首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In stimulated neutrophils the production of eicosinoids and the lipid mediator, platelet-activating factor, is thought to be initiated by the activation of a phospholipase A2 which cleaves arachidonic acid from choline-containing glycerophospholipids. Accordingly, studies were undertaken in human neutrophils to characterize phospholipase enzymes that can hydrolyze 1-acyl- and 1-alkyl-linked arachidonoyl-containing phosphatidylcholine (PC). Cellular homogenates were incubated with sonicated dispersions of the arachidonoyl-labeled phospholipid substrates and the hydrolysis of radiolabeled arachidonate was measured. The phospholipase activity was cytosolic, optimal at pH 8.0, and calcium dependent. The homogenization conditions used were important in determining the amount of recoverable enzymatic activity. Vigorous sonication and the presence of calcium during homogenization were strongly inhibitory, whereas the presence of EGTA, heparin and proteinase inhibitors during homogenization increased the activity. Competitive experiments with unlabeled substrates suggested that the phospholipase hydrolyzed arachidonic acid equally well from either 1-acyl- or 1-alkyl-linked PC. However, the phospholipase did show specificity for arachidonic acid, compared to oleic or linoleic acids, at the sn-2 position of 1-acyl-linked PC. When neutrophils were first stimulated with the ionophore A23187, the phospholipase activity against 1-O-hexadecyl-2-[3H]arachidonoylglycerophosphocholine (GPC) increased in a time-dependent fashion up to 3.5-fold over the unstimulated level. The activity against 1-palmitoyl-2-[3H]arachidonoyl-GPC also increased after ionophore stimulation but to a lesser extent. The results demonstrate the presence of a cytosolic, activatable phospholipase that may be involved in PC turnover, arachidonic acid release, and platelet-activating factor production in human neutrophils.  相似文献   

2.
The first step in the production of eicosanoids and platelet-activating factor is the hydrolysis of arachidonic acid from membrane phospholipid by phospholipase A2. We previously purified from the macrophage cell line RAW 264.7 an intracellular phospholipase A2 that preferentially hydrolyzes sn-2-arachidonic acid. The enzyme exhibits a molecular mass of 100 kDa and an isoelectric point of 5.6. When assayed for other activities, the phospholipase A2 was found to exhibit lysophospholipase activity against palmitoyllysoglycerophosphocholine, and both activities copurified to a single band on silver-stained sodium dodecyl sulfate-polyacrylamide gels. An antibody against the macrophage enzyme was found to quantitatively immunoprecipitate both phospholipase A2 and lysophospholipase activities from a crude cytosolic fraction. When the immunoprecipitated material was analyzed on immunoblots, a single band at 100 kDa was evident, further suggesting that a single protein possessed both enzyme activities. When assayed as a function of palmitoyllysoglycerophosphocholine concentration and plotted as a double-reciprocal plot, two different slopes were apparent, corresponding to concentrations above and below the critical micellar concentration (7 microM) of the substrate. Above the critical micellar concentration, lysophospholipase exhibited an apparent Km of 25 microM and a Vmax of 1.5 mumol/min/mg. Calcium was not required for lysophospholipase activity, in contrast to phospholipase A2 activity. The enzyme, when assayed as either a phospholipase A2 or lysophospholipase, exhibited nonlinear kinetics beyond 1-2 min despite low substrate conversion. Readdition to more substrate after the activity plateaued did not result in further enzyme activity, ruling out substrate depletion. Readdition of enzyme, however, resulted in another burst of enzyme activity. The results are not consistent with product inhibition, but suggest that the enzyme may be subject to inactivation during catalysis.  相似文献   

3.
The first step in the synthesis of platelet-activating factor (PAF) in stimulated neutrophils is generally accepted to be hydrolysis of 1-O-alkyl-2-acyl-sn-glycero-3-phosphorylcholine (1-O-alkyl-2-acyl-GPC), with 1-O-alkyl-2-arachidonoyl-GPC being the preferred precursor. Characterization of the enzymatic activity responsible for the hydrolysis of 1-O-alkyl-2-arachidonoyl-GPC has been hampered by lack of an active and reliable cell-free system for study. In the present studies, membrane preparations containing 1-O-[3H]alkyl-2-arachidonoyl-GPC were prepared from intact human neutrophils that had been labeled using 1-O-[3H]hexadecyl-2-lyso-GPC. When the labeled membrane preparations were incubated in the presence of unlabeled 1-O-alkyl-2-lyso-GPC (5 microM), rapid deacylation (up to 25% of the label in 10 min) of the 1-O-[3H]alkyl-2-arachidonoyl-GPC to 1-O-[3H]alkyl-2-lyso-GPC (lyso-PAF) was observed. The deacylation activity appeared to be the same in preparations from resting or stimulated cells. No requirement for Ca2+, various nucleotides, or protein kinase activation could be demonstrated. A number of observations indicated that [3H]lyso-PAF is formed in the system by the action of the CoA-independent transacylase present in the cells rather than by phospholipase A2. Both 1-O-alkyl-2-lyso-GPC and 1-acyl-2-lyso-GPC elicited deacylation of 1-O-[3H]alkyl-2-arachidonoyl-GPC, whereas neither 3-O-alkyl-2-lyso-GPC nor 1-O-alkyl-2-O-methyl-rac-glycero-3-phosphorylcholine, which should act as detergents but are not transacylase substrates, effected deacylation. The deacylation activity and CoA-independent transacylase activities were blocked in parallel by a number of inhibitors and by heat inactivation. In preparations containing 1-O-alkyl-2-[3H]arachidonoyl-GPC, no release of free [3H]arachidonic acid was observed. However, a shift of the [3H]arachidonate into exogenous 1-O-tetradecyl-2-lyso-GPC was observed in the system. These findings are consistent with the generation of [3H]lyso-PAF by the CoA-independent transacylase activity.  相似文献   

4.
We examined the dependence of stimulated arachidonic acid release on plasmalogens using the murine, macrophage cell line 264.7 and two plasmalogen-deficient variants, RAW.12 and RAW.108. All three strains responded to unopsinized zymosan to release arachidonic acid from phospholipid stores. Arachidonic acid release appeared to be dependent on calcium-independent phospholipase A(2) activation (iPLA(2)); bromoenol lactone, a specific inhibitor of calcium-independent iPLA(2), blocked arachidonic acid release with an IC(50) of approximately 2 x 10(-7)M. Propanolol, an inhibitor of phosphatidate phosphatase, and RHC-80267, an inhibitor of diglyceride lipase, had no effect on arachidonic acid release. Arachidonic acid release in the variants displayed similar magnitude, kinetics of response and sensitivity to the inhibitors when compared to the parent strain. Arachidonic acid was released from all major phospholipid head group classes with the exception of sphingomyelin. In wild-type cells, arachidonic acid released from the ethanolamine phospholipids was primarily from the plasmalogen form. However, in the plasmalogen-deficient cells release from the diacyl species, phosphatidylethanolamine, was increased to compensate. Restoration of plasmalogens by supplementation of the growth medium with the bypass compounds sn-1-hexadecylglycerol and sn-1-alkenylglycerol had no effect on arachidonic acid release. In summary, plasmalogen status appears to have no influence on the zymosan A stimulated release of arachidonic acid from the RAW 264.7 cell line.  相似文献   

5.
1-O-[3H]Alkyl-2-lyso-sn-glycero-3-phosphocholine (1-O-[3H]alkyl-2-lyso-GPC) incubated with human polymorphonuclear leukocytes (PMN) for 30 min is metabolized to 1-O-alkyl-2-acyl-GPC containing greater than 80% arachidonate at the 2 position (Chilton, F. H., O'Flaherty, J. T., Ellis, J. M., Swendsen, C. L., and Wykle, R. L. (1983) J. Biol. Chem. 258, 7268-7271). PMN containing 1-O-[3H]alkyl-2-arachidonoyl-GPC incorporated into their cellular phospholipids in this manner were stimulated with Ca2+ ionophore (A23187). Within 5 min after stimulation, 14%, 7%, and 7% of the total 1-O-[3H]alkyl-2-arachidonoyl-GPC in the cells had been converted to 1-O-[3H]alkyl-2-acetyl-GPC (platelet-activating factor), 1-O-[3H]alkyl-2-lyso-GPC, and 3H-labeled neutral lipid, respectively. Stimulation by opsonized zymosan yielded similar results. In related studies, cells were labeled with 1-O-hexadecyl-2-arachidonoyl-GPC containing a [methyl-14C] choline moiety. The nature of the long-chain acyl residues in the sn-2 position of the labeled 1-O-hexadecyl-2-acyl-GPC remaining after stimulation with A23187 was examined. Analysis by high-performance liquid chromatography using synthetic 1-O-hexadecyl-2-acyl-GPC standards indicated there is a time-dependent loss of arachidonate from the 2 position of the labeled 1-O-hexadecyl-2-arachidonoyl-GPC followed by reacylation by other fatty acids (primarily linoleic and oleic). This shift in the acylation pattern exhibited after Ca2+ ionophore stimulation was further examined in PMN preincubated with A23187 and subsequently incubated with labeled 1-O-alkyl-2-lyso-GPC; the stimulated cells produced 1-O-[3H]alkyl-2-acetyl-GPC (greater than 15% of total label) and 1-O-[3H]alkyl-2-acyl-GPC containing linoleic acid and oleic acid, rather than arachidonic acid in the sn-2 position. The findings demonstrate that upon stimulation of PMN, 1-O-alkyl-2-arachidonoyl-GPC can yield arachidonate and 1-O-alkyl-2-lyso-GPC; the 1-O-alkyl-2-lyso-GPC formed may be acetylated producing platelet-activating factor or reacylated with fatty acyl residues other than arachidonate.  相似文献   

6.
Addition of 1-O-alk-1'-enyl-2-lyso-sn-glycero-3-phosphoethanolamine (alkenyl-lyso-GPE) to human neutrophil membrane preparations containing 1-O-[3H]hexadecyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (1-O-[3H]alkyl-2-arachidonoyl-GPC) resulted in rapid deacylation of the 1-O-[3H]alkyl-2-arachidonoyl-GPC to 1-O-[3H]alkyl-2-lyso-GPC (lyso-platelet-activating factor, lyso-PAF). When acetyl-CoA was included in the incubation mixture, the [3H]lyso-PAF was converted to [3H]PAF. Studies of [3H]arachidonate-labeled neutrophils permeabilized with Staphlococcus aureus alpha-toxin revealed a major shift of labeled [3H]arachidonate from the choline to the ethanolamine-containing phosphoglycerides upon addition of alkenyl-lyso-GPE. The studies indicated that lyso-PAF is formed in the system by the transfer of arachidonate from 1-O-alkyl-2-arachidonoyl-GPC to the alkenyl-lyso-GPE by a CoA-independent transacylase reaction. Mass measurements revealed a rapid loss of arachidonate from 1-radyl-2-acyl-GPE and a concomitant increase in alkenyl-lyso-GPE upon stimulation of the neutrophils by ionophore A23187. Based on these and other findings, a pathway is proposed that may play a significant, if not obligatory, role in the synthesis of PAF in intact stimulated neutrophils. It has been widely accepted that phospholipase A2 acts directly on 1-O-alkyl-2-arachidonoyl-GPC as the first step in the synthesis of PAF via formation of lyso-PAF. In the proposed scheme, phospholipase A2, upon stimulation, acts rapidly on ethanolamine plasmalogen selectively releasing arachidonic acid and generating alkenyl-lyso-GPE. The CoA-independent transacylase then selectively transfers arachidonate from 1-radyl-2-arachidonoyl-GPC to the alkenyl-lyso-GPE generating lyso-PAF, which is then acetylated to form PAF. The interactions outlined can account for the synthesis of 1-acyl-2-acetyl-GPC, 1-O-alk-1'-enyl-2-acetyl-GPE, and eicosanoids, in parallel with PAF.  相似文献   

7.
Platelet activating factor (PAF) is rapidly metabolized via a deacetylation: reacylation pathway which shows striking specificity for arachidonate at the sn-2 position of the 1-O-alkyl-2-acyl-GPC thus formed. We have now examined the effects of a diet enriched in fish oils on the metabolism of PAF and specificity for arachidonate in the reacylation reaction. [3H]PAF was incubated for various lengths of time with neutrophils from monkeys fed a control diet or one enriched in fish oils. The [3H]PAF added to the cell suspension was rapidly converted to 1-O-alkyl-2-acyl-GPC. Reverse-phase HPLC analysis of the acyl chains added at the sn-2 position revealed that arachidonate was the major fatty acid incorporated into the 1-O-alkyl-2-acyl-GPC formed by neutrophils from monkeys on the control diet. In contrast, both 1-O-alkyl-2-arachidonoyl-GPC and 1-O-alkyl-2-eicosapentaenoyl-GPC were formed by the fish-oil-enriched neutrophils. We also report on the fatty acid composition of neutrophil phospholipids during such a diet.  相似文献   

8.
A novel phosphatidylglycerol-selective phospholipase A2 from macrophages   总被引:1,自引:0,他引:1  
Shinozaki K  Waite M 《Biochemistry》1999,38(6):1669-1675
In our recent studies on the synthesis of bis(monoacylglycero)phosphate (BMP), we postulated that the first step involved a PLA2 that cleaved the 2-acyl group from phosphatidylglycerol (PG). In the present study, a novel lysosomal PLA2 was partially purified and characterized from RAW 264.7, macrophage like cells. Cells were homogenized and delipidated, and the PLA2 activity in the soluble fraction was purified by Sephacryl S100 and DEAE Sephacel. Further purification was performed using Con-A Sepharose, Phenyl Sepharose, DEAE Sephacel, and Superdex 75 FPLC. The enzyme at this stage of purification showed a dominant band around 45 kDa plus several minor bands on SDS-PAGE. The molecular mass determined by Superdex 75 column FPLC was about 45 kDa. The highly purified fraction hydrolyzed at the sn-1 position, implying that this PLA2 also has some intrinsic PLA1 activity. This enzyme preferentially hydrolyzed PG, has an acidic pH optima, and does not require divalent metal ions. Comparison using PG with various acyl chains on the sn-2 position showed that oleate and linoleate were preferred relative to arachidonate. MAFP, a known cytosolic PLA2 inhibitor, strongly inhibited this PLA2 activity. MJ33, AACOCF3, DENP, and Amiodarone also gave moderate inhibition. The characteristics of this enzyme showed this to be a new type of PLA, and the overwhelming preference for PG as substrate suggests its physiological role is in the biosynthesis of BMP.  相似文献   

9.
The human monocyte cell line U937 expresses phospholipase A2 and phospholipase C activities and produces eicosanoids. The phospholipase C (PLC) activity exhibits substrate preference for phosphatidyl-choline (PC), rather than phosphatidylinositol or phosphatidylethanolamine. In order to characterize the PLC activity found in these cells, the effects of substitution of the sn-2 fatty acid on this activity were examined. PC substrates with palmitic acid (PC-2P), oleic acid (PC-2O), arachidonic acid (PC-2A) and linoleic acid (PC-2L) at the sn-2 position were used. The sn-1 fatty acid was palmitic acid. PC-2L and PC-2A with the longer-chain less-saturated fatty acids linoleic acid and arachidonic acid esterified at sn-2 were found to be better substrates for PLC activity than PC-2P or PC-2O in these cells. This preference was maintained even when substrate phospholipid was solubilized in non-ionic, anionic, cationic and zwitterionic amphiphiles. Furthermore, when a 500-fold excess of 1,2-diolein or 1,2-dipalmitin was added to the reaction, the specificity of the PLC activity for PC-2A and PC-2L remained unchanged. When similar experiments were performed with phosphatidylinositol as a substrate, we did not observe any effect when the sn-2 position was altered. These data show that the fatty acid constituent at the sn-2 position affects the observed PLC activity when phosphatidylcholine, but not phosphatidylinositol, is used as a substrate by these cells.  相似文献   

10.
Previous studies have reported an increased turnover of phospholipid in isolated islets of Langerhans in response to raised glucose concentrations. The present investigation was thus undertaken to determine the nature of any phospholipases that may be implicated in this phenomenon by employing various radiolabelled exogenous phospholipids. Hydrolysis of 1-acyl-2-[14C]arachidonoylglycerophosphoinositol by a sonicated preparation of islets optimally released radiolabelled lysophosphatidylinositol, arachidonic acid and 1,2-diacylglycerol at pH 5,7 and 9 respectively. This indicates the presence of a phospholipase A1 and a phospholipase C. However, the lack of any labelled lysophosphatidylinositol production when 2-acyl-1-[14C]stearoylglycerophosphoinositol was hydrolysed argues against a role for phospholipase A2 in the release of arachidonic acid. Phospholipase C activity as measured by phosphatidyl-myo-[3H]inositol hydrolysis was optimal around pH8, required Ca2+ for activity and was predominantly cytosolic in origin. The time course of phosphatidylinositol hydrolysis at pH 6 indicated a precursor-product relationship for 1,2-diacylglycerol and arachidonic acid respectively. The release of these two products when phosphatidylinositol was hydrolysed by either islet or acinar tissue was similar. However, phospholipase A1 activity was 20-fold higher in acinar tissue. Substrate specificity studies with islet tissue revealed that arachidonic acid release from phosphatidylethanolamine and phosphatidylcholine was only 8% and 2.5% respectively of that from phosphatidylinositol. Diacylglycerol lipase was also demonstrated in islet tissue being predominantly membrane bound and stimulated by Ca2+. The availability of non-esterified arachidonic acid in islet cells could be regulated by changes in the activity of a phosphatidylinositol-specific phospholipase C acting in concert with a diacylglycerol lipase.  相似文献   

11.
Arachidonoyl-hydrolyzing phospholipase A2 plays a central role in providing substrate for the synthesis of the potent lipid mediators of inflammation, the eicosanoids, and platelet-activating factor. Although Ca2+ is required for arachidonic acid release in vivo and most phospholipase A2 enzymes require Ca2+ for activity in vitro, the role of Ca2+ in phospholipase A2 activation is not understood. We have found that an arachidonoyl-hydrolyzing phospholipase A2 from the macrophage-like cell line, RAW 264.7, exhibits Ca2(+)-dependent association with membrane. The intracellular distribution of the enzyme was studied as a function of the Ca2+ concentration present in homogenization buffer. The enzyme was found almost completely in the 100,000 x g soluble fraction when cells were homogenized in the presence of Ca2+ chelators and there was a slight decrease in soluble fraction activity when cells were homogenized at the level of Ca2+ in an unstimulated cell (80 nM). When cells were homogenized at Ca2+ concentrations expected in stimulated cells (230-450 nM), 60-70% of the phospholipase A2 activity was lost from the soluble fraction and became associated with the particulate fraction in a manner that was partly reversible with EGTA. Membrane-associated phospholipase A2 activity was demonstrated by [3H]arachidonic acid release both from exogenous liposomes and from radiolabeled membranes. With radiolabeled particulate fraction as substrate, this enzyme hydrolyzed arachidonic acid but not oleic acid from membrane phospholipid, and [3H]arachidonic acid was derived from phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol/phosphatidylserine. We suggest a mechanism in which the activity of phospholipase A2 is regulated by Ca2+: in an unstimulated cell phospholipase A2 is found in the cytosol; upon receptor ligation the cytosolic Ca2+ concentration increases, and the enzyme becomes membrane-associated which facilitates arachidonic acid hydrolysis.  相似文献   

12.
Phospholipase A activity in rat stomach wall and in gastric content was studied using [1-14C]dioleoylphosphatidylcholine as substrate. The optimum activity of the stomach wall was found to take place at pH 7.0. During optimal phospholipase action about 40% of the [1-14C]oleic acid released was due to an active intracellular lysophospholipase. The gastric phospholipase required 5 mM Ca2+ for full activity and is inhibited by EDTA. It specifically hydrolyzed the sn-2 position of the phospholipid molecule. The enzyme was heat labile and inactivated by acidification at pH 3.0. The gastric content enzyme had a lower specific activity and an optimum pH of 8.0. It was heat stable and was not inactivated by acidification. These results indicate that gastric content phospholipase A is of pancreatic origin, via a duodenal reflux. By ligating the stomach we were able to further confirm that the gastric wall phospholipase was different from that of the gastric content. It originated from the stomach mucosa. Subcellular fractionation suggests that the gastric phospholipase A2 is essentially bound to the plasma membrane. About 6% of the activity was found to be soluble. Biopsies of human gastric mucosa displayed a phospholipase A activity which had similar properties to that of rat gastric enzyme. The physiological function of this enzyme is discussed in terms of prostaglandin synthesis via the release of arachidonic acid.  相似文献   

13.
Our study has examined platelet-activating factor (PAF) biosynthesis in neutrophils from individuals on a fish oil-enriched diet and in mast cells enriched with eicosapentaenoic acid (EPA) in vitro. Neutrophils isolated from males who were fed fish oil supplement (EPA; 2.8 g/day) for 5 wk contained large quantities of eicosapentaenoate in phosphatidylcholine (PC) and phosphatidylethanolamine and less in phosphatidylinositol. The ratio arachidonate/eicosapentaenoate in PC and phosphatidylethanolamine decreased from greater than 10 before the enriched diet to approximately 3 after the diet. The putative precursor of PAF, 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (1-O-alkyl-2-acyl-GPC) contained the bulk of eicosapentaenoate in PC subclasses with smaller quantities found in 1-acyl and 1-alk-1'-enyl linked species. Ionophore A23187-stimulated neutrophils produced similar quantities of PAF before and after enriched diet. Neutrophils during normal diet acylated 1-O-alkyl-2-lyso-GPC only with arachidonate whereas neutrophils from individuals on enriched diet transferred both arachidonate and eicosapentaenoate into exogenously-provided 1-O-alkyl-2-lyso-GPC. This allowed for the labeling of neutrophils with 1-O-[3H]-alkyl-2-arachidonoyl-GPC (before diet) as well as neutrophils with 1-O-[3H]-alkyl-2-eicosapentaenoyl-GPC and 1-O-[3H]-alkyl-2-arachidonoyl-GPC (after diet). Neutrophils after diet converted similar quantities of these labeled precursors to labeled PAF upon stimulation as those before the diet. Analysis of the nature of the long chain acyl residue remaining in the sn-2 position of 1-alkyl-2-acyl-GPC after cell stimulation indicated that arachidonate and eicosapentaenoate were both released from 1-O-alkyl-2-acyl-GPC at comparable rates. Finally, in vitro supplementation of murine mast cells (PT-18) with arachidonic acid or EPA caused a marked increase in the amount of PAF produced by the cell without having any effect on histamine release. Data from these experiments suggest that EPA is incorporated into a PAF precursor pool. However, this appears not to inhibit PAF production because phospholipase A2 can use eicosapentaenoate- as well as arachidonate-containing phospholipids in the initial step of PAF biosynthesis.  相似文献   

14.
Degradation of phosphatidylcholine to lysophosphatidylcholine occurs during oxidative modification of low density lipoproteins (LDL). In this study, we have shown that this phospholipid hydrolysis is brought about by an LDL-associated phospholipase A2 that can hydrolyze oxidized but not intact LDL phosphatidylcholine. The chemical nature of the oxidized phospholipids that can act as substrates for this enzyme was not fully characterized, but we hypothesized that the specificity of the enzyme for oxidized LDL phosphatidylcholine might be explained by fragmentation of polyunsaturated sn-2 fatty acyl groups in LDL phosphatidylcholine during oxidation. To facilitate characterization of this enzyme, we therefore selected a fluorescent phosphatidylcholine substrate that had a short-chain, polar residue in the sn-2 position: 1-palmitoyl 2-(6-[7-nitrobenzoxadiazolyl]amino) caproyl phosphatidylcholine, (C6NBD PC). This substrate was efficiently hydrolyzed by LDL, but the dodecanoyl analogue of C6NBD PC, which differed only in that a 12-carbon rather than a 6-carbon acyl derivative was present in the sn-2 position, was not hydrolyzed. The phospholipase activity was heat-stable, calcium-independent, and was inhibited by the serine esterase inhibitors phenylmethylsulfonyl-fluoride and diisopropylfluorophosphate, but was resistant to p-bromophenacylbromide and dithiobisnitrobenzoic acid. The phospholipid hydrolysis could not be attributed to the action of lecithin:cholesterol acyltransferase or lipoprotein lipase. Nearly all of the activity in EDTA-anticoagulated normal plasma was physically associated with apoB-containing lipoproteins, but this apoprotein was not essential as enzyme activity was present in plasma from abetalipoproteinemic patients. These properties are very similar to those recently reported for human plasma platelet-activating factor (PAF) acetylhydrolase. In the present study, we found that acylhydrolase activity against C6NBD PC, PAF, and oxidized phosphatidylcholine copurfied through gel filtration and ion-exchange chromatography. Substrate competition was demonstrated between C6NBD PC, PAF, and oxidized 2-arachidonyl phosphatidylcholine, suggesting that a single enzyme was active against all three substrates. The enzyme had an apparent molecular weight of 40,000-45,000 by high pressure gel exclusion chromatography. Inhibition of this activity with disopropyfluorophosphate prior to oxidative modification of LDL prevented phospholipid hydrolysis but did not affect the production of thiobarbituric acid reactive compounds or the change in electrophoretic mobility. In addition, this inhibition of phospholipase did not prevent the rapid degradati  相似文献   

15.
Secretory phospholipase A2 (sPLA2) represents a family of small water-soluble enzymes that catalyze the hydrolysis of phospholipids in the sn-2 position liberating free fatty acids and lysophospholipids. Herein we report the synthesis of two new phospholipids (1 and 2) with bulky allyl-substituents attached to the sn-1 position of the glycerol backbone. The synthesis of phospholipids 1 and 2 is based upon the construction of a key aldehyde intermediate 3 which locks the stereochemistry in the sn-2 position of the final phospholipids. The aldehyde functionality serves as the site for insertion of the allyl-substituents by a zinc mediated allylation. Small unilamellar liposomes composed of phospholipids 1 and 2 were subjected to sPLA2 activity measurements. Our results show that only phospholipid 1 is hydrolyzed by the enzyme. Molecular dynamics simulations revealed that the lack of hydrolysis of phospholipid 2 is due to steric hindrance caused by the bulky side chain of the substrate allowing only limited access of water molecules to the active site.  相似文献   

16.
The substrate specificity of a calcium-independent, 97-kDa phospholipase B purified from guinea pig intestine was further investigated using various natural and synthetic lipids. The enzyme was equally active toward enantiomeric phosphatidylcholines under conditions allowing a strict phospholipase A activity. The lysophospholipase activity declined with the following substrates: 1-acyl-sn-glycero-3-phosphocholine greater than 1-palmitoyl-propanediol-3-phosphocholine greater than 1-palmitoyl-glycol-2-phosphocholine, suggesting some influence of the polar residue vicinal to the cleavage site. The enzyme also acted on various neutral lipids including triacylglycerol, diacylglycerol, and monoacylglycerol, whereas cholesteryl oleate remained refractory to enzymatic hydrolysis. The lipase hydrolyzed sequentially the sn-2 and sn-1 acyl ester bonds of diacylglycerol, although some direct cleavage of the external acyl ester bond could also occur, as shown with diacylglycerol analogues bearing a nonhydrolyzable alkyl ether or amide bond in the sn-1 or sn-2 position. The three main activities of the enzyme (phospholipase A2, lysophospholipase, and diacylglycerol lipase) were resistant to 4-bromophenacyl bromide, but they were inhibited by N-ethylmaleimide, 5,5'-dithiobis-(2-nitrobenzoic acid), and diisopropyl fluorophosphate, suggesting the possible involvement of both cysteine and serine residues in a single active site. It is concluded that guinea pig intestinal phospholipase B, which was also detected in rat and rabbit, is actually a glycerol ester lipase with broad substrate specificity and some unique enzymatic properties.  相似文献   

17.
A phospholipase A2 activity directed against phosphatidylcholine was previously described in brush-border membrane from guinea pig intestine (Diagne, A., Mitjavila, S., Fauvel, J., Chap, H., and Douste-Blazy, L. (1987) Lipids 22, 33-40). In the present study, this enzyme was solubilized either with Triton X-100 or upon papain treatment, suggesting a structural similarity with other intestinal hydrolases such as leucine aminopeptidase, sucrase, or trehalase. The papain-solubilized form, which is thought to lack the short hydrophobic tail responsible for membrane anchoring, was purified 1800-fold to about 90% purity by ion exchange chromatography on DEAE-Sephacel, gel filtration on Ultrogel AcA44, and hydrophobic chromatography on phenyl-Sepharose. Upon polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a main band with an apparent molecular mass of 97 kDa was detected under reducing and nonreducing conditions. In the latter case, phospholipase A2 activity could be recovered from the gel and was shown to coincide with the 97-kDa protein detected by silver staining. The enzyme activity was unaffected by EGTA and slightly inhibited by CaCl2. The purified enzyme displayed a similar activity against phosphatidylcholine and phosphatidylethanolamine, whereas 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine hydrolysis was reduced by 50% compared to diacylglycerophospholipids. Using phosphatidylcholine labeled with either [3H]palmitic acid or [14C]linoleic acid in the 1- or 2-positions, respectively, the purified enzyme catalyzed the removal of [3H]palmitic acid, although at a lower rate compared to [14C]linoleic acid. This resulted in the formation of sn-glycero-3-phosphocholine, but only 1-[3H]palmitoyl-sn-glycero-3-phosphocholine was detected as an intermediary product. In agreement with this, 1-acyl-2-lyso-sn-[14C]glycero-3-phosphocholine was deacylated at almost the same rate as the sn-2-position of phosphatidylcholine. Since upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the two hydrolytic activities were detected at the same position as 97-kDa protein, the enzyme is thus considered as a phospholipase A2 with lysophospholipase activity (phospholipase B), which might be involved in phospholipid digestion.  相似文献   

18.
A phospholipase A2 was purified from rabbit platelet cytosolic fraction to near homogeneity by sequential column chromatographies on heparin-Sepharose, DEAE-Sephacel, butyl-Toyopearl, DEAE-5PW ion-exchange HPLC, and TSK gel G3000SW gel-filtration HPLC. The final preparation with an estimated specific activity of 8630 nmol/min per mg protein, showed a single band with a molecular mass of about 88 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by silver staining. The 88-kDa phospholipase A2 exhibited a fatty acid preference; it hydrolyzed phospholipid bearing an arachidonoyl residue at the sn-2 position more effectively than that with a linoleoyl residue. The catalytic activity of the purified enzyme with phosphatidylcholine or phosphatidylethanolamine increased sharply in the presence of between 10(-7) and 10(-6) M calcium ion, indicating that it could be regulated by less than micromolar concentration of calcium. These characteristics differ from those of platelet secretory 14-kDa phospholipase A2 reported previously. Therefore, this 88-kDa enzyme is a novel phospholipase A2 and may participate in the stimulus-dependent release of arachidonoyl residues in rabbit platelets.  相似文献   

19.
Mechanisms involved in regulating the activity of intracellular phospholipase A2 enzymes that function in eicosanoid and platelet-activating factor production are poorly understood. The properties of the substrate in the membrane may play a role in modulating phospholipase A2 activity. In this study, the effect of anionic phospholipids, diacylglycerol (DAG) and phosphatidylethanolamine (PE) on the activity of a partially purified, intracellular, arachidonoyl-hydrolyzing phospholipase A2 from the macrophage cell line, RAW 264.7 was studied. For these experiments phospholipase A2 activity was assayed in the presence of 1 microM calcium by measuring the hydrolysis of [3H]arachidonic acid from sonicated dispersions of the ether-linked substrate, 1-O-hexadecyl-2[3H]arachidonoylglycerophosphocholine. All the anionic phospholipids tested, including phosphatidylserine (PS), phosphatidic acid (PA), phosphatidylinositol (PI) and phosphatidylinositol-4,5-bisphosphate (PIP2), stimulated phospholipase A2 activity. At the lowest concentration of anionic phospholipids tested. PIP2 was the most stimulatory, resulting in a 7-fold increase in phospholipase A2 activity at 1 mol%. Co-dispersion of either DAG or PE with the substrate also induced a dose-dependent increase in phospholipase A2 activity, whereas sphingomyelin was inhibitory suggesting that the phospholipase A2 more readily hydrolyzed the ether-linked substrate when there was a decrease in the packing density of the bilayer. PIP2, together with either DAG or PE, synergistically stimulated phospholipase A2 activity by about 20-fold, and dramatically decreased the calcium concentration (from mM to nM) required for full activity of the enzyme. The results of this study demonstrate that the presence of anionic phospholipids and the packing characteristics of the bilayer can have pronounced effects on the activity and calcium requirement of an intracellular, arachidonoyl-hydrolyzing phospholipase A2 from macrophages.  相似文献   

20.
Guinea pig lung cytosolic phospholipase A2 was purified to near homogeneity by chromatography on a phosphocellulose column, followed by Q-Sepharose, S-Sepharose, gel filtration chromatography and reverse-phase HPLC. The purified enzyme exhibited an apparent molecular weight of 16,700 by SDS-polyacrylamide gel electrophoresis. Active enzyme eluted from the gel at an apparent molecular weight of 16,700. The purified enzyme exhibited a pH optimum of 9.0 and was calcium-dependent. Guinea pig lung phospholipase A2 hydrolyzed phosphatidylcholine and phosphatidylethanolamine equally well. Substrates containing unsaturated fatty acids in the sn-2 position were hydrolyzed preferentially to those containing saturated fatty acids. Anionic detergents stimulated enzyme activity while nonionic detergents inhibited the enzyme. Disulfide reducing agents dithiothreitol, glutathione and 2-mercaptoethanol modestly stimulated enzyme activity. The sulfhydryl aklylating agent n-ethylmaleimide had no effect on enzyme activity and only high concentrations of p-hydroxymercuribenzoic acid inhibited enzyme activity. The histidine modifying agent, bromophenacyl bromide did not inhibit guinea pig lung phospholipase A2 under conditions in which Crotalus adamanteus phospholipase A2 was inhibited 80%. Manoalide inhibited guinea pig lung phospholipase A2 in a concentration-dependent manner (IC50 = 2 microM). Antibodies prepared against porcine pancreatic phospholipase A2 specifically immunoprecipitated guinea pig lung phospholipase A2 suggesting that the major phospholipase A2 in guinea pig lung cytosol is immunologically related to pancreatic phospholipase A2 in agreement with the biochemical properties of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号