fold and 2.38-fold greater than that produced using fructose and glucose medium, respectively. The highest BC productivity from G. xylinus CGMCC 2955 was 5.97 g BC/L (dry weight) when using glycerol as the sole carbon source. Metabolic flux analysis for the central carbon metabolism revealed that about 47.96 % of glycerol was transformed into BC, while only 19.05 % of glucose and 24.78 % of fructose were transformed into BC. Instead, when glucose was used as the sole carbon source, 40.03 % of glucose was turned into the by-product gluconic acid. Compared with BC from glucose and fructose, BC from the glycerol medium showed the highest tensile strength at 83.5 MPa, with thinner fibers and lower porosity. As a main byproduct of biodiesel production, glycerol holds great potential to produce BC with superior mechanical and microstructural characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号