首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radioreceptor assay technology was used to show the presence in the rat of a receptor that binds selenoprotein P, a selenocysteine-containing rat plasma protein. 75Se-labeled selenoprotein P bound to testis, kidney, and liver membranes. The binding was specific in that increasing amounts of partially-fractionated rat plasma specifically displaced the binding of 75Se-labeled selenoprotein P to testis membrane in a competitive manner. 75Se-labeled selenoprotein P binding was saturable in the presence of increasing amounts of testis membranes. The binding of 75Se-labeled selenoprotein P was optimal at about pH 4.2. Several proteins and blood fractions had little or no significant effect on binding of 75Se-labeled selenoprotein P to testis membranes. All plasma sources tested specifically displaced 75Se-labeled selenoprotein P from testis membrane, indicating that selenoprotein P-related proteins may be widespread in nature. The study indicated that selenoprotein P has a receptor and is involved in selenium transport.  相似文献   

2.
A selenocysteine-containing selenium-transport protein in rat plasma   总被引:2,自引:0,他引:2  
A selenocysteine-containing rat plasma protein (selenoprotein P) was examined for a possible role in the transport of selenium in the rat. A time-course study of the localization of injected 75Se from [75Se]selenite indicated that one-half of the selenium was sequestered by liver tissue 1 h after injection and that one-fourth of the 75Se in the plasma was attached to selenoprotein P 3 h after injections. By 25 h there was little 75Se in plasma, and much of the 75Se had accumulated in nonhepatic tissues. 75Se was incorporated into selenoprotein P by liver slices in a process that was sensitive to the protein synthesis inhibitor cycloheximide. The fate of 75Se from intracardially injected 75Se-labeled selenoprotein P was followed in rats maintained on selenium-deficient and selenium-sufficient diets. Substantially more of the injected 75Se was present per gram wet weight in the testes and kidneys than the livers of the selenium-deprived rats after 5 h. The results indicate that selenoprotein P is synthesized in rat liver and that it transfers selenium from the liver to extrahepatic tissues.  相似文献   

3.
Selenoprotein P was partially purified (> 1000-fold) from human plasma in four chromatographic steps using 75Se-labeled selenoprotein P secreted by HepG2 cells in culture as a marker. The purified preparation was injected into mice and monoclonal antibodies, which precipitated the labeled protein, were generated. Neither of two different monoclonal antibodies had cross-reactivity with plasma from five animal species. Antibodies were coupled to agarose, and selenoprotein P was purified from human plasma by immunoaffinity chromatography followed by chromatography on heparin agarose. With two different matrix-bound monoclonal antibodies, the purification procedure gave two bands on SDS-PAGE with mobilities corresponding to 61 and 55 kDa. Both bands stained for carbohydrate and showed increased electrophoretic mobility after enzymatic deglycosylation. Immunoaffinity chromatography removed approx. one-third of the selenium from plasma or 0.4 μmol Se/l at a total selenium concentration of 1.1 μmol/l, indicating that selenoprotein P constituted this proportion of total plasma selenium in healthy US blood donors.  相似文献   

4.
Synthesis and secretion of selenoprotein P by cultured rat astrocytes   总被引:3,自引:0,他引:3  
Selenoprotein P is an extracellular protein that has been postulated to have an oxidant defense function. It has survival-promoting properties for cultured neurons and its mRNA is present in the brain. This study sought to determine the primary structure of rat brain selenoprotein P and to assess its production by cultured brain cells. The cDNA of selenoprotein P was isolated from a rat brain cDNA library and was found to encode the same peptide sequence as rat liver cDNA. Thus the primary structure of brain selenoprotein P is the same as selenoprotein P from liver. Astrocytes and a cerebellar granule cell preparation (CGC) were obtained from rat brains and established in culture. The CGC was estimated to contain up to 5% glial cells. Both preparations were shown to contain selenoprotein P mRNA. During incubation with (75)Se-labeled selenite, both cell preparations secreted a (75)Se-labeled protein into the medium that corresponded in size to selenoprotein P. Also, the (75)Se-labeled protein could be precipitated from both media with an antiserum to selenoprotein P. This shows that astrocytes and the CGC secrete selenoprotein P. Selenoprotein P is made in the brain and may have an oxidant defense function there.  相似文献   

5.
Rat plasma selenoprotein P properties and purification   总被引:1,自引:0,他引:1  
A selenoprotein in rat plasma, selenoprotein P, was fractionated and characterized. Plasma collected from rats 3 h post injection of 75SeO3(2-) contained one 75Se-labeled protein, selenoprotein P. Selenoprotein P was fractionated using salt precipitation, Affi-Gel Blue, and DEAE chromatography. The 75Se-containing subunit of selenoprotein P was purified to 90% homogeneity using SDS-polyacrylamide gel electrophoresis followed by electroelution. This isolation resulted in an 850-fold purification of the 75Se-containing subunit of selenoprotein P with a 15% yield of 75Se radioactivity. The molecular weight of selenoprotein P in plasma was 98,000. The 75Se-containing subunit of selenoprotein P had a molecular mass of 57 kDa as determined by SDS-polyacrylamide gel electrophoresis. Isoelectric focusing under nondenaturing conditions resulted in a band of 75Se radioactivity at pH 5.4. A comparison of Coomassie Blue- and silver-staining properties of selenoprotein P in SDS-polyacrylamide gels was made. Reverse-phase HPLC and Sephadex G-50 chromatography of tryptic peptides of the 57 kDa subunit of selenoprotein P yielded several peaks of 75Se radioactivity. These results indicate that 75Se is present in several locations within the 57 kDa subunit of selenoprotein P.  相似文献   

6.
Rat kidney selenium (Se)-containing proteins were studied by isotopic labeling with [75Se]selenite or [75Se]selenomethionine via three routes: oral, intraperitoneal injection, and incubation of kidney slices with the isotope. The two major Se-containing proteins in kidney were fractionated and partially characterized. 75Se elution profiles from Sephadex G-150 chromatography were similar for each labeling protocol, except for the profile obtained following incubation of slices with [75Se]selenomethionine. Of the two major 75Se-containing proteins, the one eluting at the void volume during Sephadex G-150 fractionation had a subunit of 23,000 Mr. The 75Se-labeled tryptic peptide from this protein and a 75Se-containing tryptic peptide from glutathione peroxidase had the same elution time from an HPLC column. A 75,000 Mr 75Se-containing protein had a 65,000 Mr subunit, and the 75Se-labeled tryptic peptide from this protein eluted from the HPLC column before that of glutathione peroxidase. Glutathione peroxidase is the most abundant kidney selenoprotein. Injection of animals with 75Se is the method of choice for isotopic labeling of rat kidney Se-containing proteins. Appropriate methods were developed that can be used in future studies of kidney Se-containing proteins.  相似文献   

7.
Deletion of the mouse selenoprotein P gene (Sepp1) lowers selenium concentrations in many tissues. We examined selenium homeostasis in Sepp1(-/-) and Sepp1(+/+) mice to assess the mechanism of this. The liver produces and exports selenoprotein P, which transports selenium to peripheral tissues, and urinary selenium metabolites, which regulate whole-body selenium. At intakes of selenium near the nutritional requirement, Sepp1(-/-) mice had whole-body selenium concentrations 72 to 75% of Sepp1(+/+) mice. Genotype did not affect dietary intake of selenium. Sepp1(-/-) mice excreted in their urine approximately 1.5 times more selenium in relation to their whole-body selenium than did Sepp1(+/+) mice. In addition, Sepp1(-/-) mice gavaged with (75)SeO(2-)(3) excreted 1.7 to 2.4 times as much of the (75)Se in the urine as did Sepp1(+/+) mice. These findings demonstrate that deletion of selenoprotein P raises urinary excretion of selenium. When urinary small-molecule (75)Se was injected intravenously into mice, over 90% of the (75)Se appeared in the urine within 24 h, regardless of selenium status. This shows that urinary selenium is dedicated to excretion and not to utilization by tissues. Our results indicate that deletion of selenoprotein P leads to increased urinary selenium excretion. We propose that the absence of selenoprotein P synthesis in the liver makes more selenium available for urinary metabolite synthesis, increasing loss of selenium from the organism and causing the decrease in whole-body selenium and some of the decreases observed in tissues of Sepp1(-/-) mice.  相似文献   

8.
Studies with 75Se have shown the existence of a rat plasma selenoprotein in addition to glutathione peroxidase. Because the function of the protein is not known, it has been referred to as selenoprotein P. A partially purified preparation was used to produce a monoclonal antibody to selenoprotein P. The antibody did not bind glutathione peroxidase as evidenced by its failure to remove glutathione peroxidase activity from rat plasma by immunoprecipitation. An immunoaffinity column was prepared with the monoclonal antibody, and selenoprotein P was purified 1270-fold from rat plasma in a two-step procedure. The purified selenoprotein P migrated in a single band with an Mr of 57,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography demonstrated that this band contained 75Se when the protein was purified from rats which had received 75SeO2-(3). A competitive radioimmunoassay for selenoprotein P was developed. The selenoprotein P concentration in plasma of selenium-replete rats was determined with this assay to be 51 +/- 3.7 micrograms/ml. It was less than 5 micrograms/ml in plasma from selenium-deficient rats. Injection of 50 micrograms of selenium into selenium-deficient rats caused an increase in selenoprotein P from less than 10% of control to 52% of control in 6 h. Plasma glutathione peroxidase activity increased only from 2.2 to 3.1% of control. These experiments demonstrate that rat plasma contains a selenoprotein distinct from glutathione peroxidase. The concentration of this selenoprotein is depressed in selenium deficiency, as is glutathione peroxidase activity, but selenoprotein P increases more rapidly when selenium is supplied than does glutathione peroxidase activity.  相似文献   

9.
The purpose of this communication is to elucidate if selenium plays a role in the function of granulocytes and lymphocytes. Thus, the incorpo ration of selenium in proteins from granulocytes and lymphocytes cultured with 1ΜCi/mL radioactive Na2 75SeO3 was studied. The protein peaks containing75Se from two columns of Heparin Sepharose CL-6B and Sephacryl S-200 HR were separated further by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The results showed that the incorporation of75Se into granulocytes was about six times higher than that of lymphocytes during a 96-h cultivation, however, the GSH-Px activity in granulocytes did not change significantly. On the other hand, the GSH-Px activity of lymphocytes rose significantly after three days cultivation. These data indicated that the main chemical form of selenium in granulocytes was not GSH-Px. Results from SDS-PAGE revealed a strongly75Se-labeled protein band with subunit molecular weight of 15 kDa in the supernatant of granulocyte homogenate. However, the main chemical forms of selenium in the culture media of granulocytes and lymphocytes were found to be selenoprotein P. The different forms of selenium-containing proteins in the intracellular and extracellular media of granulocytes indicated the different functions of these proteins.  相似文献   

10.
Selenite (SeO(3)(2-)) assimilation into a bacterial selenoprotein depends on thioredoxin (trx) reductase in Esherichia coli, but the molecular mechanism has not been elucidated. The mineral-oil overlay method made it possible to carry out anaerobic enzyme assay, which demonstrated an initial lag-phase followed by time-dependent steady NADPH consumption with a positive cooperativity toward selenite and trx. SDS-PAGE/autoradiography using (75)Se-labeled selenite as substrate revealed the formation of trx-bound selenium in the reaction mixture. The protein-bound selenium has metabolic significance in being stabilized in the divalent state, and it also produced the selenopersulfide (-S-SeH) form by the catalysis of E. coli trx reductase (TrxB).  相似文献   

11.
Mammalian thioredoxin reductases contain a TGA-encoded C-terminal penultimate selenocysteine (Sec) residue, and show little homology to bacterial, yeast, and plant thioredoxin reductases. Here we show that the nematode, Caenorhabditis elegans, contains two homologs related to the mammalian thioredoxin reductase family. The gene for one of these homologs contains a cysteine codon in place of TGA, and its product, designated TR-S, was previously suggested to function as thioredoxin reductase. The other gene contains TGA and its product is designated TR-Se. This Sec-containing thioredoxin reductase lacks a canonical Sec insertion sequence element in the 3'-untranslated area of the gene. TR-Se shows greater sequence similarity to mammalian thioredoxin reductase isozymes TR1 and TR2, whereas TR-S is more similar to TR3. TR-Se was identified as a thioredoxin reductase selenoprotein by labeling C. elegans with 75Se and characterizing the resulting 75Se-labeled protein by affinity and other column chromatography and gel-electrophoresis. TR-Se was expressed in Escherichia coli as a selenoprotein when a bacterial SECIS element was introduced downstream of the Sec TGA codon. The data show that TR-Se is the major naturally occurring selenoprotein in C. elegans, and suggest an important role for selenium and the thioredoxin system in this organism.  相似文献   

12.
Identification of type I iodothyronine 5'-deiodinase as a selenoenzyme   总被引:6,自引:0,他引:6  
A 27.8 kDa membrane selenoprotein was previously identified in rat thyroid, liver and kidney, the tissues with the highest activities of type I iodothyronine 5'-deiodinase. This membrane enzyme catalyzes the deiodination of L-thyroxine to the biologically active thyroid hormone 3,3',5-triiodothyronine. A decrease in the activity of this enzyme, observed here in the liver of selenium-deficient rats, was found to be due to the absence of a selenium-dependent membrane-bound component. By chemical and enzymatic fragmentation of the 75Se-labeled selenoprotein and of the 27 kDa substrate binding type I 5'-deiodinase subunit, affinity-labeled with N-bromoacetyl-[125I]L-thyroxine, and comparison of the tracer distribution in the peptide fragments the identity of the two proteins was shown. The data indicate that the deiodinase subunit contains one selenium atom per molecule and suggest that a highly reactive selenocysteine is the residue essential for the catalysis of 5'-deiodination. From the results it can be concluded that type I iodothyronine 5'-deiodinase is a selenoenzyme.  相似文献   

13.
Selenite (SeO3 2?) assimilation into a bacterial selenoprotein depends on thioredoxin (trx) reductase in Esherichia coli, but the molecular mechanism has not been elucidated. The mineral-oil overlay method made it possible to carry out anaerobic enzyme assay, which demonstrated an initial lag-phase followed by time-dependent steady NADPH consumption with a positive cooperativity toward selenite and trx. SDS-PAGE/autoradiography using 75Se-labeled selenite as substrate revealed the formation of trx-bound selenium in the reaction mixture. The protein-bound selenium has metabolic significance in being stabilized in the divalent state, and it also produced the selenopersulfide (-S-SeH) form by the catalysis of E. coli trx reductase (TrxB).  相似文献   

14.
Selenium (Se)-containing proteins in microsomal fractions of rat kidney and liver were investigated after isotopic labeling of rats with [75Se]selenite. More than 85% of the 75Se in the solubilized microsomal extracts precipitated with protein after trichloroacetic acid treatment. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), used to separate the labeled protein subunits in the solubilized microsomal extracts, revealed several 75Se-containing proteins in addition to glutathione peroxidase. 75Se-labeled subunits with molecular weights of 55, 30, 26, 22, 19, and 17 kDa were present in microsomal fractions of kidney and liver. The 75Se-labeled tryptic peptide of the 55 kDa subunit had the same Rf value on a 17% SDS-PAGE gel as the peptide from plasma selenoprotein P. A time-course study of the labeling of individual protein subunits in kidney and liver microsomes from Se-supplemented and Se-deficient rats showed that most of the 75Se was associated with the 55 kDa subunit 3 hr after injection. The amount of 75Se associated with this protein subunit decreased by 12 hr, with a concurrent increase in the labeling of lower molecular-weight subunits. The results support the hypothesis that there is a mechanism for transfer of Se from the 55 kDa subunit to other Se-containing proteins.  相似文献   

15.
A 75Se-labeled hydrogenase was purified to near homogeneity from extracts of Methanococcus vannielii cells grown in the presence of [75Se]selenite. The molecular weight of the enzyme was estimated as 340,000 by gel filtration. The enzyme tends to aggregate and occurs also as a larger protein species (Mr = 1.3 x 10(6)). The same phenomenon was observed on native gel electrophoretic analysis. Hydrogenase activity exhibited by these two protein bands was proportional to protein and 75Se content. Both molecular species reduce the natural cofactor, 8-hydroxy-5-deazaflavin, and tetrazolium dyes with molecular hydrogen. Sodium dodecyl sulfate-gel electrophoresis of 75Se-labeled enzyme showed that 75Se is present exclusively in an Mr = 42,000 subunit. A value of 3.8 g atoms of selenium/mol of enzyme (Mr = 340,000) was determined by atomic absorption analysis. The chemical form of selenium in the enzyme was shown to be selenocysteine. This was identified as the [75Se]carboxymethyl and [75Se]carboxyethyl derivatives in acid hydrolysates of alkylated 75Se-labeled protein. The hydrogenase is extremely oxygen-sensitive but can be reactivated by incubation with molecular hydrogen and dithiothreitol.  相似文献   

16.
Selenoprotein W gene regulation by selenium in L8 cells   总被引:3,自引:0,他引:3  
Q.P. Gu  W. Ream  P.D. Whanger 《Biometals》2002,15(4):411-420
  相似文献   

17.
In vivo studies have shown that selenium is supplied to testis and brain by apoER2-mediated endocytosis of Sepp1. Although cultured cell lines have been shown to utilize selenium from Sepp1 added to the medium, the mechanism of uptake and utilization has not been characterized. Rat L8 myoblast cells were studied. They took up mouse Sepp1 from the medium and used its selenium to increase their glutathione peroxidase (Gpx) activity. L8 cells did not utilize selenium from Gpx3, the other plasma selenoprotein. Neither did they utilize it from Sepp1(Δ240-361), the isoform of Sepp1 that lacks the selenium-rich C-terminal domain. To identify Sepp1 receptors, a solubilized membrane fraction was passed over a Sepp1 column. The receptors apoER2 and Lrp1 were identified in the eluate by mass spectrometry. siRNA experiments showed that knockdown of apoER2, but not of Lrp1, inhibited (75)Se uptake from (75)Se-labeled Sepp1. The addition of protamine to the medium or treatment of the cells with chlorate also inhibited (75)Se uptake. Blockage of lysosome acidification did not inhibit uptake of Sepp1 but did prevent its digestion and thereby utilization of its selenium. These results indicate that L8 cells take up Sepp1 by an apoER2-mediated mechanism requiring binding to heparin sulfate proteoglycans. The presence of at least part of the selenium-rich C-terminal domain of Sepp1 is required for uptake. RT-PCR showed that mouse tissues express apoER2 in varying amounts. It is postulated that apoER2-mediated uptake of long isoform Sepp1 is responsible for selenium distribution to tissues throughout the body.  相似文献   

18.
When rat L8 muscle cells were cultured to examine the effects of serum and selenium concentration on selenoprotein W levels and glutathione peroxidase (GPX) activities, no significant differences (P > 0.05) were found in selenoprotein W levels and GPX activities during differentiation. With three different forms of selenium, selenoprotein W levels and GPX activities were shown to increase in L8 myotubes cultured in media with these selenocompounds. Selenite was utilized more efficiently than selenocysteine for both selenoprotein W and GPX activity, but selenium as selenomethionine was less available. Both the protein content and mRNA levels for selenoprotein W were affected by the selenium content of the media. Northern blot data indicated that the expression of selenoprotein W mRNA increased significantly when L8 myotubes were cultured with selenium (P > 0.05). L8 myotubes cultured in 10% calf serum (CS) versus 2% CS with or without addition of 10 m selenium indicated that the increase of selenoprotein W level in L8 myotubes cultured with higher serum concentration (10% CS) is due to the higher selenium concentration in media rather than serum itself.  相似文献   

19.
Selenium is an essential micronutrient important to human health. The main objective of this study is to describe serum selenium and selenoprotein P status in two samples of the Danish population. In addition, the influence of various factors potentially associated with selenium status was investigated.Blood samples from a total of 817 randomly selected subjects from two cities in Denmark were analyzed. Half of the samples were collected in 1997–1998 and the other half in 2004–2005. Samples from women aged 18–22, 40–45 and 60–65 years, and men aged 60–65 years were selected for this study. All subjects had filled in a food frequency questionnaire (FFQ) and a questionnaire with information about smoking habits, alcohol consumption and exercise habits.Mean serum selenium level was 98.7±19.8 μg/L and median selenoprotein P level was 2.72 (2.18–3.49) mg/L. Serum selenium and selenoprotein P increased with age, and selenoprotein P was higher in men than in women. Serum selenium levels decreased by 5% on average from 1997–98 to 2004–05 (P<0.001), whereas selenoprotein P level increased (P<0.001). The intake of fish correlated weakly with serum selenium level (r=0.14, P<0.001) but not with selenoprotein P level. Smoking status, alcohol intake, exercise habits, BMI and medicine use did not influence selenium status.It is concluded that selenium status in this Danish population is at an acceptable level. No major groups with regard to age, sex or lifestyle factors could be identified as being in risk for selenium deficiency.  相似文献   

20.
Selenoprotein P is the second plasma selenoprotein to be purified. It is a glycoprotein and has been shown to be distinct from plasma glutathione peroxidase. This study characterizes selenoprotein P further. Deglycosylation of the protein shifts its migration on sodium dodecyl sulfate-polyacrylamide gel electrophoresis from Mr 57,000 to Mr 43,000, indicating it has a substantial carbohydrate component. Measurement of selenium indicates a selenium content of 7.5 +/- 1.0 atoms/molecule based on a polypeptide weight of 43,000. Amino acid analysis accounts for all the selenium as selenocysteine. The protein is also rich in cysteine (17 residues) and histidine (23 residues). Fragmentation of selenoprotein P by trypsin and by cyanogen bromide produces peptides with varying selenium content. This indicates that selenium-rich regions of the protein exist. The concentration of selenoprotein P determined by radioimmunoassay in serum from control rats is 26.3 +/- 4.5 micrograms/ml and in serum from selenium-deficient rats it is 2.7 +/- 0.8 micrograms/ml. Depletion of selenoprotein P from control serum using an immunoaffinity column indicates that over 60% of serum selenium in the rat is contained in this protein. These results demonstrate that selenoprotein P is the major form of selenium in rat serum. It is the first selenoprotein described which has more than one selenium atom/polypeptide chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号