首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polysialic acid (polySia) and oligosialic acid (oligoSia) chains are linear polysaccharides composed of sialic acid monomers. The majority of biological poly/oligoSia chains are bound to membranes. There is a large diversity of membrane poly/oligoSia in terms of chain length, occurrence, biological function, and the mode of membrane attachment. Poly/oligoSia can be anchored to a membrane via a phospholipid (polySia in bacteria), a glycosphingolipid (oligoSia in gangliosides), an integral membrane glycoprotein, or a glycoprotein attached to a membrane via glycosylphosphatidylinositol. In eukaryotic cells, the attachment of a poly/oligoSia chain to the membrane anchor is usually through α-2,3-glycosidic linkage to a galactose. In prokaryotic cells this attachment is proposed to occur through glycosidic linkage to the phosphate group of a phospholipid. Both long polySia chains attached to membrane proteins and short oligoSia attached to glycosphingolipids or membrane proteins are frequently found in neural membranes. In humans, poly/oligoSia is involved in development and plasticity of the brain, pathophysiology of schizophrenic brains, cancer metastasis, neuroinvasive potential of pathogenic bacterial strains, and the immune response. Biological roles of poly/oligoSia are based on its ability to modulate repulsive and attractive interactions between two molecules, and its ability to modulate membrane surface charge density, pH at the membrane surface, and membrane potentials.  相似文献   

2.
The biochemistry of piezophilic bacteria is unique in that piezophiles produce polyunsaturated fatty acids (PUFAs). A pertinent question is if piezophilic bacteria synthesize PUFA de novo, through dietary uptake, or both. This study was undertaken to examine the biosynthesis and cellular uptake of PUFAs by piezophilic bacteria. A moderately piezophilic (Shewanella violacea DSS12) and two hyperpiezophilic bacteria (S. benthica DB21MT-2 and Moritella yayanosii DB21MT-5) were grown under 50 MPa (megapascal) and 100 MPa, respectively, in media containing marine broth 2216 supplemented with arachidonic acid (AA, sodium salt) and/or antibiotic cerulenin. There was active uptake and cellular incorporation of AA in the hyperpiezophilic bacteria DB21MT-2 (14.7% of total fatty acids) and DB21MT-5 (1.4%), but no uptake was observed in DSS12. When cells were treated with cerulenin, all three strains incorporated AA into cell membranes (13–19%). The biosynthesis of monounsaturated fatty acids was significantly inhibited (10–37%) by the addition of cerulenin, whereas the concentrations of PUFAs increased by 2–4 times. These results suggest that piezophilic bacteria biosynthesize and/or incorporate dietary polyunsaturated fatty acids that are important for their growth and piezoadaptation. The significance of these findings is also discussed in the context of phenotypic classification of piezophiles.  相似文献   

3.
The extracellular polysaccharides elaborated by most or all bacterial species function in cell-to-cell and cell-substratum adhesion, cell signaling, and avoidance or inhibition of noxious agents in animal hosts or free-living environments. Recent advances in our understanding of exopolysaccharide synthesis have been facilitated by comparative approaches in both plant and animal pathogens, as well as in microorganisms of industrial importance. One of the best understood of these systems is thekps locus for polysialic acid synthesis inEscherichia coli K1. The genes for sialic acid synthesis, activation, polymerization and translocation have been identified and assigned at least tentative functions in the synthetic and export pathways. Initial studies ofkps thermoregulation suggest that genetic control mechanisms will be involved which are distinct from those already described for several other exopolysaccharides. Information about the common as well as unique features of polysialic acid biosynthesis will increase our knowledge of microbial cell surfaces which in turn may suggest novel targets for therapeutic or industrial interventions.  相似文献   

4.
5.
The study of new biomaterials is the objective of many current research projects in biotechnological medicine. A promising scaffold material for the application in tissue engineering or other biomedical applications is polysialic acid (polySia), a homopolymer of alpha2,8-linked sialic acid residues, which represents a posttranslational modification of the neural cell adhesion molecule and occurs in all vertebrate species. Some neuroinvasive bacteria like, e.g. Escherichia coli K1 (E. coli K1) use polySia as capsular polysaccharide. In this latter case long polySia chains with a degree of polymerization of >200 are linked to lipid anchors. Since in vertebrates no polySia degrading enzymes exist, the molecule has a long half-life in the organism, but degradation can be induced by the use of endosialidases, bacteriophage-derived enzymes with pronounced specificity for polySia. In this work a biotechnological process for the production of bacterial polysialic acid is presented. The process includes the development of a multiple fed-batch cultivation of the E. coli K1 strain and a complete downstream strategy of polySia. A controlled feed of substrate at low concentrations resulted in an increase of the carbon yield (C(product)/C(substrate)) from 2.2 to 6.6%. The downstream process was optimized towards purification of long polySia chains. Using a series of adjusted precipitation steps an almost complete depletion of contaminating proteins was achieved. The whole process yielded 1-2g polySia from a 10-l bacterial culture with a purity of 95-99%. Further product analysis demonstrated maximum chain length of >130 for the final product.  相似文献   

6.
Industrial production of amino acids by coryneform bacteria   总被引:28,自引:0,他引:28  
In the 1950s Corynebacterium glutamicum was found to be a very efficient producer of L-glutamic acid. Since this time biotechnological processes with bacteria of the species Corynebacterium developed to be among the most important in terms of tonnage and economical value. L-Glutamic acid and L-lysine are bulk products nowadays. L-Valine, L-isoleucine, L-threonine, L-aspartic acid and L-alanine are among other amino acids produced by Corynebacteria. Applications range from feed to food and pharmaceutical products. The growing market for amino acids produced with Corynebacteria led to significant improvements in bioprocess and downstream technology as well as in molecular biology. During the last decade big efforts were made to increase the productivity and to decrease the production costs. This review gives an overview of the world market for amino acids produced by Corynebacteria. Significant improvements in bioprocess technology, i.e. repeated fed batch or continuous production are summarised. Bioprocess technology itself was improved furthermore by application of more sophisticated feeding and automatisation strategies. Even though several amino acids developed towards commodities in the last decade, side aspects of the production process like sterility or detection of contaminants still have increasing relevance. Finally one focus of this review is on recent developments in downstream technology.  相似文献   

7.
8.
Phosphatidylcholine (PC) is the major membrane-forming phospholipid in eukaryotes and can be synthesized by either of two pathways, the methylation pathway or the CDP-choline pathway. Many prokaryotes lack PC, but it can be found in significant amounts in membranes of rather diverse bacteria and based on genomic data, we estimate that more than 10% of all bacteria possess PC. Enzymatic methylation of phosphatidylethanolamine via the methylation pathway was thought to be the only biosynthetic pathway to yield PC in bacteria. However, a choline-dependent pathway for PC biosynthesis has been discovered in Sinorhizobium meliloti. In this pathway, PC synthase, condenses choline directly with CDP-diacylglyceride to form PC in one step. A number of symbiotic (Rhizobium leguminosarum, Mesorhizobium loti) and pathogenic (Agrobacterium tumefaciens, Brucella melitensis, Pseudomonas aeruginosa, Borrelia burgdorferi and Legionella pneumophila) bacteria seem to possess the PC synthase pathway and we suggest that the respective eukaryotic host functions as the provider of choline for this pathway. Pathogens entering their hosts through epithelia (Streptococcus pneumoniae, Haemophilus influenzae) require phosphocholine substitutions on their cell surface components that are biosynthetically also derived from choline supplied by the host. However, the incorporation of choline in these latter cases proceeds via choline phosphate and CDP-choline as intermediates. The occurrence of two intermediates in prokaryotes usually found as intermediates in the eukaryotic CDP-choline pathway for PC biosynthesis raises the question whether some bacteria might form PC via a CDP-choline pathway.  相似文献   

9.
[This corrects the article on p. 351 in vol. 50.].  相似文献   

10.
Biosynthesis of glutamate in photosynthetic bacteria   总被引:1,自引:0,他引:1  
  相似文献   

11.
Malonic acid, mevalonic acid, geraniol and nerol were incorporated into tetrahydrocannabinolic acid and cannabichromenic acid in Cannabis sativa. The pathway from cannabigerolic acid to tetrahydrocannabinolic acid via cannabidiolic acid was established by feeding labelled cannabinoid acids. Cannabichromenic acid was shown to be formed on a side pathway from cannabigerolic acid.  相似文献   

12.
Biosynthesis of deoxyaminosugars in antibiotic-producing bacteria   总被引:3,自引:0,他引:3  
Deoxyaminosugars comprise an important class of deoxysugars synthesized by a variety of different microorganisms; they can be structural components of lipopolysaccharides, extracellular polysaccharides, and secondary metabolites such as antibiotics. Genes involved in the biosynthesis of the deoxyaminosugars are often clustered and are located in the vicinity of other genes required for the synthesis of the final compound. Most of the gene clusters for aminosugar biosynthesis have common features, as they contain genes encoding dehydratases, isomerases, aminotransferases, methyltransferases, and glycosyltransferases. In the present mini-review, the proposed biosynthetic pathways for deoxyaminosugar components of both macrolide and non-macrolide antibiotics are highlighted. The possibilities for genetic manipulations of the deoxyaminosugar biosynthetic pathways aimed at production of novel secondary metabolites are discussed.  相似文献   

13.
Photosynthesis bacteria were isolated for hydrogen production from the dominant products of anaerobic fermentation, such as butyrate, acetate, and lactate.The process of screening was examined to obtain strains with high rates of hydrogen production. A procedure in whichj enrichment culture with nitrogen gas under illumination was followed by culture on agar plates with ammonium sulfate under aerobic and dark conditions was effective.We isolated hydrogen-producing photosynthesis bacteria from muddy water in the Tsukuba area with butyrate as a carbon source. Some strains that produced much hydrogen were found. The maximum rates per irradiated area by the immobilized cells of the selected strains were 321, 253, 348, and 337 μl/h/cm2 from butyrate, acetate, lactate, and the mixture of the above organic acids, respectively, at 10 klx at 30°C. A cell weight based rate of 151 μl/h/mg (dry weight) from lactate was achieved by one strain.  相似文献   

14.
Biosynthesis and metabolism of arginine in bacteria.   总被引:62,自引:4,他引:58       下载免费PDF全文
  相似文献   

15.
Ubiquinone, also called coenzyme Q, is a lipid subject to oxido-reduction cycles. It functions in the respiratory electron transport chain and plays a pivotal role in energy generating processes. In this review, we focus on the biosynthetic pathway and physiological role of ubiquinone in bacteria. We present the studies which, within a period of five decades, led to the identification and characterization of the genes named ubi and involved in ubiquinone production in Escherichia coli. When available, the structures of the corresponding enzymes are shown and their biological function is detailed. The phenotypes observed in mutants deficient in ubiquinone biosynthesis are presented, either in model bacteria or in pathogens. A particular attention is given to the role of ubiquinone in respiration, modulation of two-component activity and bacterial virulence. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

16.
Biosynthesis of phosphonic acids in Tetrahymena   总被引:4,自引:0,他引:4  
  相似文献   

17.
The nature of endogenous acceptor molecules implicated in the membrane-directed synthesis of the polysialic acid (polySia) capsule in Escherichia coli K1 serotypes is not known. The capsule contains at least 200 sialic acid (Sia) residues that are elongated by the addition of new Sia residues to the nonreducing termini of growing nascent chains (Rohr, T. E., and Troy, F. A. (1980) J. Biol. Chem. 255, 2332-2342). Presumably, chain growth starts when activated Sia residues are transferred to acceptors that are not already sialylated. In the present study, we used an acapsular mutant defective in synthesis of CMP-NeuAc to label acceptors with [14C]NeuAc and an anti-polySia-specific antibody (H.46) to identify the molecules to which the polySia was attached. [14C]Sia-labeled acceptors were solubilized with 2% Triton X-100, immunoprecipitated with H.46, and partially depolymerized with poly-alpha-2,8-endo-N-acetylneuraminidase. Approximately 5% of the [14C]Sia incorporated remained attached to endogenous acceptors. Double-labeling experiments were used to show that the non-Sia moiety of the acceptor was labeled in vivo with [14C]leucine and elongated in vitro with CMP-[3H]NeuAc. Concomitant with desialylation of the [3H]polySia-[14C]Leu acceptor was the appearance of a new [14C]Leu-labeled protein at 20 kDa. After strong acid hydrolysis, the 20-kDa labeled protein was shown to contain [14C]Leu. The acceptor molecules were not labeled metabolically with D-[3H]GlcN, 35SO4, or 32PO4, indicating that they do not appear to contain lipopolysaccharide, peptidoglycan, phosphatidic acid, or phospholipid. Based on these results, we conclude that the endogenous acceptor molecule is a membrane protein of about 20 kDa. The nature of attachment of polySia to acceptor is unknown. There are only 400-500 acceptor molecules/cell, which is about 100-fold fewer than the 50,000 polySia chains/cell. This suggests that each acceptor molecule may participate in the shuttling of about 100 polySia chains/cell. We hypothesize that the acceptor protein may function to translocate polySia chains from their site of synthesis on the cytoplasmic surface of the inner membrane to the periplasm.  相似文献   

18.
19.
Biosynthesis of a sulfonolipid in gliding bacteria   总被引:1,自引:0,他引:1  
Gliding bacteria of the genus Cytophaga synthesize sulfonolipids (1,2) that contain capnine (1-deoxy-15-methylhexadecasphinganine-1-sulfonic acid). Studies of the incorporation of radiolabeled compounds by C. johnsonae show that cysteate is utilized preferentially to both cystine and inorganic sulfate as a precursor of capnine sulfur and to both cystine and serine as a precursor of carbons 1 and 2 of capnine. The results are consistent with a pathway in which capnine is formed by condensation of cysteate with a fatty acyl CoA. Cystine, added as the sole sulfur source in the presence of glucose, provides the sulfur but not the carbon for capnine. Hence, these cells form cysteate not by direct oxidation of cystine (or cysteine), but by transfer of its sulfur to a different carbon compound.  相似文献   

20.
Mäki M  Renkonen R 《Glycobiology》2004,14(3):1R-15R
After the breakthroughs in genomic sequencing, one of the next challenges remains to understand the molecular biology of other classes of biomolecules, such as protein and lipids, many of which carry specific glycomodification when mediating their biological functions. This review focuses on the 6-deoxyhexose biosynthesis of cell surface glycans of three Gram-negative pathogens, Helicobacter pylori, Pseudomonas aeruginosa, and Actinobacillus actinomycetemcomitans serotype a. 6-Deoxysugars are important functional components of cell surface glycans, and their biosynthetic pathways might be suitable targets for novel interventions of antibacterial chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号