首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmid pSt04 of Streptococcus thermophilus contains a gene encoding a protein with homology to small heat shock proteins (A. Geis, H. A. M. El Demerdash, and K. J. Heller, Plasmid 50:53-69, 2003). Strains cured from the shsp plasmids showed significantly reduced heat and acid resistance and a lower maximal growth temperature. Transformation of the cloned shsp gene into S. thermophilus St11 lacking a plasmid encoding shsp resulted in increased resistance to incubation at 60 degrees C or pH 3.5 and in the ability to grow at 52 degrees C. A food-grade cloning system for S. thermophilus, based on the plasmid-encoded shsp gene as a selection marker, was developed. This approach allowed selection after transfer of native and recombinant shsp plasmids into different S. thermophilus and Lactococcus lactis strains. Using a recombinant plasmid carrying an erythromycin resistance (Em(r)) gene in addition to shsp, we demonstrated that both markers are equally efficient in selecting for plasmid-bearing cells. The average transformation rates in S. thermophilus (when we were selecting for heat resistance) were determined to be 2.4 x 10(4) and 1.0 x 10(4) CFU/0.5 micro g of DNA, with standard deviations of 0.54 x 10(4) and 0.32 x 10(4), for shsp and Em(r) selection, respectively. When we selected for pH resistance, the average transformation rates were determined to be 2.25 x 10(4) and 3.8 x 10(3) CFU/0.5 micro g of DNA, with standard deviations of 0.63 x 10(4) and 3.48 x 10(3), for shsp and Em(r) selection, respectively. The applicability of shsp as a selection marker was further demonstrated by constructing S. thermophilus plasmid pHRM1 carrying the shsp gene as a selection marker and the restriction-modification genes of another S. thermophilus plasmid as a functional trait.  相似文献   

2.
A Bacteroides fragilis strain resistant to penicillin G, tetracycline, and clindamycin was screened for the presence of plasmid deoxyribonucleic acid (DNA). Agarose gel electrophoresis of ethanol-precipitated DNA from cleared lysates of this strain revealed two plasmid DNA bands. The molecular weights of the plasmids were estimated by their relative mobility in agarose gel and compared with standard plasmids with known molecular weights. The molecular weights were 3.40 +/- 0.20 x 10(6) and 1.95 +/- 0.05 x 10(6) for plasmids pBY1 and pBY2, respectively. Plasmid DNA purified by cesium chloride-ethidium bromide gradient centrifugation was used to transform a restriction- and modification-negative strain of Escherichia coli. Penicillin G- and tetracycline-resistant transformants were screened for the presence of plasmid DNA. A plasmid band corresponding to a molecular weight of 1.95 x 10(6) was present in all transformants tested. Curing experiments demonstrated that the plasmid, referred to as pBY22 when present in transformants, was responsible for penicillin G and tetracycline resistance. Plasmid pBY22 was mobilized and transferred to other E. coli strains by plasmid R1drd-19. Stability of pBY22 was examined in different E. coli strains and was shown to be stably maintained in both restriction-negative and restriction-positive strains. Unexpectedly, pBY2 and pBY22 were resistant to digestion by 12 different restriction endonucleases.  相似文献   

3.
We have developed pBR328-derived vectors which allow highly efficient positive selection of recombinant plasmids. The system is based on the rglB-coded restriction activity of Escherichia coli K-12 directed against 5-methylcytosine (5mC)-containing DNA. The vectors code for cytosine-specific, temperature-sensitive DNA methyltransferases (ts-Mtases), whose specificity elicits RglB restriction. 5mC-free vector DNA - a prerequisite to allow establishment of such plasmids in cells expressing the RglB nuclease activity - can be prepared from cultures grown at 42 degrees C. At 30 degrees C the vector plasmids are vulnerable to RglB restriction due to the expression of suicidal Mtase activity. Cloning a DNA fragment into the ts-Mtase-coding gene disrupts the lethal methylation and thus permits selection of such recombinant plasmids at 30 degrees C. The standard vector used, pBN73, contains unique recognition sites for nine restriction enzymes within the ts-Mtase-coding gene, which can be used independently or in combination for the construction of recombinant plasmids selectable by the rglB-coded activity. Plasmid pBN74, which carries the determinants for both the ts-Mtase and the RglB nuclease, contains seven unique sites within the ts-Mtase-coding gene. While selection of recombinant plasmids derived from pBN73 obligatorily requires the employment of rglB+ strains, selection of pBN74 derivatives can be performed independent of the E. coli-host genotype. It remains to be elucidated whether positive selection of pBN74-derived recombinant plasmids can also be achieved in hosts other than E. coli. Plasmids pBN73, pBN74 and the recombinants are structurally stable. Generally applicable procedures, as developed during the establishment of this vector system, are described; they allow the isolation of ts-Mtases and facilitate the cloning of genes coding for nucleases directed against 5mC-containing DNA.  相似文献   

4.
Covalently closed extrachromosomal deoxyribonucleic acid (DNA) was isolated from alpha-hemolytic wild-type strains of Escherichia coli. Most strains examined were able to transfer the hemolytic property with varying frequencies to nonhemolytic recipient strains. Out of eight naturally isolated alphahemolytic E. coli strains, four contained a set of three different supercoiled DNAs with sedimentation coefficients of 76S (plasmid A), 63S (plasmid B), and 55S (plasmid C). The sedimentation coefficients and the contour lengths of the isolated molecules correspond to molecular weights of 65 x 10(6), 41 x 10(6), and 32 x 10(6). Three alpha-hemolytic wild-type strains carried only one plasmid with a molecular weight of 41 x 10(6), and one strain harbored two plasmids with molecular weights of 41 x 10(6) and 32 x 10(6). Alpha-hemolytic transconjugants were obtained by conjugation of E. coli K-12 with the hemolytic wild-type strains. A detailed examination revealed that plasmids with the same sizes as plasmids B and C of the wild-type strains can be transferred separately or together to the recipients. Both plasmids possess the hemolytic determinant and transfer properties. Plasmid A appears to be, at least in one wild-type strain, an additional transfer factor without a hemolytic determinant. In one case a hemolytic factor was isolated, after conjugation, that is larger in size than plasmid A and appears to be a recombinant of both plasmids B and C.  相似文献   

5.
Thirty-five isolates of Pasteurella haemolytica from cattle or sheep were screened for the presence of plasmids and for resistance to a range of antibiotics. Eight strains (four of serotype A1, three of serotype A2 and one untypable) contained plasmid DNA and isolates of the same serotype had similar plasmid profiles, which were different from those of the other serotypes. All but one of the plasmid-bearing strains were isolated from pneumonic animals or from animals in contact with pneumonic cattle or sheep. In A2 and untypable strains, there was no obvious correlation between antibiotic resistance and the presence of a specific plasmid. In contrast, all plasmid-bearing A1 strains exhibited ampicillin resistance (ApR), which was shown by transfer studies to be plasmid-mediated. Plasmid DNA prepared from E. coli transformants was not routinely detected on ethidium-bromide-stained agarose gels, but could be amplified to detectable levels by treatment of cultures with chloramphenicol (Cm) or by modifying the growth conditions. The ApR plasmids from P. haemolytica were identical by restriction enzyme analysis. Restriction analysis and hybridization data indicated that these plasmids were closely related to the prototype ROB-1 beta-lactamase-encoding plasmid, originally isolated from Haemophilus influenzae. From substrate profiles and isoelectric focusing data, the beta-lactamases encoded by the P. haemolytica plasmids were indistinguishable from the ROB-1 beta-lactamase.  相似文献   

6.
M de Grado  P Castán  J Berenguer 《Plasmid》1999,42(3):241-245
The cloning vector pMK18 was developed through the fusion of the minimal replicative region from an indigenous plasmid of Thermus sp. ATCC27737, a gene cassette encoding a thermostable resistance to kanamycin, and the replicative origin and multiple cloning site of pUC18. Plasmid pMK18 showed transformation efficiencies from 10(8) to 10(9) per microgram of plasmid in Thermus thermophilus HB8 and HB27, both by natural competence and by electroporation. We also show that T. thermophilus HB27 can take pMK18 modified by the Escherichia coli methylation system with the same efficiency as its own DNA. To demonstrate its usefulness as a cloning vector, a gene encoding the beta-subunit of a thermostable nitrate reductase was directly cloned in T. thermophilus HB27 from a gene library. Its further transfer to E. coli also proved its utility as a shuttle vector.  相似文献   

7.
Plasmid pPG1 from Staphylococcus aureus coding for ampicillin (Apr), gentamicin (Gmr) and amikacin (Akr) resistance was transformed into Escherichia coli. Transformation efficiency was about 2 x 10(3) transformants/micrograms of plasmid DNA. The plasmids present in the E. coli transformants were identical to pPG1 according to their restriction patterns. The copy number of pPG1 was estimated to be at least 20-times less in E. coli than in S. aureus. The minimal inhibitory concentrations (MICs) for Ap and Gm were lower in E. coli than in S. aureus. However, the MIC for Ak was higher in E. coli transformants than in S. aureus. pPG1 was maintained in the E. coli transformants for at least 80 generations at 37 degrees C without antibiotic selection pressure.  相似文献   

8.
The shuttle Escherichia coli - Streptomyces plasmids were used to transform S. lividans 66. Plasmid DNAs isolated from this strain transform it 10-1000-fold more efficiently than DNAs from E. coli. Rare transformant cured from most restricted plasmid is more efficient recipient of plasmid DNA from E. coli and has the property of R +/- M+ mutant. Restriction in S. lividans 66 correlates with the appearance in DNA from E. coli of the sites susceptible to Scg2I restriction endonuclease. The latter was isolated earlier from recombinant strain Rcg2, a hybrid between S. griseus Kr. 15 and S. coelicolor A3(2). Scg2I possesses the recognition sequence CCTAGG, like EcoRII, MvaI and Eco dcm methylase. The DNA resistant to Scg2I cleavage retained this ability after in vitro modification by EcoRII methylase. So, the resistance of DNA to Scg2I cleavage is not connected with methylation at 4th and 5th position of second cytosine in the recognition sequence. Neither restriction of plasmid DNA in S. lividans 66 is dependent on dcm modification in E. coli, though its dependence on dam modification is not excluded. It is assumed that the restriction in S. lividans 66 is specified by endonuclease analogous to Scg2I.  相似文献   

9.
Plasmid transformation in Leuconostoc carnosum 4010 was analyzed. A successful transformation protocol for L. carnosum was established by modifying an existing protocol for Lactococcus lactis. Several parameters, including the number of generations that the cells had grown at the time of harvest, glycine concentration, the time of incubation for phenotypic expression, and the electrical field strength, were investigated and proved to have influence on the transformation frequency. Electrocompetence was found to be transient and to peak in the early exponential growth phase. Optimized conditions resulted in transformation frequencies of up to 6.7 x 10(5) transformants per microgram of plasmid DNA. A total of five plasmids in L. carnosum were successfully introduced and maintained. Interestingly, we discovered that DNA uptake was of a frequency of 3 x 10(-6) to 19 x 10(-6) transformants per CFU in the absence of an applied electrical field. We concluded that L. carnosum is naturally competent.  相似文献   

10.
The transposons Tn916 and Tn4001 and a series of integrating plasmids derived from their antibiotic resistance genes were used to examine polyethylene glycol-mediated transformation of Mycoplasma pulmonis. Under optimal conditions, Tn916 and Tn4001 could be introduced into M. pulmonis at frequencies of 1 x 10(-6) and 5 x 10(-5) per CFU, respectively. Integrating plasmids were constructed with the cloned antibiotic resistance determinants of Tn916 and Tn4001, a pMB1-derived plasmid replicon, and mycoplasmal chromosomal DNA and were used to examine recombinational events after transformation into M. pulmonis. Under optimal conditions, chromosomal integrations could be recovered at a frequency of 1 x 10(-4) to 1 x 10(-6) per CFU, depending on the size and nature of the chromosomal insert and the parental plasmid. Integrated plasmids were stable in the absence of selection and could be rescued in Escherichia coli along with adjacent mycoplasma DNA. These studies provide the first direct evidence of a recombination system in the Mollicutes and describe the first E. coli-M. pulmonis shuttle vectors.  相似文献   

11.
12.
C I Masters  K W Minton 《Plasmid》1992,28(3):258-261
Two improved Deinococcus radiodurans-Escherichia coli shuttle vectors have been constructed. pI3 is a 16-kb plasmid that confers chloramphenicol resistance in D. radiodurans (CmR, cat) and ampicillin resistance in E. coli (ApR) and contains a multiple cloning site that does not interrupt sequences necessary for replication or drug resistance in either host. pI304 is a promoter-probe plasmid that is similar to pI3, but lacks the D. radiodurans promoting sequence for the cat gene, while retaining sequences necessary for replication.  相似文献   

13.
W Kokotek  W Lotz 《Gene》1991,98(1):7-13
A mobilizable cloning vector was constructed from defined fragments to serve as a suicide plasmid for site-directed mutagenesis. The new vector, pKOK4, closely resembles plasmid pBR325. However, the inverted duplication existing in the latter was not introduced. The useful cloning sites of pBR325 (EcoRI, HindIII, EcoRV, BamHI, SalI, PstI and PvuI) were retained and are located in one of the three resistance markers, ApR, CmR or TcR, respectively. Also, in pKOK4 the CmR gene retains its own promoter. The mob site of plasmid RP4 was introduced as a 760-bp fragment at a defined location. The mobilization frequency of pKOK4 within Escherichia coli strains is approx. 4 x 10(-2) per recipient cell. The size of pKOK4, deduced from the construction, is 6368 bp. We used pKOK4 for site-directed mutagenesis of hup-specific DNA from Rhizobium leguminosarum B10. Integration of the vector could be distinguished reliably from marker exchange by screening for the antibiotic resistance(s) of the plasmid. This reduced the number of clones to be retested by colony and Southern hybridization to approx. 1% of the original number. Of these, almost 70% contained the desired marker exchange.  相似文献   

14.
Biphasic, chimeric plasmids for the transformation of Agmenellum quadruplicatum PR-6 (Synechococcus sp. strain 7002) were constructed by splicing the 3.0-megadalton cryptic plasmid from strain PR-6 into plasmids pBR322 and pBR325 from Escherichia coli. Transformants of either E. coli or strain PR-6 by these plasmids could be detected on the basis of the drug resistance marker(s) carried by the chimeric plasmids. Plasmid DNA isolated from a PR-6 transformant transformed PR-6 much more efficiently than plasmid DNA prepared from E. coli. Plasmids from which the AvaI recognition site was deleted (AvaI is an isoschizomer of the AquI restriction endonuclease of strain PR-6) also transformed strain PR-6 much more efficiently than did plasmids containing the AvaI recognition site. These and other results suggest that AquI strongly effects plasmid transformation when the donor plasmid contains an unmodified AquI recognition site. Multimeric forms of the chimeric plasmids are also much more efficient at transforming strain PR-6 than are the analogous monomeric forms.  相似文献   

15.
We report the mobilization by cointegration of the gonococcal 5.2 kb beta-lactamase plasmid pSJ5.2 in an Escherichia coli background. Transfer of pSJ5.2 was measured by filter mating assays with five different conjugative plasmids from Enterobacteriaceae and the gonococcal 41 kb tet(M). Plasmid pSJ5.2 was mobilized to E. coli at frequencies of 1.7x10(-6), 9.3x10(-8) and 2.7x10(-5) by the tet(M), R64 drd-33 and N3 conjugative plasmids, respectively. Mobilization of pSJ5.2 by the 41 kb tet(M) conjugative plasmid resulted in stable Amp(R) E. coli transconjugants consisting of pSJ5.2 plasmid with an insertion located in the 2.4 kb BamHI-BamHI fragment. Mobilization of pSJ5.2 by R64drd-33 and N3 conjugative plasmids involved stable cointegrates as detected by Southern Blot with a DIG-labelled PstI-digested pSJ5.2 probe. Restriction analysis of the R64::pSJ5.2 and N3::pSJ5.2 cointegrates and Southern Blot with the pSJ5.2 probe showed that cointegrates formed by deletion of DNA regions within the 1.8 kb BamHI-HindIII fragment of pSJ5.2. The plasmid thus appears to use multiple recombination mechanisms for cointegration with different conjugative plasmids. The complete nucleotide sequence of pSJ5.2 was determined, and will be a useful tool to further investigate the molecular mechanisms leading to its cointegrative transfer.  相似文献   

16.
Two different DNA sequences from the yeast Candida maltosa confer the ability to replicate autonomously to the yeast integrative vector pLD700 on which they are cloned. The recombinant plasmids pLD701 and pLD702 with autonomously replicating sequences (ARS) from Candida maltosa and LEU2 gene from Saccharomyces cerevisiae transform the auxotrophic strain S. cerevisiae DC5 with the efficiency 3-5 x 10(3) per microgram of DNA. Like other yeast vectors harbouring ARS, these plasmids are not stable in yeast cells. Restriction and hybridization analyses have revealed the pLD701 plasmid to contain ARS from chromosomal DNA of C. maltosa. Plasmid pLD701 appears to be a useful vector for yeast transformation.  相似文献   

17.
Mobilizable shuttle plasmids containing the origin of transfer (oriT) region of plasmid F (IncFI), ColIb-P9 (IncI1), and RP4/RP1 (IncPalpha) were constructed to test the ability of the cognate conjugation system to mediate gene transfer from Escherichia coli to Streptomyces. The conjugative system of the IncPalpha plasmids was shown to be most effective in conjugative transfer, giving peak values of (2.7 +/- 0.2) x 10(-2) S. lividans TK24 exconjugants per recipient cell. To assess whether the mating-pair formation system or the DNA-processing apparatus of the IncPalpha plasmids is crucial in conjugative transfer, an assay with an IncQ-based mobilizable plasmid (RSF1010) specifying its own DNA-processing system was developed. Only the IncPalpha plasmid mobilized the construct to S. lividans indicating that the mating-pair formation system is primarly responsible for the promiscuous transfer of the plasmids between E. coli and Streptomyces. Dynamic of conjugative transfer from E. coli to S. lividans was investigated and exconjugants starting from the first hour of mating were obtained.  相似文献   

18.
A stable shuttle vector which replicates in Escherichia coli and Clostridium perfringens was constructed by ligating a 3.6-kilobase (kb) fragment of plasmid pBR322 with C. perfringens plasmid pHB101 (3.1 kb). The marker for this shuttle plasmid originated from the 1.3-kb chloramphenicol resistance gene of plasmid pHR106. The resulting shuttle vector, designated pAK201, is 8 kb in size and codes for resistance to 20 micrograms of chloramphenicol per ml in both E. coli and C. perfringens. Following shuttle vector construction in E. coli, plasmid pAK201 was transformed into E. coli HB101 and C. perfringens ATCC 3624A, using intact cell electroporation. The transformation frequencies were 10(6) and 10(4) transformants per microgram of DNA in E. coli and C. perfringens, respectively. Restriction enzyme analysis of the chimera isolated from transformants of both microorganisms suggested that the plasmids were identical. Reciprocal transformation experiments in E. coli and C. perfringens indicated no difference in transformation frequency. Plasmid pAK201 was stable in C. perfringens following repeated transfer in the absence of chloramphenicol pressure. The restriction map of plasmid pAK201 shows six unique cut sites which should be useful for future genetic analysis and C. perfringens gene library construction.  相似文献   

19.
A stable shuttle vector which replicates in Escherichia coli and Clostridium perfringens was constructed by ligating a 3.6-kilobase (kb) fragment of plasmid pBR322 with C. perfringens plasmid pHB101 (3.1 kb). The marker for this shuttle plasmid originated from the 1.3-kb chloramphenicol resistance gene of plasmid pHR106. The resulting shuttle vector, designated pAK201, is 8 kb in size and codes for resistance to 20 micrograms of chloramphenicol per ml in both E. coli and C. perfringens. Following shuttle vector construction in E. coli, plasmid pAK201 was transformed into E. coli HB101 and C. perfringens ATCC 3624A, using intact cell electroporation. The transformation frequencies were 10(6) and 10(4) transformants per microgram of DNA in E. coli and C. perfringens, respectively. Restriction enzyme analysis of the chimera isolated from transformants of both microorganisms suggested that the plasmids were identical. Reciprocal transformation experiments in E. coli and C. perfringens indicated no difference in transformation frequency. Plasmid pAK201 was stable in C. perfringens following repeated transfer in the absence of chloramphenicol pressure. The restriction map of plasmid pAK201 shows six unique cut sites which should be useful for future genetic analysis and C. perfringens gene library construction.  相似文献   

20.
A plasmid vector for an extreme thermophile, Thermus thermophilus   总被引:7,自引:0,他引:7  
The host-vector system for an extreme thermophile, Thermus thermophilus HB27, was developed. The host strain has a mutation in tryptophan synthetase gene (trpB), and the mutation was determined to be a missense mutation by DNA sequence analysis. A Thermus-E. coli shuttle vector pYK109 was constructed. pYK109 consists of Thermus cryptic plasmid pTT8, tryptophan synthetase gene (trpB) of Thermus T2 and E. coli plasmid vector pUC13. pYK109 transformed T. thermophilus HB27 trpB5 to Trp+ at a frequency of 10(6) transformants per microgram DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号