首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
6.
Genes rcsC and rcsB form a two-component system in which rcsC encodes the sensor element and rcsB the regulator. In Escherichia coli, the system positively regulates the expression of the capsule operon, cps, and of the cell division gene ftsZ. We report the identification of the promoter and of the sequences required for rcsB-dependent stimulation of ftsZ expression. The promoter, ftsA1p, located in the ftsQ coding sequence, co-regulates ftsA and ftsZ. The sequences required for rcsB activity are immediately adjacent to this promoter.  相似文献   

7.
We report the identification, cloning, and mapping of a new cell division gene, ftsQ. This gene formed part of a cluster of three division genes (in the order ftsQ ftsA ftsZ) which itself formed part of a larger cluster of at least 10 genes, all of which were involved in some step in cell division, cell envelope synthesis, or both. The ftsQAZ group was transcribed from at least two independent promoters.  相似文献   

8.
Q M Yi  J Lutkenhaus 《Gene》1985,36(3):241-247
  相似文献   

9.
10.
11.
12.
Interactions among cell division genes in Escherichia coli were investigated by examining the effect on cell division of increasing the expression of the ftsZ, ftsA, or ftsQ genes. We determined that cell division was quite sensitive to the levels of FtsZ and FtsA but much less so to FtsQ. Inhibition of cell division due to an increase in FtsZ could be suppressed by an increase in FtsA. Inhibition of cell division due to increased FtsA could be suppressed by an increase in FtsZ. In addition, although wild-type strains were relatively insensitive to overexpression of ftsQ, we observed that cell division was sensitized to ftsQ overexpression in ftsI, ftsA, and ftsZ mutants. Among these, the ftsI mutant was the most sensitive. These results suggest that these gene products may interact and that the proper ratio of FtsZ to FtsA is critical for cell division to occur.  相似文献   

13.
14.
15.
Isogenic ftsZ, ftsQ, ftsA, pbpB, and ftsE cell division mutants of Escherichia coli were compared with their parent strain in temperature shift experiments. To improve detection of phenotypic differences in division behavior and cell shape, the strains were grown in glucose-minimal medium with a decreased osmolality (about 100 mosM). Already at the premissive temperature, all mutants, particularly the pbpB and ftsQ mutants, showed an increased average cell length and cell mass. The pbpB and ftsQ mutants also exhibited a prolonged duration of the constriction period. All strains, except ftsZ, continued to initiate new constrictions at 42 degrees C, suggesting the involvement of FtsZ in an early step of the constriction process. The new constrictions were blunt in ftsQ and more pronounced in ftsA and pbpB filaments, which also had elongated median constrictions. Whereas the latter strains showed a slow recovery of cell division after a shift back to the permissive temperature, ftsZ and ftsQ filaments recovered quickly. Recovery of filaments occurred in all strains by the separation of newborn cells with an average length of two times LO, the length of newborn cells at the permissive temperature. The increased size of the newborn cells could indicate that the cell division machinery recovers too slowly to create normal-sized cells. Our results indicate a phenotypic resemblance between ftsA and pbpB mutants and suggest that the cell division gene products function in the order FtsZ-FtsQ-FtsA, PBP3. The ftsE mutant continued to constrict and divide at 42 degrees C, forming short filaments, which recovered quickly after a shift back to the permissive temperature. After prolonged growth at 42 degree C, chains of cells, which eventually swelled up, were formed. Although the ftsE mutant produced filaments in broth medium at the restrictive temperature, it cannot be considered a cell division mutant under the presently applied conditions.  相似文献   

16.
Amplification of a 2.6-kilobase chromosomal fragment of the mra region of Escherichia coli encompassing the ftsI(pbpB) gene and an open reading frame upstream with lethal to E. coli strains with mutations of the flanking cell division genes ftsQ, ftsA, and ftsZ. A shortened fragment in which the major portion of ftsI was deleted also had lethal effects on ftsQ and ftsZ mutants.  相似文献   

17.
In Escherichia coli, the FtsQ, FtsA, and FtsZ proteins are believed to play essential roles in the regulation of cell division. Of the three proteins, FtsZ has received the most attention, particularly because of its interactions with SfiA. Double mutants which carry mutations located in the ftsQ, ftsA, or ftsZ gene in combination with the lon-1 mutation were constructed. In the presence of the lon-1 mutation, which is known to stabilize SfiA, the ftsQ1 mutant cells were not capable of forming colonies on a rich agar medium, whereas mutant cells harboring either one of the mutations grew well on this medium. Examination of lon-1 fts double-mutant cells for sensitivity to UV light revealed that those carrying the ftsA10 allele were resistant. It was also observed that in the presence of a multicopy plasmid containing a wild-type ftsZ gene, the ftsQ1 mutant filamented markedly following a nutritional shift-up and that the division rate of ftsZ84 mutant cells was slightly reduced when they harbored a wild-type ftsQ-containing plasmid. The possibility that the Fts proteins are interacting with one another and forming a molecular complex is discussed.  相似文献   

18.
19.
To study the role of cell division in the process of nucleoid segregation, we measured the DNA content of individual nucleoids in isogenic Escherichia coli cell division mutants by image cytometry. In pbpB(Ts) and ftsZ strains growing as filaments at 42 degrees C, nucleoids contained, on average, more than two chromosome equivalents compared with 1.6 in wild-type cells. Because similar results were obtained with a pbpB recA strain, the increased DNA content cannot be ascribed to the occurrence of chromosome dimers. From the determination of the amount of DNA per cell and per individual nucleoid after rifampicin inhibition, we estimated the C and D periods (duration of a round of replication and time between termination and cell division respectively), as well as the D' period (time between termination and nucleoid separation). Compared with the parent strain and in contrast to ftsQ, ftsA and ftsZ mutants, pbpB(Ts) cells growing at the permissive temperature (28 degrees C) showed a long D' period (42 min versus 18 min in the parent) indicative of an extended segregation time. The results indicate that a defective cell division protein such as PbpB not only affects the division process but also plays a role in the last stage of DNA segregation. We propose that PbpB is involved in the assembly of the divisome and that this structure enhances nucleoid segregation.  相似文献   

20.
Overexpression of plasmid-coded PBP 3 was analyzed in strains harboring ftsA, ftsH, pbpB (ftsI), ftsQ, ftsZ, or recA441 (Tif) mutations. Higher cellular levels of PBP 3, the pbpB gene product, could not restore septum formation of ftsA, ftsQ, ftsZ, and recA (Tif) mutants at 42 degrees C. However, filamentation in strains harboring pbpB and ftsH mutations was fully suppressed by PBP 3 overexpression. Additional observations indicated that the Y16 (ftsH) strain, not transformed with the PBP 3-overproducing plasmid, had no detectable PBP 3 in envelopes after incubation at the restrictive temperature. These results suggest that suppression of filamentation of fts strains overexpressing wild-type cell division proteins after the shift to the restrictive temperature can be a useful strategy to demonstrate in vivo interactions of cell division gene products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号