首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A collection of 126 monoclonal antibodies (mAbs) made against acetylcholine receptors (AChRs) from the electric organs of Torpedo californica or Electrophorus electricus was tested for cross-reactivity with AChRs in cryostat sections of skeletal muscle from Rana pipiens and Xenopus laevis by indirect immunofluorescence. 49 mAbs (39%) cross-reacted with AChRs from Rana, and 25 mAbs (20%) cross-reacted with AChRs from Xenopus. mAbs specific for each of the four subunits of electric organ AChR (alpha, beta, gamma, delta) cross-reacted with AChRs from each amphibian species. mAbs cross-reacting with Xenopus AChRs were, with one exception, a subset of the mAbs cross-reacting with Rana AChRs. The major difference detected between the two species was in binding by mAbs specific for the main immunogenic region (MIR) of the alpha-subunit. Whereas 22 of 33 anti-MIR mAbs tested cross-reacted with Rana AChRs, only one of these mAbs cross-reacted with Xenopus AChRs. Some (32) of the cross-reacting mAbs were tested for binding to AChRs in intact muscle. 21 of these mAbs bound to AChRs only when membranes were made permeable with saponin. Electron microscopy using immunoperoxidase or colloidal gold techniques revealed that these mAbs recognize cytoplasmic determinants and that mAbs that do not require saponin in order to bind AChRs in intact muscle recognize extracellular determinants. These results suggest that AChRs in skeletal muscle of Rana and Xenopus are composed of subunits corresponding to the alpha-, beta-, gamma-, and delta-subunits of AChRs from fish electric organs. The subunit specificity of mAbs whose binding was examined by electron microscopy suggests that parts of each subunit (alpha, beta, gamma, delta) are exposed on the cytoplasmic surface and that, as in AChRs from fish electric organs and mammalian muscle, the MIR on alpha-subunits of Rana AChRs is exposed on the extracellular surface.  相似文献   

2.
We characterized the functional and molecular properties of nicotinic acetylcholine receptors (AChRs) expressed by IMR-32, a human neuroblastoma cell line, and compared them to human alpha3 AChRs expressed in stably transfected human embryonic kidney (HEK) cells. IMR-32 cells, like neurons of autonomic ganglia, have been shown to express alpha3, alpha5, alpha7, beta2, and beta4 AChR subunits. From these subunits, several types of alpha3 AChRs as well as homomeric alpha7 AChRs could be formed. However, as we show, the properties of functional AChRs in these cells overwhelmingly reflect alpha3beta4 AChRs. alpha7 AChR function was not detected, yet we estimate that there are 70% as many surface alpha7 AChRs in IMR-32 when compared with alpha3 AChRs. Agonist potencies (EC(50) values) followed the rank order of 1,1-dimethyl-4-phenylpiperazinium (DMPP; 16+/-1 microM) > nicotine (Nic; 48 +/- 7 microM) > or = cytisine (Cyt; 57 +/- 3 microM) = acetylcholine (ACh; 59 +/- 6 microM). All agonists exhibited efficacies of at least 80% relative to ACh. The currents showed strong inward rectification and desensitized at a rate of 3 s(-1) (300 microM ACh; -60 mV). Assays that used mAbs confirmed the predominance of alpha3- and beta4-containing AChRs in IMR-32 cells. Although 18% of total alpha3 AChRs contained beta2 subunits, no beta2 subunit was detected on the cell surface. Chronic Nic incubation increased the amount of total, but not surface alpha3beta2 AChRs in IMR-32 cells. Nic incubation and reduced culture temperature increased total and surface AChRs in alpha3beta2 transfected HEK cells. Characterization of various alpha3 AChRs expressed in HEK cell lines revealed that the functional properties of the alpha3beta4 cell line best matched those found for IMR-32 cells. The rank order of agonist potencies (EC(50) values) for this line was DMPP (14 +/- 1 microM) = Cyt (18 +/- 1 microM) > Nic (56 +/- 15 microM > ACh (79 +/- 8 microM). The efficacies of both Cyt and DMPP were approximately 80% when compared with ACh and the desensitization rate was 2 s(-1). These data show that even with the potential to express several human nicotinic AChR subtypes, the functional properties of AChRs expressed by IMR-32 are completely attributable to alpha3beta4 AChRs.  相似文献   

3.
The formation and survival of nerve-induced clusters of acetylcholine receptors (AChRs) was monitored over a synaptogenic period of several days in cultures of myotomal muscle cells and spinal cord neurons derived from embryos of Xenopus laevis. AChRs were labeled with fluorescent alpha-bungarotoxin so that neurite-associated receptor patches (NARPs) could be viewed at daily intervals throughout the neuritic arbor of selected neurons. To avoid bleaching the NARPs and damaging the neurons, the intensity of the fluorescence excitation was reduced to 3%. Images were digitized and NARPs were measured with a computer-based image analysis system. Virtually all newly formed NARPs (greater than 90%) were detected at the same time as neurite-muscle contact and in the same proximal-distal sequence as neuritic growth. Those which formed in 6- to 13-day-old cocultures had similar distributions with respect to length, area, intensity, and area X intensity to those which formed in 1- to 2-day-old cocultures. NARPs exhibited variable daily changes in these parameters but on average they grew and reached close to their ultimate values within 1-2 days. Almost all (greater than 95%) survived as long as their contacts. In cases where NARP formation occurred on the same muscle on 2 or more different days, the ones which formed first were the most extensive. Spontaneous neurite withdrawal occurred mainly from young NARPs and resulted in their rapid disappearance. It is suggested that during the period when neurons grow and make new contacts with muscle cells there is no substantial change in their capacity to trigger the formation of new synaptic sites and maintain preexisting ones, and that the first-forming synapses on a muscle cell tend to be the largest because muscle cells have a limited capacity to generate postsynaptic membrane. Additional implications of the findings for synapse formation and elimination are discussed.  相似文献   

4.
The formation of acetylcholine receptor (AChR) clusters at the neuromuscular junction was investigated by observing the sequential changes in AChR cluster distribution on cultured Xenopus muscle cells. AChRs were labeled with tetramethylrhodamine-conjugated alpha-bungarotoxin (TMR-alpha BT). Before innervation AChRs were distributed over the entire surface of muscle cells with occasional spots of high density (hot spots). When the nerve contacted the muscle cell, the large existing hot spots disappeared and small AChR clusters (less than 1 micron in diameter) initially emerged from the background along the area of nerve contact. They grew in size, increased in number, and fused to form larger clusters over a period of 1 or 2 days. Receptor clusters did not migrate as a whole as observed during "cap" formation in B lymphocytes. The rate of recruitment of AChRs at the nerve-muscle junction varied from less than 50 binding sites to 1000 sites/hr for alpha BT. In this study the diffusion-trap mechanism was tested for the nerve-induced receptor accumulation. The diffusion coefficient of diffusely distributed AChRs was measured using the fluorescence photobleaching recovery method and found to be 2.45 X 10(-10) cm2/sec at 22 degrees C. There was no significant difference in these values among the muscle cells cultured without nerve, the non-nerve-contacted muscle cells in nerve-muscle cultures, and the nerve-contacted muscle cells. It was found that the diffusion of receptors in the membrane is not rate-limiting for AChR accumulation.  相似文献   

5.
《The Journal of cell biology》1995,129(4):1093-1101
The distribution of alpha-dystroglycan (alpha DG) relative to acetylcholine receptors (AChRs) and neural agrin was examined by immunofluorescent staining with mAb IIH6 in cultures of nerve and muscle cells derived from Xenopus embryos. In Western blots probed with mAb IIH6, alpha DG was evident in membrane extracts of Xenopus muscle but not brain. alpha DG immunofluorescence was present at virtually all synaptic clusters of AChRs and neural agrin. Even microclusters of AChRs and agrin at synapses no older than 1-2 h (the earliest examined) had alpha DG associated with them. alpha DG was also colocalized at the submicrometer level with AChRs at nonsynaptic clusters that have little or no agrin. The number of large (> 4 microns) nonsynaptic clusters of alpha DG, like the number of large nonsynaptic clusters of AChRs, was much lower on innervated than on noninnervated cells. When mAb IIH6 was included in the culture medium, the large nonsynaptic clusters appeared fragmented and less compact, but the accumulation of agrin and AChRs along nerve-muscle contacts was not prevented. It is concluded that during nerve-muscle synaptogenesis, alpha DG undergoes the same nerve- induced changes in distribution as AChRs. We propose a diffusion trap model in which the alpha DG-transmembrane complex participates in the anchoring and recruitment of AChRs and alpha DG during the formation of synaptic as well as nonsynaptic AChR clusters.  相似文献   

6.
The effect of ultrasound (2.64 MHz, 0.5 W/cm2) on acetylcholine-induced (ACh-induced) current and surface distribution of ACh receptors (AChRs) were studied in neurons of the mollusc Helix pomatia. Upon switching on the ultrasound a negligibly small transient two-phase transmembrane current appeared; prolonged (5-25 min) action of beamed ultrasound waves significantly depressed the ACh-induced chloride current and caused the disappearance of functional nicotinic AChRs on parts of the neuronal soma distant from the axon. Pharmacological studies showed that the disappeared AChRs were responsible for changes in membrane permeability for chloride ions (AChRsCl). The results obtained in the present study indicate that ultrasound may be used as a selective inhibitor of AChRsCl in molluscan neurons.  相似文献   

7.
The clustering of nicotinic acetylcholine receptors (AChRs) is one of the first events observed during formation of the neuromuscular junction. To determine the mechanism involved in AChR clustering, we established a nonmuscle cell line (mouse fibroblast L cells) that stably expresses just one muscle-specific gene product, the AChR. We have shown that when Torpedo californica AChRs are expressed in fibroblasts, their immunological, biochemical, and electrophysiological properties all indicate that fully functional cell surface AChRs are produced. In the present study, the cell surface distribution and stability of Torpedo AChRs expressed in fibroblasts (AChR-fibroblasts) were analyzed and shown to be similar to nonclustered AChRs expressed in muscle cells. AChR-fibroblasts incubated with antibodies directed against the AChR induced the formation of small AChR microclusters (less than 0.5 micron 2) and caused an increase in the internalization rate and degradation of surface AChRs (antigenic modulation) in a manner similar to that observed in muscle cells. Two disparate sources of AChR clustering factors, extracellular matrix isolated from Torpedo electric organ and conditioned media from a rodent neuroblastoma-glioma hybrid cell line, each induced large (1-3 microns 2), stable AChR clusters with no change in the level of surface AChR expression. By exploiting the temperature-sensitive nature of Torpedo AChR assembly, we were able to demonstrate that factor-induced clusters were produced by mobilization of preexisting surface AChRs, not by directed insertion of newly synthesized AChRs. AChR clusters were never observed in the absence of extracellular synaptic factors. Our results suggest that these factors can interact directly with the AChR.  相似文献   

8.
9.
Agrin is an extracellular synaptic protein that organizes the postsynaptic apparatus, including acetylcholine receptors (AChRs), of the neuromuscular junction. The COOH-terminal portion of agrin has full AChR-aggregating activity in culture, and includes three globular domains, G1, G2, and G3. Portions of the agrin protein containing these domains bind to different cell surface proteins of muscle cells, including alpha-dystroglycan (G1-G2) and heparan sulfate proteoglycans (G2), whereas the G3 domain is sufficient to aggregate AChRs. We sought to determine whether the G1 and G2 domains of agrin potentiate agrin activity in vivo, as they do in culture. Fragments from the COOH-terminal of a neuronal agrin isoform (4,8) containing G3, both G2 and G3, or all three G domains were overexpressed in Xenopus embryos during neuromuscular synapse formation in myotomal muscles. RNA encoding these fragments of rat agrin was injected into one-cell embryos. All three fragments increased the ectopic aggregation of AChRs in noninnervated regions near the center of myotomes. Surprisingly, ectopic aggregation was more pronounced after overexpression of the smallest fragment, which lacks the heparin- and alpha-dystroglycan-binding domains. Synaptic AChR aggregation was decreased in embryos overexpressing the fragments, suggesting a competition between endogenous agrin secreted by nerve terminals and exogenous agrin fragments secreted by muscle cells. These results suggest that binding of the larger agrin fragments to alpha-dystroglycan and/or heparan sulfate proteoglycans may sequester the fragments and inhibit their activity in embryonic muscle. These intermolecular interactions may regulate agrin activity and differentiation of the neuromuscular junction in vivo.  相似文献   

10.
Protein tyrosine kinase (PTK) inhibitors were used to examine the roles of tyrosine phosphorylation in synaptic function. We show here that two different PTK inhibitors, herbimycin A and lavendustin A, both selectively downregulate a subpopulation of nicotinic acetylcholine receptors (AChRs) on chick ciliary ganglion neurons in culture. The downregulation requires a number of hours to occur and involves only those receptors containing the α3, α5, and β4 gene products. Not affected are AChRs that additionally contain the β2 gene product or AChRs that are made up of the α7 gene product. The downregulation preferentially targets receptors destined for the cell surface and has little effect on the large pool of intracellular receptors. The receptor loss is not additive with that seen in the presence of either cycloheximide or tunicamycin, two compounds that the block appearance of new receptors. The downregulation induced by herbimycin A in surface receptors is accompanied by a specific decrement in the amount of α3 protein in the cells. The results indicate that PTKs, either by phosphorylating AChR gene products directly or by acting through intermediary proteins, regulate the size and composition of the AChR pool maintained on the cell surface. Receptor regulation by PTKs may provide a mechanism for long-term control of synaptic signaling between neurons. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Nicotinic acetylcholine receptors (AChRs) are localized at high concentrations in the postsynaptic membrane of the neuromuscular junction. A peripheral membrane protein of Mr 43,000 (43K protein) is closely associated with AChRs and has been proposed to anchor receptors at postsynaptic sites. We have used the Xenopus oocyte expression system to test the idea that the 43K protein clusters AChRs. Mouse muscle AChRs expressed in oocytes after injection of RNA encoding receptor subunits are uniformly distributed in the surface membrane. Coinjection of AChR RNA and RNA encoding the mouse muscle 43K protein causes AChRs to form clusters of 0.5-1.5 microns diameter. AChR clustering is not a consequence of increased receptor expression in the surface membrane or nonspecific clustering of all membrane proteins. The 43K protein is colocalized with AChRs in clusters when the two proteins are expressed together and forms clusters of similar size even in the absence of AChRs. These results provide direct evidence that the 43K protein causes clustering of AChRs and suggest that regulation of 43K protein clustering may be a key step in neuromuscular synaptogenesis.  相似文献   

12.
Nicotinic acetylcholine receptors (AChRs) are a family of acetylcholine-gated cation channels that form the predominant excitatory neurotransmitter receptors on muscles and nerves in the peripheral nervous system. AChRs are also expressed on neurons in lower amounts throughout the central nervous system. AChRs are even being reported on unexpected cell types such as keratinocytes. Structures of these AChRs are being determined with increasing precision, but functions of some orphan subunits are just beginning to be established. Functional roles for postsynaptic AChRs in muscle are well known, but in neurons the post-, peri-, extra-, and presynaptic roles of AChRs are just being revealed. Pathogenic roles of AChRs are being discovered in many diseases involving mechanisms ranging from mutations, to autoimmune responses, to the unknown; involving cell types ranging from muscles, to neurons, to keratinocytes; and involving signs and symptoms ranging from muscle weakness to epilepsy, to neurodegenerative disease, to psychiatric disease, to nicotine addiction. Awareness of AChR involvement in some of these diseases has provoked new interests in development of therapeutic agonists for specific AChR subtypes and the use of expressed cloned AChR subunits as possible immunotherapeutic agents. Highlights of recent developments in these areas will be briefly reviewed.  相似文献   

13.
Functional α7 nicotinic acetylcholine receptors (AChRs) do not assemble efficiently in cells transfected with α7 subunits unless the cells are also transfected with the chaperone protein RIC-3. Despite the presence of RIC-3, large amounts of these subunits remain improperly assembled. Thus, additional chaperone proteins are probably required for efficient assembly of α7 AChRs. Cholinergic ligands can act as pharmacological chaperones to promote assembly of mature AChRs and upregulate the amount of functional AChRs. In addition, we have found that the chemical chaperones 4-phenylbutyric acid (PBA) and valproic acid (VPA) greatly increase the amount of functional α7 AChRs produced in a cell line expressing both α7 and RIC-3. Increased α7 AChR expression allows assay of drug action using a membrane potential-sensitive fluorescent indicator. Both PBA and VPA also increase α7 expression in the SH-SY5Y neuroblastoma cell line that endogenously expresses α7 AChRs. VPA increases expression of endogenous α7 AChRs in hippocampal neurons but PBA does not. RIC-3 is insufficient for optimal assembly of α7 AChRs, but provides assay conditions for detecting additional chaperones. Chemical chaperones are a useful pragmatic approach to express high levels of human α7 AChRs for drug selection and characterization and possibly to increase α7 expression in vivo.  相似文献   

14.
Imbalances of beta-adrenoceptor (beta-AR) and muscarinic ACh receptor (mAChR) input are thought to underlie perinatal cardiovascular abnormalities in conditions such as sudden infant death syndrome. Administration of isoproterenol, a beta(1)/beta(2)-AR agonist, to neonatal rats on postnatal days (PN) 2-5 caused downregulation of cardiac m(2)AChRs and a corresponding decrement in their control of adenylyl cyclase activity. Terbutaline, a beta(2)-selective agonist that crosses the placenta and the blood-brain barrier, was also effective when given either on PN 2-5 or during gestational days 17-20. Terbutaline failed to downregulate brain m(2)AChRs, even though it downregulated beta-ARs; beta-ARs and m(2)AChRs are located on different cell populations in the brain, but they are on the same cells in the heart. Destruction of catecholaminergic neurons with neonatal 6-hydroxydopamine upregulated cardiac but not brain m(2)AChRs. These results suggest that perinatal beta-AR stimulation shifts cardiac receptor production away from the generation of m(2)AChRs so that the development of sympathetic innervation acts as a negative modulator of cholinergic function. Accordingly, tocolytic therapy with beta-AR agonists may compromise the perinatal balance of adrenergic and cholinergic inputs.  相似文献   

15.
The clustering of acetylcholine receptors (AChRs) in skeletal muscle fibers is a critical event in neuromuscular synaptogenesis. AChRs in concert with other molecules form postsynaptic scaffolds in response to agrin released from motor neurons as motor neurons near skeletal muscle fibers in development. Agrin drives an intracellular signaling pathway that precedes AChR clustering and includes the tyrosine phosphorylation of AChRs. In C2C12 myotube culture, agrin application stimulates the agrin signaling pathway and AChR clustering. Previous studies have determined that the frequency of spontaneous AChR clustering is decreased and AChRs are partially inactivated when bound by the acetylcholine agonist nicotine. We hypothesized that nicotine interferes with AChR clustering and consequent postsynaptic scaffold formation. In the present study, C2C12 myoblasts were cultured with growth medium to stimulate proliferation and then differentiation medium to stimulate fusion into myotubes. They were bathed in a physiologically relevant concentration of nicotine and then subject to agrin treatment after myotube formation. Our results demonstrate that nicotine decreases agrin-induced tyrosine phosphorylation of AChRs and decreases the frequency of spontaneous as well as agrin-induced AChR clustering. We conclude that nicotine interferes with postsynaptic scaffold formation by preventing the tyrosine phosphorylation of AChRs, an agrin signaling event that precedes AChR clustering.  相似文献   

16.
The calcium sensor protein visinin-like protein-1 (VILIP-1) was isolated from a brain cDNA yeast two-hybrid library using the large cytoplasmic domain of the alpha4 subunit as a bait. VILIP-1 is a myristoylated calcium sensor protein that contains three functional calcium binding EF-hand motifs. The alpha4 subunit residues 302-339 were found to be essential for the interaction with VILIP-1. VILIP-1 coimmunopurified with detergent-solubilized recombinant alpha4beta2 acetylcholine receptors (AChRs) expressed in tsA201 cells and with native alpha4 AChRs isolated from brain. Coexpression of VILIP-1 with recombinant alpha4beta2 AChRs up-regulated their surface expression levels approximately 2-fold and increased their agonist sensitivity to acetylcholine approximately 3-fold. The modulation of the recombinant alpha4beta2 AChRs by VILIP-1 was attenuated in VILIP-1 mutants that lacked the ability to be myristoylated or to bind calcium. Collectively, these results suggest that VILIP-1 represents a novel modulator of alpha4beta2 AChRs that increases their surface expression levels and agonist sensitivity in response to changes in the intracellular levels of calcium.  相似文献   

17.
P B Sargent  D Z Pang 《Neuron》1988,1(9):877-886
Acetylcholine receptor (AChR)-like molecules are found in clusters on the surface of parasympathetic neurons in the frog cardiac ganglion. Electron microscopy of immunoperoxidase-stained tissue reveals that in normally innervated ganglia most of these clusters are located at synaptic sites. Denervation for 2-3 weeks results in a 64% reduction in the total surface area occupied by AChR-like clusters; this change is brought about by the combined effects of a 4-fold decrease in cluster size and a 30% increase in cluster number. Denervation also changes the distribution of AChR-like clusters: clusters, normally restricted to portions of the cell surface, are more widely distributed following denervation. Denervation of amphibian skeletal muscle for a comparable period of time has no effect on the size or the number of synaptic clusters of AChRs. These results suggest that AChRs in nerve and in muscle are regulated differently by innervation.  相似文献   

18.
alpha-Bungarotoxin (alpha Bgt) is a potent, high-affinity antagonist for nicotinic acetylcholine receptors (AChRs) from muscle, but not for AChRs from neurons. Both muscle and neuronal AChRs are thought to be formed from multiple homologous subunits aligned around a central cation channel whose opening is regulated by ACh binding. In contrast, the exact structure and function of high-affinity alpha Bgt binding proteins (alpha BgtBPs) found in avian and mammalian neurons remain unknown. Here we show that cDNA clones encoding alpha BgtBP alpha 1 and alpha 2 subunits define alpha BgtBPs as members of a gene family within the ligand-gated ion channel gene superfamily, but distinct from the gene families of AChRs from muscles and nerves. Subunit-specific monoclonal antibodies raised against bacterially expressed alpha BgtBP alpha 1 and alpha 2 subunit fragments reveal the existence of at least two different alpha BgtBP subtypes in embryonic day 18 chicken brains. More than 75% of all alpha BgtBPs have the alpha 1 subunit, but no alpha 2 subunit, and a minor alpha BgtBP subtype (approximately 15%) has both the alpha 1 and alpha 2 subunits.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号