首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi were isolated from natural soil samples and screened for extracellular dextranase synthesis. The strain F1002 was identified as Hypocrea lixii using a standard internal transcribed spacer ribosomal DNA analysis and was selected for extracellular dextranase synthesis. The enzyme was purified via ammonium sulfate precipitation and Sepharose 6B chromatography, which resulted in an 8.3-fold increase in the specific activity and a 10.73% recovery. This enzyme is a monomeric protein with a molecular mass of 62 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified enzyme, which was identified as an endodextranase, had an optimum pH of 5.0 and an optimum temperature of 25 °C. The dextranase activity was enhanced by Mg2+, Al3+, and especially Zn2+ at a low concentration, which improved its activity to 124.22%. The enzyme has a very high hydrolytic affinity toward high-molecular weight dextrans. Setting the concentrations of the H. lixii F1002 dextranase (2.31 U/mL) and dextrans (6%), as well as the reaction time (45 min), allowed the dextranase to hydrolyze dextrans of controlled molecular weights (20–70 kDa). Three types of oligodextrans with different molecular weights (namely, 69,376, 38,251, and 21,364 Da) were obtained, with a total yield of 80.32%.  相似文献   

2.
Abstract

Most of the reported bioprocesses carried out by the methylotrophic yeast Pichia pastoris have been performed at laboratory scale using high power inputs and pure oxygen, such conditions are not feasible for industrial large-scale processes. In this study, volumetric mass transfer (kLa) and volumetric gassed power input (Pg/V) were evaluated within values attainable in large-scale production as scale-up criteria for recombinant dextranase production by MutS P. pastoris strain. Cultures were oxygen limited when the volumetric gassed power supply was limited to 2?kW m?3. Specific growth rate, and then dextranase production, increased as kLa and Pg/V did. Meanwhile, specific production and methanol consumption rates were constant, due to the limited methanol condition also achieved at 2?L bioprocesses. The specific dextranase production rate was two times higher than the values previously reported for a Mut+ strain. After a scale-up process, at constant kLa, the specific growth rate was kept at 30?L bioprocess, whereas dextranase production decreased, due to the effect of methanol accumulation. Results obtained at 30?L bioprocesses suggest that even under oxygen-limited conditions, methanol saturated conditions are not adequate to express dextranase with the promoter alcohol oxidase. Bioprocesses developed within feasible and scalable operational conditions are of high interest for the commercial production of recombinant proteins from Pichia pastoris.  相似文献   

3.
A dextranase (EC 3.2.1.11) was purified and characterized from the IP-29 strain of Sporothrix schenckii, a dimorphic pathogenic fungus. Growing cells secreted the enzyme into a standard culture medium (20 °C) that supports the mycelial phase. Soluble bacterial dextrans substituted for glucose as substrate with a small decrease in cellular yield but a tenfold increase in the production of dextranase. This enzyme is a monomeric protein with a molecular mass of 79 kDa, a pH optimum of 5.0, and an action pattern against a soluble 170-kDa bacterial dextran that leads to a final mixture of glucose (38%), isomaltose (38%), and branched oligosaccharides (24%). In the presence of 200 mM sodium acetate buffer (pH 5.0), the K m for soluble dextran was 0.067 ± 0.003% (w/v). Salts of Hg2+, (UO2)2+, Pb2+, Cu2+, and Zn2+ inhibited by affecting both V max and K m. The enzyme was most stable between pH values of 4.50 and 4.75, where the half-life at 55 °C was 18 min and the energy of activation for heat denaturation was 99 kcal/mol. S. schenckii dextranase catalyzed the degradation of cross-linked dextran chains in Sephadex G-50 to G-200, and the latter was a good substrate for cell growth at 20 °C. Highly cross-linked grades (i.e., G-10 and G-25) were refractory to hydrolysis. Most strains of S. schenckii from Europe and North America tested positive for dextranase when grown at 20 °C. All of these isolates grew on glucose at 35 °C, a condition that is typically associated with the yeast phase, but they did not express dextranase and were incapable of using dextran as a carbon source at the higher temperature. Received: 29 December 1997 / Accepted: 4 March 1998  相似文献   

4.
Summary Two hundred and fifteen fungal strains were screened for extracellular dextranase production with a diffusion plate method. The best enzymatic activity (12–19 DU ml–1) was achieved byPenicillium notatum 1, a species for which the dextranase productivity has not yet been published. Some of the parameters affecting enzyme production have been standardized. The enzyme in crude state was relatively stable, its maximal activity was at 50°C and at pH 5.0. Conidia of the selected strain were mutagenized, and isolated mutants were tested for production of dextranase in submerged culture. The most active mutant,P. notatum 1-I-77, showed over two-times higher dextranase activity than the parentP. notatum 1  相似文献   

5.
A dextranase gene from Penicillium minioluteum (strain IMI068219) has been cloned, sequenced and expressed in Saccharomyces cerevisiae via fusion of the DNA segment encoding the mature dextranase protein with α-factor signal sequence, and insertion into the GAL1–controlled expression vector pYES2/CT. Galactose-induced expression yielded extracellular dextranase activity of 0.63 units/ml and cell-associated dextranase activity of 0.48 units/ml, after 24 h incubation. The dextranase construct was introduced into a strain of S. cerevisiae expressing the human cytochrome P450 3A4 (CYP3A4) and the cognate reductase, which was then used to develop a microplate toxicity bioassay. Toxicity was signalled as inhibition of dextranase activity, assayed fluorimetrically. This novel bioassay was assessed using six economically significant mycotoxins.  相似文献   

6.
About 500 strains of dextranase producing microorganisms were examined in detail for pH- activity and enzyme stability. A gram positive bacterium identified as belonging to the genus Brevibacterium was found to produce alkaline dextranase. Maximal dextranase synthesis was obtained when grown aerobically at 26°C for 3 days in a medium containing 1 % dextran, 2% ethanol, 1 % polypeptone and 0.05 % yeast extract together with trace amounts of inorganic salts.

Brevibacterium dextranase had an optimum pH of 8.0 for activity at 37°C and an optimal temperature at 53°C at pH 7.5. The enzyme was quite stable over the range of pH 5.0 to 10.5 on 24 hr incubation at 37°C, especially on alkaline pH. The enzyme was also heat stable at 60°C for 10 min.  相似文献   

7.
The complete nucleotide sequence (3,747 bp) of the dextranase gene (dexA) and flanking regions of the chromosome of Streptococcus mutans Ingbritt (serotype c) were determined. The open reading frame for dexA was 2,550 bp, ending with a stop codon TGA. A putative ribosome-binding site, promoter preceding the start codon, and potential stem-loop structure were identified. The presumed dextranase protein (DexA) consisting of 850 amino acids was estimated to have a molecular size of 94,536 Da and a pI of 4.79. The nucleotide sequence and the deduced amino acid sequences of S. mutans dexA exhibited homologies of 57.8% and 47.0%, respectively, to those of Streptococcus sobrinus dex. The homologous region of dex of S. sobrinus was in the N-terminal half. The C terminus of DexA consisted of a hexapeptide LPQTGD, followed by 7 charged amino acids, 21 amino acids with a strongly hydrophobic character, and a charged hexapeptide tail, which have been reported as a common structure of C termini of not only the surface-associated proteins of Gram-positive cocci but also the extracellular enzymes such as β-fructosidase of S. mutans and dextranase of S. sobrinus. The DexA protein had no significant homology with the glucosyltransferases, the glucan-binding protein, or the dextranase inhibitor of mutans streptococci.  相似文献   

8.
Fermentation kinetics of Penicillium aculeatum ATCC 10409 demonstrated that fungal growth and dextranase release are decoupled. Inoculation by conidia or mycelia resulted in identical kinetics. Two new isoenzymes of the dextranase were characterized regarding their kinetic constants, pI, MW, activation energy and stabilities. The larger enzyme was 3-fold more active (turnover number: 2,230 ± 97 s−1). Pre-treatment of bentonite with H2O2 did not affect adsorption characteristics of dextranase. Enzyme to bentonite ratios above 0.5:1 (w/w) resulted in a high conservation of activity upon adsorption. Furthermore, dextranase could be used in co-immobilizates for the direct conversion of sucrose into isomalto-oligosaccharides (e.g. isomaltose). Yields of co-immobilizates were 2–20 times that of basic immobilizates, which consist of dextransucrase without dextranase.  相似文献   

9.
Dental plaque is a biofilm of water-soluble and water-insoluble polysaccharides, produced primarily by Streptococcus mutans. Dextranase can inhibit biofilm formation. Here, a dextranase gene from the marine microorganism Arthrobacter oxydans KQ11-1 is described, and cloned and expressed using E. coli DH5α competent cells. The recombinant enzyme was then purified and its properties were characterized. The optimal temperature and pH were determined to be 60°C and 6.5, respectively. High-performance liquid chromatography data show that the final hydrolysis products were glucose, maltose, maltotriose, and maltotetraose. Thus, dextranase can inhibit the adhesive ability of S. mutans. The minimum biofilm inhibition and reduction concentrations (MBIC50 and MBRC50) of dextranase were 2 U ml?1 and 5 U ml?1, respectively. Scanning electron microscopy and confocal laser scanning microscope (CLSM) observations confirmed that dextranase inhibited biofilm formation and removed previously formed biofilms.  相似文献   

10.
A mutant strain of Lipomyces kononenkoae 2896-3 synthesizing dextranase but resistant to catabolite repression was obtained using N-nitroso-N-methylurea treatment. Enzyme biosynthesis in media with dextran and other carbon sources was then characterized. The capacity of the mutant to produce dextranase when grown on hydrolysed corn starch is demonstrated.  相似文献   

11.
Summary Several environments were sampled in a screening procedure to obtain 23 different dextranase-producing fungal strains. The most productive strains were identified as Penicillium purpurogenum and Paecilomyces lilacinus. The culture medium for P. lilacinus strain 6R was optimized, increasing the initial productivity twofold. The enzyme showed optimal activities at pH 5.4 and 65° C, as well as excellent thermal stability at 60° C. An average K m value of 0.26 g/l was found for dextran over a wide range of substrate molecular mass. The enzyme did not show substrate or product inhibition. From HPLC chromatograms, the 6R dextranase was found to readily reduce dextran to low molecular mass oligosaccharides and isomaltose. An integrated kinetic equation is used to describe batch reactions and application dose. Offprint requests to: A. Lopez-Munguia  相似文献   

12.
Water‐insoluble glucan (WIG) produced by mutans streptococci, an important cariogenic pathogen, plays an important role in the formation of dental biofilm and adhesion of biofilm to tooth surfaces. Glucanohydrolases, such as mutanase (α‐1,3‐glucanase) and dextranase (α‐1,6‐glucanase), are able to hydrolyze WIG. The purposes of this study were to construct bi‐functional chimeric glucanase, composed of mutanase and dextranase, and to examine the effects of this chimeric glucanase on the formation and decomposition of biofilm. The mutanase gene from Paenibacillus humicus NA1123 and the dextranase gene from Streptococcus mutans ATCC 25175 were cloned and ligated into a pE‐SUMOstar Amp plasmid vector. The resultant his‐tagged fusion chimeric glucanase was expressed in Escherichia coli BL21 (DE3) and partially purified. The effects of chimeric glucanase on the formation and decomposition of biofilm formed on a glass surface by Streptococcus sobrinus 6715 glucosyltransferases were then examined. This biofilm was fractionated into firmly adherent, loosely adherent, and non‐adherent WIG fractions. Amounts of WIG in each fraction were determined by a phenol‐sulfuric acid method, and reducing sugars were quantified by the Somogyi–Nelson method. Chimeric glucanase reduced the formation of the total amount of WIG in a dose‐dependent manner, and significant reductions of WIG in the adherent fraction were observed. Moreover, the chimeric glucanase was able to decompose biofilm, being 4.1 times more effective at glucan inhibition of biofilm formation than a mixture of dextranase and mutanase. These results suggest that the chimeric glucanase is useful for prevention of dental biofilm formation.  相似文献   

13.
Random mutagenesis was used to create a library of chimeric dextranase (dex1) genes. A plate-screening protocol was developed with improved thermostability as a selection criterion. The mutant library was screened for active dextranase variants by observing clearing zones on dextran-blue agar plates at 50°C after exposure to 68°C for 2 h, a temperature regime at which wild-type activity was abolished. A number of potentially improved variants were identified by this strategy, five of which were further characterised. DNA sequencing revealed ten nucleotide substitutions, ranging from one to four per variant. Thermal inactivation studies showed reduced (2.9-fold) thermostability for one variant and similar thermostability for a second variant, but confirmed improved thermostability for three mutants with 2.3- (28.9 min) to 6.9-fold (86.6 min) increases in half-lives at 62°C compared to that of the wild-type enzyme (12.6 min). Using a 10-min assay, apparent temperature optima of the variants were similar to that of the wild type (T opt 60°C). However, one of these variants had increased enzyme activity. Therefore, the first-generation dextranase mutant pool obtained in this study has sufficient molecular diversity for further improvements in both thermostability and activity through recombination (gene shuffling).  相似文献   

14.
An artificial fusion protein of Arthrobacter oxydans dextranase and Klebsiella pneumoniae α-amylase was constructed and expressed in Escherichia coli. Most of the expressed protein existed as an insoluble fraction, which was solubilized with urea. The purified fusion enzyme electrophoretically migrated as a single protein band; M = 137 kDa, and exhibited activities of both dextranase (10.8 U mg−1) and amylase (7.1 U mg−1), which were lower than that of reference dextranase (13.3 U mg−1) and α-amylase (103 U mg−1). The fusion enzyme displayed bifunctional enzyme activity at pH 5–7 at 37°C. These attributes potentially make the fusion enzyme more convenient for use in sugar processing than a two-enzyme system.  相似文献   

15.
Nine strains capable of producing dextranase were isolated from soil. Among them, a strain belonging to the genus Aspergillus was chosen as the best producer of the enzyme. The mold produced greater amounts of dextranase than those found in some strains in the genus Penicillium, when grown aerobically at 28°C for 5 to 6 days in medium containing 1% dextran, 1% NaNO3 or polypeptone, 0.2% yeast extracts, 0.4% K2HPO4 and small amounts of inorganic salts, pH 8.5. From the comparative taxonomic experiments, the mold used here was identified to be a strain belonging to Aspergillus carneus.  相似文献   

16.
Extracellular accumulation of high molecular weight DNA was further studied using Pseudomonas species. More efficient production was obtained by the use of glucose-grown seed culture and by controlling the broth-pH at around 6.0 for first 24 hr and then around 8.0 during the fermentation. The maximum yield was 5 to 6 g per liter of the broth culture, which corresponded to 10-fold of that reported in the previous work.

Purified DNA (4 × 106 daltons) was obtained successfully by applying an aqueous biphase system of dextran-polyethyleneglycol and dextranase.

Significant release of DNA occurred only with cell lysis of H-paraffin-grown bacteria. The primary cause of rapid lysis was explained by the exhaustion of cellular glucose pool. Relation of DNA accumulation to the effect of rhamnolipids on cell membrane was also investigated.  相似文献   

17.
The microbial production of dextranase using cheap carbon sources is beneficial to solve the economic loss caused by the accumulation of dextran in syrup. A food-grade microbial cell factory was constructed by introducing the dextranase encoding gene DEX from Chaetomium gracile to the chromosome of Bacillus subtilis, and the antibiotic resistance marker gene was subsequently deleted via the Cre/loxP strategy. The dual-promoter system with a sequentially arranged constitutive P43 promoter resulted in an 85 % increase in DEX expression. Under the optimal fermentation conditions of 10 g/L maltose, 15 g/L casein, 1 g/L Na2HPO4, 1 g/L FeSO4 and 8 g/L NaCl, DEX activity was increased from 2.625 to 64.34 U/mL. Recombinant DEX was purified 5.98-fold with a recovery ratio of 26.67 % and specific activity of 3935.02 U/mg. Enzyme activity was optimal at 55 °C and pH 5.0 and remained 80.34 % and 71.36 % of the initial activity at 55 °C and pH 4.0 after 60 min, respectively. The enzyme possessed high activity in the presence of Co2+, while Ag+ showed the strongest inhibition ability. The optimal substrate was 20 g/L dextran T-2000. The findings could facilitate the low-cost, large-scale production of food-grade DEX for use in the sugar industry.  相似文献   

18.
Two dextranase isoenzymes [endo-(1,6)-α-d-glucan-6-glucanohydrolase, EC 3.2.1.11] have been isolated from a crude enzyme powder prepared from the culture supernatant of Paecilomyces lilacinus. Purification was achieved by means of a two-stage ion-exchange chromatography on DEAE-cellulose. Dextranase I was recovered with a 35.3-fold increase in specific activity and a yield of 16%; dextranase II was purified 19-fold with a yield of 4%. The characteristics of the isoenzymes were very similar; both exhibited maximum hydrolytic activity at pH 4.5 and 55°C. Activation energies for thermal inactivation were 402 and 330 kJ mol?1 for dextranase I and II, respectively. The dextranases were not inhibited by EDTA or N-ethylmaleimide.  相似文献   

19.
The gene (dex), which encodes the Streptococcus mutans dextranase (Dex), was cloned in Escherichia coli. The E. coli host harboring a recombinant plasmid (pSD2) containing an 8-kb BamHI insert produced a Dex protein of 133 kDa as well as smaller enzymes of 118, 104, and 88 kDa. The Dex produced by the recombinant E. coli was apparently located in the cytoplasmic fraction, not in the periplasmic nor the extracellular fractions. Subcloning and deletion analysis of pSD2 showed that the structural gene of Dex was encoded by a 4-kb BamHI-SalI fragment. The fragment also contained the dex promoter which was effective in the E. coli cell.  相似文献   

20.
Dextranases catalyze the hydrolysis of the α-l,6-glucosidic bond of the polysaccharide dextran. Dextranases have been isolated from bacteria, yeast and fungi. Purified dextranase enzyme from Penicillium sp. was PEGylated (polyethylene glycol modification) with mPEG (5000 Da) and showed an increase in the dextranase protein molecular weight as estimated by Superose 12 (23 ml) column and this increment in the molecular weight is directly proportional to mPEG (5000 Da) concentration until a complete dextranase enzyme PEGylation (disappearance of dextranase peak). The residual activity of partially PEGylated dextranase (mPEG 5000 of 5.8 mg/ml) was 33.8% and for the completely PEGylated dextranase (mPEG 5000 of 29 mg/ml) it was 25.75%. Dextranase PEGylated with mPEG (30,000 Da) showed a little PEGylation at mPEG concentration of 5.8 mg/ml but at a concentration of 29 mg/ml several PEGylated peaks were produced with a difference in dextranase activity toward dextran T500, retardation in the activity with the increasing in the molecular weight was clearly appeared with Sephadex G75 but for Sephadex G200 a little retardation than Sephadex G75 has been appeared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号