首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alkaline phosphatases are ubiquitous enzymes involved in many important biological processes. Mammalian tissue-nonspecific alkaline phosphatase (TNAP) has long been thought to play an important role in bone mineralization. In this study, we identified a full-length cDNA encoding a potential alkaline phosphatse from pearl oyster Pinctada fucata by RT-PCR and RACE and designated the encoded protein as PFAP. The sequence of PFAP shares an overall similarity of 67% with that of human TNAP. Prediction and analysis of its secondary and tertiary structure revealed that the PFAP contains two mammalian-specific regions, the crown domain, involved in collagen binding, and the calcium binding domain, which hint its potential ability to participate in biomineralization. RT-PCR and in situ hybridization showed that the PFAP mRNA distributes specifically in the hepatic duct of the digestive diverticula. These findings implied its possible role in calcium absorption and transportation. In vivo, PFAP could be specifically released by phosphatidylinositol-specific phospholipase C (PIPLC), suggesting it is glycophosphatidylinositol-anchored to the plasma membrane. Therefore, a human growth hormone-PFAP fusion was constructed to locate the cleavage/attachment site. Immunofluorescent labeling and immunoblotting showed that Asn-477 is the cleavage/attachment site and the 25-residue peptide COOH-terminal to Asn-477 is removed during glycophosphatidylinositol anchoring. This research will hopefully pave the way to illustrate the role PFAP plays in calcium transportation related to pearl biomineralization. *These authors contributed equally to this work.  相似文献   

2.
Modification of tryptophan residues in castor bean hemagglutinin (CBH) with N-bromosuccinimide (NBS) was investigated in detail. Tryptophan residues accessible to NBS increased with lowering pH and six tryptophan residues/mol were oxidized at pH 3.0, while two tryptophan residues/mol were oxidized at pH 5.0. From the pH-dependence curve for tryptophan oxidation, we suggest that the extent of modification of tryptophan in CBH is influenced by an ionizable group with pKa = 3.6. The saccharide-binding activity was decreased greatly by modification of tryptophan concomitantly with a loss of fluorescence. A loss of the saccharide-binding activity was found to be principally due to the modification of two tryptophan residues/mol located on the surface of the protein molecule. In the presence of raffinose, two tryptophan residues/mol remained unmodified with retention of fairly high saccharide-binding activity. The results suggest that one tryptophan residue is involved in each saccharide-binding site on each B-chain of CBH.  相似文献   

3.
Nacre formation is an ideal model to study biomineralization processes. Although much has been done about biomineralization mechanism of nacre, little is known as to how cellular signaling regulates this process. We are interested in whether G protein signaling plays a role in mineralization. Degenerate primers against conserved amino acid regions of G proteins were employed to amplify cDNA from the pearl oyster Pinctada fucata. As a result, the cDNA encoding a novel Gsα (pfGsα) from the pearl oyster was isolated. The Gsα cDNA encodes a polypeptide of 377 amino acid residues, which shares high similarity to the octopus (Octopus vulgaris) Gsα. The well-conserved A, C, G (switch I), switch II functional domains and the carboxyl terminus that is a critical site for interaction with receptors are completely identical to those from other mollusks. However, pfGsα has a unique amino acid sequence, which encodes switch III and interaction sites of adenylyl cyclase respectively. In situ hybridization and Northern blotting analysis revealed that the oyster Gsα mRNA is widely expressed in a variety of tissues, with highest levels in the outer fold of mantle and epithelia of gill, the regions essential for biomineralization. We also show that overexpression of the pfGsα in mammalian MC3T3-E1 cells resulted in increased cAMP levels. Mutant pfGsα that has impaired CTX substrate diminished its ability to induce cAMP production. Furthermore, the alkaline phosphatase (ALP) activity, an indicator for mineralization, is induced by the Gsα in MC3T3-E1 cells. These results indicated that Gsα may be involved in regulation of physiological function, particularly in biological biomineralization.  相似文献   

4.
In cynobacteria and higher plants, salinity is known to inhibit the activity of several enzymes involved in photosynthesis and hence decreases the overall photosynthetic rate. This gave us an impetus to search for a protease, which may be involved in the turnover of non-functional enzymes produced under salinity stress. Taking the possible changes in pH gradient of the chloroplast under consideration, we have tried to identify a protease, which is induced under salinity and characterized it as an alkaline protease using spinach (Spinacia oleracea) leaves as a model system. The HIC-HPLC purified homogeneous alkaline serine protease from the isolated spinach chloroplasts had two subunits of molecular weight 63 and 32 kDa. The enzyme was maximally active at pH 8.5 and 50°C. The enzyme showed the property to hydrolyze the synthetic substrate like azocaesin and had sufficient proteolytic activity in gelatin bound native PAGE. The enzyme activity was also dependent upon the presence of divalent cations and reduced environment. The active site residues were identified and the homogeneous alkaline serine protease had cysteine, lysine and tryptophan residues at its active site.  相似文献   

5.
The QM gene was originally identified as a putative tumor suppressor gene from a Wilms tumor cell line by subtractive hybridization assay. Later studies showed that the QM protein is multifunctional, involved in cell growth and differentiation, energy metabolism, respiration, and cytoskeletal function. In this report a full-length complementary DNA encoding a QM counterpart in pearl oyster (Pinctada fucata) was isolated. Phylogenetic analysis shows that oyster QM is more closely related to its insect homologues than to the mammalian homologues. Analysis of the tissue expression pattern of the oyster QM gene showed that oyster QM messenger RNA is expressed in all tissues tested, with highest levels in the digestive gland and mantle. Furthermore, we expressed the QM protein in Escherichia coli; Western blotting showed that the antibody of human QM is immunoreactive to the expressed oyster QM protein. Incubation of the oyster QM with Zn2+ resulted in the reduction of intrinsic emission fluorescence and a red-shift in the max emission, indicating the occurrence of Zn2+-induced conformational changes. This evidence presents a possible mechanism for the critical function of zinc ion in the interaction of QM with Jun.  相似文献   

6.
Color is one of the most important factors determining the commercial value of pearls. Pinctada fucata is a well-known pearl oyster producing high-quality Akoya pearls. Phenotypic variation in amount of yellow pigmentation produces white and yellowish pearls. It has been reported that polymorphism of yellow pigmentation of Akoya pearls is genetically regulated, but the responsible gene(s) has remained unknown. Here, we prepared pearl sac pairs formed in the same recipient oyster but coming from donor oysters that differ in their color. These two pearl sacs produced pearls with different yellowness even in the same recipient oyster. Yellow tone of produced pearls was consistent with shell nacre color of donor oysters from which mantle grafts were prepared, indicating that donor oysters strongly contribute to the yellow coloration of Akoya pearls. We also conducted comparative RNA-seq analysis and retrieved several candidate genes involved in the pearl coloration. Whole gene expression patterns of pair sacs were not grouped by pearl color they produced, but grouped by recipient oysters in which they were grown, suggesting that the number of genes involved in the yellow coloration is quite small, and that recipient oyster affects gene expression of the majority of genes in the pearl sac.  相似文献   

7.
Chemical modification of tryptophan residues in abrin-a with N-bromosuccinimide (NBS) was studied with regard to saccharide-binding. The number of tryptophan residues available for NBS oxidation increased with lowering pH, and 11 out of the 13 tryptophan residues in abrin-a were eventually modified with NBS at pH 4.0, while 6 tryptophan residues were modified at pH 6.0 in the absence of specific saccharides. Modification of tryptophan residues at pH 6.0 greatly decreased the saccharide-binding ability of abrin-a, and only 2% of the hemagglutinating activity was retained after modification of 3 residues/mol. When the modification was done in the presence of lactose or galactose, 1 out of 3 residues/mol remained unmodified with a retention of a fairly high hemagglutinating activity. However, GalNAc did not show such a protective effect. NBS-oxidation led to a great loss of the fluorescence of abrin-a, and after modification of 3 tryptophan residues/mol, the fluorescence intensity at 345 nm was only 38% of that of the unmodified abrin-a. The binding of lactose to abrin-a altered the environment of the tryptophan residue at the saccharide-binding site of abrin-a, leading to a blue shift of the fluorescence spectrum. The ability to generate such fluorescence spectroscopic changes induced by lactose-binding was retained in the derivative in which 2 tryptophan residues/mol were oxidized in the presence of lactose, but not in the derivative in which 3 tryptophan residues/mol were oxidized in the absence of lactose. Importance of the tryptophan residue(s) in the saccharide-binding of abrin-a is suggested.  相似文献   

8.
The states of tryptophan residues in Abrus precatorius agglutinin (APA) were analyzed by chemical modification and solvent perturbation UV-difference spectroscopy. The number of tryptophan residues available for N-bromosuccinimide (NBS) oxidation increased with lowering pH, and 20 out of the 24 tryptophans in APA were modified at pH 3.0, while 2 tryptophans were eventually oxidized at pH 5.0. Modification of tryptophan greatly decreased the binding of APA with saccharides, and only 4% of the hemagglutinating activity was retained after modification of 4 tryptophan residues/molecule. When the modification was done in the presence of lactose or galactose, 2 tryptophan residues/molecule remained unmodified with a retention of a fairly high hemagglutinating activity. The data from solvent perturbation UV-difference spectroscopy indicated that 6 tryptophans were on the surface of the APA molecule, and 4 tryptophan residues/molecule were shielded from the perturbing effect of the solvent upon binding with lactose.

Based on these results, we proposed that in the saccharide-binding site on each B-chain of APA there exists one tryptophan residue directly involved in saccharide binding, and near the binding site there is another tryptophan residue whose state is also changeable upon binding with saccharide.  相似文献   

9.
In the course of a search for antifungal proteins from plant seeds, we observed inhibition of mycelial growth of Trichoderma viride with extracts of pearl millet. We have identified several proteins with antifungal properties in the seeds of pearl millet. One of these proteins has been purified to homogeneity and characterized. The purified protein has a molecular mass of 25 kDa. The N-terminal sequence of the protein (25 residues) shows homology to non-specific lipid transfer proteins (LTPs) of cotton, wheat and barley. The purified LTP inhibited mycelial growth of T. viride and the rice sheath blight fungus, Rhizoctonia solani in vitro.  相似文献   

10.
Plant resistance (R) proteins belonging to nucleotide-binding site–leucine-rich repeat (NBS–LRR) family are mainly involved in recognition of effectors secreted by pathogens. Pearl millet [Pennisetum glaucum (L.) R.Br] is one of the most drought tolerant cereals, staple food crop of the semi-arid tropics but is highly susceptible to the downy mildew disease caused by oomycetous Sclerospora graminicola (Sacc) schroet. Earlier studies have identified several resistance gene analogues (RGAs) in pearl millet which may be involved in resistance against downy mildew. Of these, a clone RGPM213 was shown to have more than 60% identity with R-proteins coding for NBS–LRR-like protein kinase. The exact nature and function of the R-protein encoded by this gene was not known. In the present study, the cDNA of RGPM213 encompassing NBS–LRR region was inserted into an expression vector pRSET-A and transformed into BL21 E.coli cells. The expressed recombinant fusion protein with a His tag was purified using nickel affinity purification and it had a molecular weight of 35 kDa on SDS-PAGE. Immunoaffinity purification using antibodies raised against this recombinant R-protein identified two proteins of molecular weights 55 kDa and 66 kDa from pearl millet seedling extracts. Peptide mass fingerprinting of these proteins followed by homology search in database revealed similarity of the 55 kDa protein with a protein kinase from Brassica oleracia containing serine/ threonine kinase domain.  相似文献   

11.
Phosphate solubilizing microorganisms are ubiquitous in soils and could play an important role in supplying P to plants where plant unavailable P content in soil was more. A phosphatase and phytase producing fungus Emericella rugulosa was isolated and tested under field condition (Pearl millet as a test crop) in a loamy sand soil. In the experimental soil 68% organic phosphorous was present as phytin; less than 1% of phosphorous was present in a plant available form. The maximum effect of inoculation on different enzyme activities (acid phosphatase, alkaline phosphatase, phytase, and dehydrogenase) was observed between 5 and 8 weeks of plant age. The depletion of organic P was much higher than mineral and phytin P. The microbial contribution was significantly higher than the plant contribution to the hydrolysis of the different P fractions. A significant improvement in plant biomass, root length, seed and straw yield and P concentration of root and shoot resulted from inoculation. The results suggest that Emericella rugulosa produces phosphatases and phytase, which mobilize P and enhance the production of pearl millet.  相似文献   

12.
Glutathione S-transferase P (GST-P) exists as a homodimeric form and has two tryptophan residues, Trp28 and Trp38, in each subunit. In order to elucidate the role of the two tryptophan residues in catalytic function, we examined intrinsic fluorescence of tryptophan residues and effect of chemical modification by N-bromosuccinimide (NBS). The quenching of intrinsic fluorescence was observed by the addition of S-hexylglutathione, a substrate analogue, and the enzymatic activity was totally lost when single tryptophan residue was oxidized by NBS. To identify which tryptophan residue is involved in the catalytic function, each tryptophan was changed to histidine by site-directed mutagenesis. Trp28His GST-P mutant enzyme showed a comparable enzymatic activity with that of the wild type one. Trp38His mutant neither was bound to S-hexylglutathione-linked Sepharose nor exhibited any GST activity. These findings indicate that Trp38 is important for the catalytic function and substrate binding of GST-P.  相似文献   

13.
Chemical modification and photodynamic treatment of the colicin E1 channel-forming domain (P178) in vesicular and planar bilayer lipid membranes (BLMs) was used to elucidate the role of tryptophan residues in colicin E1 channel activity. Modification of colicin tryptophan residues by N-bromosuccinimide (NBS), as judged by the loss of tryptophan fluorescence, resulted in complete suppression of wild-type P178 channel activity in BLMs formed from fully saturated (diphytanoyl) phospholipids, both at the macroscopic-current and single-channel levels. The similar effect on both the tryptophan fluorescence and the electric current across BLM was observed also after NBS treatment of gramicidin channels. Of the single-tryptophan P178 mutants studied, W460 showed the highest sensitivity to NBS treatment, pointing to the importance of the water-exposed Trp460 in colicin channel activity. In line with previous work, the photodynamic treatment (illumination with visible light in the presence of a photosensitizer) led to suppression of P178 channel activity in diphytanoyl-phospholipid membranes concomitant with the damage to tryptophan residues detected here by a decrease in tryptophan fluorescence. The present work revealed novel effects: activation of P178 channels as a result of both NBS and photodynamic treatments was observed with BLMs formed from unsaturated (dioleoyl) phospholipids. These phenomena are ascribed to the effect of oxidative modification of double-bond-containing lipids on P178 channel formation. The pronounced stimulation of the colicin-mediated ionic current observed after both pretreatment with NBS and sensitized photomodification of the BLMs support the idea that distortion of membrane structure can facilitate channel formation.Abbreviations: AlPcS3, almininum trisulfophthalocyanine; BLM, bilayer lipid membrane; DOPC, dioleoylphosphatidylcholine; DOPG, dioleoylphosphatidyl-glycerol; DPhPG, diphytanoylphos-phatidylglycerol; DPhPg, diphytanoylphosphatidylcholine; gA, gramicidin A; NBS, N-bromosuccinimideThis revised version was published online in August 2005 with a corrected cover date.  相似文献   

14.
Cytosine deaminase (cytosine aminohydrolase, EC 3.5.4.1) stoichiometrically catalyzes the hydrolytic deamination of cytosine and 5-fluorocytosine to uracil and 5-fluorouracil, respectively. Amino acid residues located in or near the active sites of the intracellular cytosine deaminase fromChromobacterium violaceum YK 391 were identified by chemical modification studies. The enzymic activity was completely inhibited by chemical modifiers, such as 1 mM NBS, chloramine-T, ρ-CMB, ρ-HMB and iodine, and was strongly inhibited by 1 mM PMSF and pyridoxal 5′-phosphate. This chemical deactivation of the enzymic activity was reversed by a high concentration of cytosine. Furthermore, the deactivation of the enzymic activity by ρ-CMB was also reversed by 1 mM cysteine-HCl, DTT and 2-mercaptoethanol. These results suggested that cysteine, tryptophan and methionine residues might be located in or near the active sites of the enzyme, while serine and lysine were indirectly involved in the enzymic activity. The intracellular cytosine deaminase fromC. violaceum YK 391 was assumed to be a thiol enzyme.  相似文献   

15.
1. In order to elucidate the structure-function relation of a glucoamylase [EC 3.2.1.3, alpha-D-(1 leads to 4) glucan glucohydrolase] from Aspergillus saitoi (Gluc M1), the reaction of Gluc M1 with NBS was studied. 2. The tryptophan residues in Glu M1 were oxidized at various NBS/Gluc M1 ratios. The enzymatic activity decreased to about 80% of that of the native Gluc M1 with the oxidation of the first 2 tryptophan residues. The oxidation of these 2 tryptophan residues occurred within 0.2-0.5 s. On further oxidation of ca. 4-5 more tryptophan residues of Glu M1, the enzymatic activity of Gluc M1 decreased to almost zero (NBS/Gluc M1 = 20). Thus, the most essential tryptophan residue(s) is amongst these 4-5 tryptophan residues. 3. 7.5 tryptophan residues were found to be eventually oxidized with increasing concentrations of NBS up to NBS/Gluc M1 = 50. This value is comparable to the number of tryptophan residues which are located on the surface of the enzyme as judged from the solvent perturbation difference spectrum with ethylene glycol as perturbant. 4. In the presence of 10% soluble starch, about 5 tryptophan residues in Gluc M1 were oxidized at an NBS/Gluc M1 ratio of 20. The remaining activity of Glu M1 at this stage of oxidation was about 76%. On further oxidation, after removal of soluble starch, the enzymatic activity decreased to zero with the concomitant oxidation of 2 tryptophan residues. The results indicated that the essential tryptophan residue(s) is amongst these 2 tryptophans. 5. The UV difference spectrum induced by addition of maltose and maltitol to Gluc M1 showed 4 troughs at 281, 289, 297, and 303 nm. The latter 3 troughs were probably due to tryptophan residues of Gluc M1 and decreased with NBS oxidation.  相似文献   

16.
色氨酸残基在内切葡聚糖酶分子中的作用   总被引:13,自引:0,他引:13  
内切葡聚糖酶的化学修饰研究表明:色氨酸残基可能位于活性位点,与底物结合有关.荧光光谱测定指出该酶的荧光几乎都来自色氨酸残基,酶分子中色氨酸微环境对pH变化非常敏感,降低pH导致了酶分子构象发生了较大变化,配基结合使酶分子色氨酸微环境产生了改变,引发了与pH诱导不同的构象变化.  相似文献   

17.
Chemical modifications of rye seed chitinase-c (RSC-c) with various reagents suggested the involvements of tryptophan and glutamic/aspartic acid residues in the activity. Of these, the modification of tryptophan residues with N-bromosuccinimide (NBS) was investigated in detail.

In the NBS-oxidation at pH 4.0, two of the six tryptophan residues in RSC-c were rapidly oxidized and the chitinase activity was almost completely lost. On the other hand, in the NBS-oxidation at pH 5.9, only one tryptophan residue was oxidized and the activity was greatly reduced. Analyses of the oxidized tryptophan-containing peptides from the tryptic and chymotryptic digests of the modified RSC-c showed that two tryptophan residues oxidized at pH 4.0 are Trp72 and Trp82, and that oxidized at pH 5.9 is Trp72.

The NBS-oxidation of Trp72 at pH 5.9 was protected by a tetramer of N-acetylglucosamine (NAG4), a very slowly reactive substrate for RSC-c, and the activity was almost fully retained. In the presence of NAG4, RSC-c exhibited an UV -difference spectrum with maxima at 284 nm and 293 nm, attributed to the red shift of the tryptophan residue, as well as a small trough around 300 nm probably due to an alteration of the environment of the tryptophan residue. From these results, it was suggested that Trp72 is exposed on the surface of the RSC-c molecule and involved in the binding to substrate.  相似文献   

18.
The changes of microenvironment of tryptophan residues in β-lactoglobulin A and its cyanogen bromide (CNBr) fragments with the binding of sodium dodecyl sulfate (SDS) were studied with measurements of the rates of N-bromosuccinimide (NBS) modification reactions by stopped-flow photometry. Two tryptophan residues of carboxyamidomethylated (RCM) β-lactoglobulin A in the states of their complexes with SDS were clearly distinguishable by their differences in NBS modification rates. We confirmed by experiments with CNBr fragments containing tryptophan residue. The modification rates of Trp 19 in RCM β-lactoglobulin A-SDS complexes were about 10-fold smaller than those expected for tryptophan residues exposed entirely to the aqueous solvent. The Trp 61 was hardly changed. The change of rate constants for Trp 19 was virtually consistent with those observed when N-acetyl-l-tryptophan ethylester was dissolved in SDS micelles. For various species of polypeptide-SDS complexes, all tryptophan residues were reactive to NBS and also, for some of them, the differences in NBS modification rates were observed between tryptophan residues on a common polypeptide chain. These results suggest micellar and heterogeneous bindings of SDS to polypeptides.  相似文献   

19.
Sequence analysis of plant disease resistance genes shows similarity among themselves, with the presence of conserved motifs common to the nucleotide‐binding site (NBS). Oligonucleotide degenerate primers designed from the conserved NBS motifs encoded by several plant disease resistance genes were used to amplify resistance gene analogues (RGAs) corresponding to the NBS sequences from the genomic DNA of various plant species. Using specific primers designed from the conserved NBS regions, 22 RGAs were cloned and sequenced from pearl millet (Pennisetum glaucum L. Br.). Phylogenetic analysis of the predicted amino acid sequences grouped the RGAs into nine distinct classes. GenBank database searches with the consensus protein sequences of each of the nine classes revealed their conserved NBS domains and similarity to other known R genes of various crop species. One RGA 213 was mapped onto LG1 and LG7 in the pearl millet linkage map. This is the first report of the isolation and characterization of RGAs from pearl millet, which will facilitate the improvement of marker‐assisted breeding strategies.  相似文献   

20.
Alkaline phosphatases (ALP, EC 3.1.3.1) are ubiquitous enzymes found in most species. ALP from a pearl oyster, Pinctada fucata (PALP), is presumably involved in nacreous biomineralization processes. Here, chemical modification was used to investigate the involvement of basic residues in the catalytic activity of PALP. The Tsou's plot analysis indicated that the inactivation of PALP by 2,4,6-trinitrobenzenesulfonic acid (TNBS) and phenylglyoxal (PG) is dependent upon modification of one essential lysine and one essential arginine residue, respectively. Substrate reaction course analysis showed that the TNBS and PG inactivation of PALP followed pseudo-first-order kinetics and the second-order inactivation constants for the enzyme with or without substrate binding were determined. It was found that binding substrate slowed the PG inactivation whereas had little effect on TNBS inactivation. Protection experiments showed that substrates and competitive inhibitors provided significant protection against PG inactivation, and the modified enzyme lost its ability to bind the specific affinity column. However, the TNBS-induced inactivation could not be prevented in presence of substrates or competitive inhibitors, and the modified enzyme retained the ability to bind the affinity column. In a conclusion, an arginine residue involved in substrate binding and a lysine residue involved in catalysis were present at the active site of PALP. This study will facilitate to illustrate the role ALP plays in pearl formation and the mechanism involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号