首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protective immunity to the fungus Candida albicans is mediated by Ag-specific Th1 cells. Paradoxically, some Th2 cytokines are required for the maintenance of Th1-mediated immune resistance to the fungus. Therefore, in addition to the Th1/Th2 balance, other mechanisms seem to be involved in the regulation of Th1 immunity to the fungus. Here we show that CD4(+)CD25(+) T cells, negatively regulating antifungal Th1 reactivity, are generated in mice with candidiasis. CD4(+)CD25(+) T cells were not generated in B7-2- or CD28-deficient mice or in condition of IL-10 signaling deficiency. Accordingly, although capable of efficiently restricting the fungal growth, these mice experienced inflammatory pathology and were incapable of resistance to reinfection. CD4(+)CD25(+) T cells poorly proliferated in vitro; were highly enriched for cells producing IL-4, IL-10, and TGF-beta; and required IL-10-producing, Candida hypha-activated dendritic cells for generation. Adoptive transfer of CD4(+)CD25(+) T cells or IL-10-producing dendritic cells restored resistance to reinfection and decreased inflammation in B7-2-deficient mice. These results show that oral tolerance induced by Candida hyphae is required for the occurrence of long-lasting protective immunity after yeast priming. The implication is that preventing reactivation rather than favoring sterilizing immunity to ubiquitous fungal pathogens may represent the ultimate expectation of vaccine-based strategies.  相似文献   

2.
Aspergilli are respiratory pathogens and pulmonary infections are usually acquired through the inhalation of conidia, able to reach small airways and the alveolar space where the impaired host defense mechanisms allow hyphal germination and subsequent tissue invasion. The invasive pulmonary aspergillosis is the most common manifestation of Aspergillus fumigatus infection in immunocompromised patients and is characterized by hyphal invasion and destruction of pulmonary tissue. A Th1/Th2 dysregulation and a switch to a Th2 immune response may contribute to the development and unfavorable outcome of invasive pulmonary aspergillosis. Dendritic cells (DC) have a primary role in surveillance for pathogens at the mucosal surfaces and are recognized as the initiators of immune responses to them. In the present study, we assessed the functional activity of pulmonary DC in response to A. fumigatus conidia and hyphae, both in vitro and in vivo. We analyzed mechanisms and receptors for phagocytosis by DC as well as DC migration, maturation, and Th priming in vivo upon exposure to either form of the fungus. We found a remarkable functional plasticity of DC in response to the different forms of the fungus, as pulmonary DC were able to: 1) internalize conidia and hyphae of A. fumigatus through distinct phagocytic mechanisms and recognition receptors; 2) discriminate between the different forms in terms of cytokine production; 3) undergo functional maturation upon migration to the draining lymph nodes and spleens; and 4) instruct local and peripheral Th cell reactivity to the fungus.  相似文献   

3.
To find out whether polymorphonuclear neutrophils (PMN), abundantly recruited in disseminated Candida albicans infection, could directly affect the activation of Th cells we addressed the issues as to whether murine PMN, like their human counterparts, express costimulatory molecules and the functional consequence of this expression in terms of antifungal immune resistance. To this purpose, we assessed 1) the expression of CD80 (B7-1) and CD86 (B7-2) molecules on peripheral, splenic, and inflammatory murine Gr-1+ PMN; 2) its modulation upon interaction with C. albicans in vitro, in vivo, and in human PMN; 3) the effect of Candida exposure on the ability of murine PMN to affect CD4+ Th1 cell proliferation and cytokine production; and 4) the mechanism responsible for this effect. Murine PMN constitutively expressed CD80 molecules on both the surface and intracellularly; however, in both murine and human PMN, CD80 expression was differentially modulated upon interaction with Candida yeasts or hyphae in vitro as well as in infected mice. The expression of the CD86 molecule was neither constitutive nor inducible upon exposure to the fungus. In vitro, Gr-1+ PMN were found to inhibit the activation of IFN-gamma-producing CD4+ T cells and to induce apoptosis through a CD80/CD28-dependent mechanism. A population of CD80+Gr-1+ myeloid cells was found to be expanded in conventional as well as in bone marrow-transplanted mice with disseminated candidiasis, but its depletion increased the IFN-gamma-mediated antifungal resistance. These data indicate that alternatively activated PMN expressing CD80 may adversely affect Th1-dependent resistance in fungal infections.  相似文献   

4.
In vitro studies have indicated the importance of Toll-like receptor (TLR) signaling in response to the fungal pathogens Candida albicans and Aspergillus fumigatus. However, the functional consequences of the complex interplay between fungal morphogenesis and TLR signaling in vivo remain largely undefined. In this study we evaluate the impact of the IL-1R/TLR/myeloid differentiation primary response gene 88 (MyD88)-dependent signaling pathway on the innate and adaptive Th immunities to C. albicans and A. fumigatus in vivo. It was found that 1) the MyD88-dependent pathway is required for resistance to both fungi; 2) the involvement of the MyD88 adapter may occur through signaling by distinct members of the IL-1R/TLR superfamily, including IL-1R, TLR2, TLR4, and TLR9, with the proportional role of the individual receptors varying depending on fungal species, fungal morphotypes, and route of infection; 3) individual TLRs and IL-1R activate specialized antifungal effector functions on neutrophils, which correlates with susceptibility to infection; and 4) MyD88-dependent signaling on dendritic cells is crucial for priming antifungal Th1 responses. Thus, the finding that the innate and adaptive immunities to C. albicans and A. fumigatus require the coordinated action of distinct members of the IL-1R/TLR superfamily acting through MyD88 makes TLR manipulation amenable to the induction of host resistance to fungi.  相似文献   

5.
Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of world-wide importance. As the induction of cell-mediated immunity to Hc is of critical importance in host defense, we sought to determine whether dendritic cells (DC) could function as a primary APC for this pathogenic fungus. DC obtained by culture of human monocytes in the presence of GM-CSF and IL-4 phagocytosed Hc yeasts in a time-dependent manner. Upon ingestion, the intracellular growth of yeasts within DC was completely inhibited compared with rapid growth within human macrophages. Electron microscopy of DC with ingested Hc revealed that many of the yeasts were degraded as early as 2 h postingestion. In contrast to macrophages, human DC recognized Hc yeasts via the fibronectin receptor, very late Ag-5, and not via CD18 receptors. DC stimulated Hc-specific lymphocyte proliferation in a concentration-dependent manner after phagocytosis of viable and heat-killed Hc yeasts, but greater proliferation was achieved after ingestion of viable yeasts. These data demonstrate that human DC can phagocytose and degrade a fungal pathogen and subsequently process the appropriate Ags for stimulation of lymphocyte proliferation. In vivo, such interactions between DC and Hc may facilitate the induction of cell-mediated immunity.  相似文献   

6.
Vaccine strategies designed to elicit strong cell-mediated immune responses to HIV Ags are likely to lead to protective immunity against HIV infection. Dendritic cells (DC) are the most potent APCs capable of priming both MHC class I- and II-restricted, Ag-specific T cell responses. Utilizing a system in which cultured DC from HIV-seronegative donors were used as APC to present HIV-1 Ags to autologous T cells in vitro, the strength and specificity of primary HIV-specific CTL responses generated to exogenous HIV-1 Nef protein as well as intracellularly expressed nef transgene product were investigated. DC expressing the nef gene were able to stimulate Nef-specific CTL, with T cells from several donors recognizing more than one epitope restricted by a single HLA molecule. Primary Nef-specific CTL responses were also generated in vitro using DC pulsed with Nef protein. T cells primed with Nef-expressing DC (via protein or transgene) were able to lyse MHC class I-matched target cells pulsed with defined Nef epitope peptides as well as newly identified peptide epitopes. The addition of Th1-biasing cytokines IL-12 or IFN-alpha, during priming with Nef-expressing DC, enhanced the Nef-specific CTL responses generated using either Ag-loading approach. These results suggest that this in vitro vaccine model may be useful in identifying immunogenic epitopes as vaccine targets and in evaluating the effects of cytokines and other adjuvants on Ag-specific T cell induction. Successful approaches may provide information important to the development of prophylactic HIV vaccines and are envisioned to be readily translated into clinical DC-based therapeutic vaccines for HIV-1.  相似文献   

7.
The common fungal pathogen Candida albicans has the ability to grow as a yeast or as a hypha and can alternate between these morphotypes. The overall biomass of both morphotypes increases with growth. However, only yeasts, but not hyphae, exist as discrete cellular entities. Multiplicity of infection (MOI) is a useful parameter to determine the initial inoculum of yeasts for in vitro infection assays. Since the amount of hyphae is difficult to quantify, comparable starting conditions in such assays cannot be determined accurately for yeasts and hyphae using MOI. To circumvent this problem, we have established a set of correlation coefficients to convert fungal metabolic activity and optical density to dry mass. Using these correlations, we were able to accurately compare ROS production and IL-8 release by polymorphonuclear neutrophils upon infection with equal dry mass amounts of yeast and hyphal morphotypes. Neutrophil responses depended on the initial form of infection, irrespective of C. albicans wild-type yeasts transforming to hyphal growth during the assay. Infection with a high mass of live C. albicans yeasts resulted in lower neutrophil ROS and this decrease stems from efficient ROS detoxification by C. albicans without directly affecting the phagocyte ROS machinery. Moreover, we show that dead C. albicans induces significantly less ROS and IL-8 release than live fungi, but thimerosal-killed C. albicans were still able to detoxify neutrophil ROS. Thus, the dry mass approach presented in this study reveals neutrophil responses to different amounts and morphotypes of C. albicans and serves as a template for studies that aim to identify morphotype-specific responses in a variety of immune cells.  相似文献   

8.
Histoplasma capsulatum (Hc) is a pathogenic fungus that replicates in macrophages (Mphi). In dendritic cells (DC), Hc is killed and fungal Ags are processed and presented to T cells. DC recognize Hc yeasts via the VLA-5 receptor, whereas Mphi recognize yeasts via CD18. To identify ligand(s) on Hc recognized by DC, VLA-5 was used to probe a Far Western blot of a yeast freeze/thaw extract (F/TE) that inhibited Hc binding to DC. VLA-5 recognized a 20-kDa protein, identified as cyclophilin A (CypA), and CypA was present on the surface of Hc yeasts. rCypA inhibited the attachment of Hc to DC, but not to Mphi. Silencing of Hc CypA by RNA interference reduced yeast binding to DC by 65-85%, but had no effect on binding to Mphi. However, F/TE from CypA-silenced yeasts still inhibited binding of wild-type Hc to DC, and F/TE from wild-type yeasts depleted of CypA also inhibited yeast binding to DC. rCypA did not further inhibit the binding of CypA-silenced yeasts to DC. Polystyrene beads coated with rCypA or fibronectin bound to DC and Mphi and to Chinese hamster ovary cells transfected with VLA-5. Binding of rCypA-coated beads, but not fibronectin-coated beads, was inhibited by rCypA. These data demonstrate that CypA serves as a ligand for DC VLA-5, that binding of CypA to VLA-5 is at a site different from FN, and that there is at least one other ligand on the surface of Hc yeasts that mediates binding of Hc to DC.  相似文献   

9.
Six azole-derivative antifungal compounds affected several aspects of Candida albicans hyphal development with only a relatively small degree of inhibition of growth rate, measured in terms of ATP concentration, whereas amphotericin B and 5-fluorocytosine affected morphology only when they also substantially inhibited fungal growth rate. At 10(-8) M, all the azoles tested inhibited branch formation by C. albicans hyphae. At 10(-7) M and higher concentrations, clotrimazole and miconazole strongly suppressed emergence of new hyphal outgrowths from parent yeast cells, whereas ICI 153066 and itraconazole had little effect on this phenomenon and ketoconazole and tioconazole had intermediate effects. At the highest concentrations tested (10(-5) M) hyphal development was ultimately arrested by the azole compounds and the fungus grew predominantly in the form of budding yeast cells; however, none of the azole antifungals prevented initial emergence of an apparently normal germ tube. The antifungals only exerted their morphological effects when they were present in the culture medium: removal of the compounds after exposure of C. albicans to them led to reversion to normal growth.  相似文献   

10.
Fungi can grow in a variety of growth forms: yeast, pseudohyphae and hyphae. The human fungal pathogen Candida albicans can grow in all three of these forms. In this fungus, hyphal growth is distinguished by the presence of a Spitzenk?rper-like structure at the hyphal tip and a band of septin bars around the base of newly evaginated germ tubes. The budding yeast Saccharomyces cerevisiae grows as yeast and pseudohyphae, but is not normally considered to show hyphal growth. We show here that in mating projections of both C. albicans and S. cerevisiae a Spitzenk?rper-like structure is present at the growing tip and a band of septin bars is present at the base. Furthermore, in S. cerevisiae mating projections, Spa2 and Bni1 form a cap to the 3-dimensional ball of FM4-64 staining, exactly as previously observed in C. albicans hyphae, suggesting that the putative Spitzenk?rper may be a distinct structure from the polarisome. Taken together this work shows that mating projections of both S. cerevisiae and C. albicans show the key characteristics of hyphal growth.  相似文献   

11.
Galleria mellonella apolipophorin III (apoLp-III) has been implicated in the innate immune response against bacterial infections. The protein binds components of bacterial cell wall and inhibits growth of selected Gram-positive and Gram-negative bacteria. Interaction of apoLp-III with fungal β-1,3-glucan suggests antifungal properties of the protein. In the present study, the effect of apoLp-III on the growth, metabolic activity and cell surface characteristics of selected yeasts and filamentous fungi was investigated using light, confocal and atomic force microscopy. ApoLp-III bound to the cell surface of different yeasts and filamentous fungi as confirmed by immunoblotting with anti-apoLp-III antibodies. Incubation of the fungi in the presence of apoLp-III induced alterations in growth morphology. Candida albicans underwent transition from yeast-like to hyphal growth with formation of true hyphae, whereas Fusarium oxysporum hyphae exhibited decreased metabolic activity, increased vacuolization and appearance of numerous monophialids with microconidia. Atomic force microscopy imaging demonstrated evident alterations in the fungal cell surface after incubation with apoLp-III, suggesting that the protein affected the cell wall components.  相似文献   

12.
Dendritic cells (DCs) regulate the development of distinct Th populations and thereby provoke appropriate immune responses to various kinds of Ags. In the present work, we investigated the role CD40-CD154 interactions play during the process of Th cell priming by CD8 alpha(+) and CD8 alpha(-) murine DC subsets, which have been reported to differently regulate the Th response. Adoptive transfer of Ag-pulsed CD8 alpha(+) DCs induced a Th1 response and the production of IgG2a Abs, whereas transfer of CD8 alpha(-) DCs induced Th2 cells and IgE Abs in vivo. Induction of distinct Th populations by each DC subset was also confirmed in vitro. Although interruption of CD80/CD86-CD28 interactions inhibited Th cell priming by both DC subsets, disruption of CD40-CD154 interactions only inhibited the induction of the Th1 response by CD8 alpha(+) DCs in vivo. CD40-CD154 interactions were not required for the proliferation of Ag-specific naive Th cells stimulated by either DC subset, but were indispensable in the production of IL-12 from CD8 alpha(+) DCs and their induction of Th1 cells in vitro. Taken together, in our immunization model of Ag-pulsed DC transfer, CD40-CD154 interactions play an important role in the development of CD8 alpha(+) DC-driven Th1 responses but not CD8 alpha(-) DC-driven Th2 responses to protein Ags.  相似文献   

13.
白念珠菌菌丝发育的遗传调控   总被引:1,自引:0,他引:1  
白念珠菌(Candidaalbicans)是人体内最重要的机会型致病真菌,能以酵母、假菌丝、菌丝等多种形态存在。白念珠菌的菌丝发育与它的致病性成正相关,这一过程由胞内多种信号转导途径所调控。现对控制白念珠菌菌丝发育的主要信号转导途径进行综述。  相似文献   

14.
Human beings are continuously exposed to fungi, yet they rarely get fungal diseases. The delicate balance between the host and these otherwise harmless pathogens may turn into a parasitic relationship, resulting in the development of severe infections. The ability to reversibly switch between unicellular and filamentous forms, all of which can be found in infected tissues, is thought to be important for virulence. Efficient responses to the different forms of fungi require different mechanisms of immunity. Dendritic cells (DC) are uniquely able at decoding the fungus-associated information and translating it in qualitatively different T helper (Th) immune responses, in vitro and in vivo. Myeloid DC phagocytosed yeasts and hyphae of Candida albicans and conidia and hyphae of Aspergillus fumigatus, both in vitro and in vivo. Phagocytosis occurred through distinct phagocytic morphologies, involving the engagement and cooperativity of distinct recognition receptors. However, receptor engagement and cooperativity were greatly modified by opsonization. The engagement of distinct receptors translated into disparate downstream signaling events, ultimately affecting cytokine production and costimulation. In vivo studies confirmed that the choice of receptor and mode of entry of fungi into DC was responsible for Th polarization and patterns of susceptibility or resistance to infection. Adoptive transfer of different types of DC activated protective, nonprotective and regulatory T cells, ultimately affecting the outcome of infection. The conclusions are that the selective exploitation of receptors and mode of entry into DC may determine the full range of host's immune relationships with fungi and have important implications in the design of vaccine-based strategies.  相似文献   

15.
Size and diverse morphologies pose a primary challenge for phagocytes such as innate immune cells and predatory amoebae when encountering fungal prey. Although filamentous fungi can escape phagocytic killing by pure physical constraints, unicellular spores and yeasts can mask molecular surface patterns or arrest phagocytic processing. Here, we show that the fungivorous amoeba Protostelium aurantium was able to adjust its killing and feeding mechanisms to these different cell shapes. Yeast-like fungi from the major fungal groups of basidiomycetes and ascomycetes were readily internalized by phagocytosis, except for the human pathogen Candida albicans whose mannoprotein coat was essential to escape recognition by the amoeba. Dormant spores of the filamentous fungus Aspergillus fumigatus also remained unrecognized, but swelling and the onset of germination induced internalization and intracellular killing by the amoeba. Mature hyphae of A. fumigatus were mostly attacked from the hyphal tip and killed by an actin-mediated invasion of fungal filaments. Our results demonstrate that predatory pressure imposed by amoebae in natural environments selects for distinct survival strategies in yeast and filamentous fungi but commonly targets the fungal cell wall as a crucial molecular pattern associated to prey and pathogens.  相似文献   

16.
Ashbya gossypii is a riboflavin-overproducing filamentous fungus that is closely related to unicellular yeasts such as Saccharomyces cerevisiae. With its close ties to yeast and the ease of genetic manipulation in this fungal species, A. gossypii is well suited as a model to elucidate the regulatory networks that govern the functional differences between filamentous growth and yeast growth, especially now that the A. gossypii genome sequence has been completed. Understanding these networks could be relevant to related dimorphic yeasts such as the human fungal pathogen Candida albicans, in which a switch in morphology from the yeast to the filamentous form in response to specific environmental stimuli is important for virulence.  相似文献   

17.
CaCHS1 of the fungal pathogen Candida albicans encodes an essential chitin synthase that is required for septum formation, viability, cell shape and integrity. The CaCHS1 gene was inactivated by first disrupting one allele using the ura-blaster protocol, then placing the remaining allele under the control of the maltose-inducible, glucose-repressible MRP1 promoter. Under repressing conditions, yeast cell growth continued temporarily, but daughter buds failed to detach from parents, resulting in septumless chains of cells with constrictions defining contiguous compartments. After several generations, a proportion of the distal compartments lysed. The conditional Deltachs1 mutant also failed to form primary septa in hyphae; after several generations, growth stopped, and hyphae developed swollen balloon-like features or lysed at one of a number of sites including the hyphal apex and other locations that would not normally be associated with septum formation. CHS1 therefore synthesizes the septum of both yeast and hyphae and also maintains the integrity of the lateral cell wall. The conditional mutant was avirulent under repressing conditions in an experimental model of systemic infection. Because this gene is essential in vitro and in vivo and is not present in humans, it represents an attractive target for the development of antifungal compounds.  相似文献   

18.
19.
Candida albicans, an opportunistic human pathogen, displays three modes of growth: yeast, pseudohyphae and true hyphae, all of which differ both in morphology and in aspects of cell cycle progression. In particular, in hyphal cells, polarized growth becomes uncoupled from other cell cycle events. Yeast or pseudohyphae that undergo a cell cycle delay also exhibit polarized growth, independent of cell cycle progression. The Spitzenk?rper, an organelle composed of vesicles associated with hyphal tips, directs continuous hyphal elongation in filamentous fungal species and also in C. albicans hyphae. A polarisome mediates cell cycle dependent growth in yeast and pseudohyphae. Regulation of morphogenesis and cell cycle progression is dependent upon specific cyclins, all of which affect morphogenesis and some of which function specifically in yeast or hyphal cells. Future work will probably focus on the cell cycle checkpoints involved in connecting morphogenesis to cell cycle progression.  相似文献   

20.
Characterization of Dimorphism in Cladosporium werneckii   总被引:1,自引:0,他引:1       下载免费PDF全文
Yeast forms of the dimorphic fungus Cladosporium werneckii grow by polar budding and yield a homogeneous yeast phase when cultured at 21 C in an agitated sucrose-salts medium (Czapek-Dox broth). Yeast extract enrichment of such a yeast phase consisting of 104 yeasts per ml induces a quantitative conversion of the yeasts to true hyphae. This conversion is not mediated by a transition cell and is often attended by capsule formation. When 105 or 106 yeasts per ml receive enrichment, a nonquantitative conversion to moniliform hyphae is effected and no capsule formation is observed. Rapid agitation compared to slow agitation or stationary incubation of the nutritionally mediated conversion cultures greatly accelerates the production of lateral hyphal buds or their yeast progenies. These cells appear incapable of undergoing nutritional conversion to hyphae, but instead must grow for several generations in the unenriched sucrose-salts medium to restore conversion competence. Temperature shifts affect directly the morphology and morphogenesis of the yeast in unenriched medium; at 17 C yeasts are smaller and more ovoid than at 21 C, and at 30 C marked conversion of yeasts to moniliform hyphae occurs. A methodology employing the Coulter counter and Coulter channelizer provides evidence that direct correlations do not always exist between the optimum conditions for the growth of C. werneckii and the optimum conditions for its yeast-to-mold conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号