首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CNDO and INDO semi-empirical all valence M.O. methods have been applied to predict the side group dihedral angles of N-acetyl glucosamine in order to compare the results of empirical, MNDO and PCILO studies already reported.The net atomic charges and dipole moments have also been computed. The present calculation suggests that the net atomic charges remain almost constant for the different conformers considered.The CNDO, INDO and PCILO methods predict nearly the same orientations for the side groups. Moreover, the quantum chemical methods suggest significant improvements over the empirical results although, in general, similar conformational features are observed. However, the MNDO results for some of the side groups are different from the ones obtained by all the above methods.  相似文献   

2.
A study of the binding behaviour of ellipticine compounds, derivatives of pyrido (4-3b) carbazole, has been carried out to elucidate the relationship between the drug-activity and demethylation of ellipticine. An all valence electron method (CNDO/2) has been employed to compute molecular charge distribution corresponding to various atomic centres of ellipticines and DNA base pairs. Using these atomic charges and dipoles, intermolecular interaction energy has been calculated with the help of second order perturbation theory and multicentered-multipole expansion technique. A comparative analysis of the binding patterns for nor-5,11-dimethyl-ellipticine and nor-11-methyl-ellipticine has been presented vis-a-vis ellipticine. Attempt has been made to correlate interaction energy studies with demethylation of ellipticine and the possible binding patterns.  相似文献   

3.
We have derived a complete set of atomic charges for DNA from very high resolution, low temperature, single-crystal X-ray diffraction data, collected for a variety of nucleosides and nucleotides: cytidine; deoxycytidine 5'-monophosphate; deoxythymidine; guanosine 5'-monophosphate; deoxyadenosine; adenosine. This set of charges represents the first experimentally based parameterization of an important term in the energy function used in most modeling of DNA. The resulting charges are in good agreement with chemical intuition and experimental observations. They also agree qualitatively with the theoretically derived values now commonly used, but numerous and significant quantitative differences are observed. Possible reasons for the quantitative disagreement are discussed. An averaged set of charges (derived from the experimental results), which can be used in DNA modeling calculations, is presented.  相似文献   

4.
A theoretical study of binding behaviour of acriflavin, a well-known mutagen, with DNA base pairs such as AT, GC, TA and CG has been performed using CNDO/2 method to compute net atomic charges and dipoles located at various centres in acriflavine as well as base pairs. Acriflavine-DNA base pair interactions have been evaluated using second order perturbation method with multicentered multipole approximation. Only minimum energy configurations have been reported. Results have been discussed with a view to obtain a comparative behaviour of other similar dyes like proflavine and acridine orange.  相似文献   

5.
Partial charges of atoms in a molecule and electrostatic potential (ESP) density for that molecule are known to bear a strong correlation. In order to generate a set of point‐field force field parameters for molecular dynamics, Kollman and coworkers have extracted atomic partial charges for each of all 20 amino acids using restrained partial charge‐fitting procedures from theoretical ESP density obtained from condensed‐state quantum mechanics. The magnitude of atomic partial charges for neutral peptide backbone they have obtained is similar to that of partial atomic charges for ionized carboxylate side chain atoms. In this study, the effect of these known atomic partial charges on ESP is examined using computer simulations and compared with the experimental ESP density recently obtained for proteins using electron microscopy. It is found that the observed ESP density maps are most consistent with the simulations that include atomic partial charges of protein backbone. Therefore, atomic partial charges are integral part of atomic properties in protein molecules and should be included in model refinement.  相似文献   

6.
Electrostatic interactions between the DNA bases in the Watson-Crick hydrogen bonding configuration are examined in both the molecular and the atomic multipole representation using three different methods of calculation: (a) CNDO wave functions and definitions of moments, (b) IEHT wave functions and division of two-center densities and (c) IHET wave functions with equally divided overlap densities. It is shown that the inclusion in the interaction series of terms at least as high as the quadrupole-quadrupole is required to quantitatively characterize the interactions. Convergence is more rapid with the atomic multipole representation and is unaffected by the type of assignment of formal charges. A quantitative approach to the problem of the role of electrostatic interactions in hydrogen bonding in DNA is thus provided, with obvious impact on the investigation of molecular recognition processes.  相似文献   

7.
It is shown by explicit calculation that the distribution of the atomic charges in the constituent molecules of a lipid monolayer or bilayer of glyceryl monooleate creates an intrinsic potential difference between the head region and the hydrocarbon region which tends to repel positive charges towards the exterior and attract negative charges to the interior. The analogies and differences between a bilayer and a monolayer are analyzed. The possible consequences of the intrinsic potential gradient in a lipid layer on the preferred orientation and conformation of a polar neutral molecule are illustrated on the case of a gramicidin A monomer.  相似文献   

8.
Abstract

Molecular dynamics simulations of an aqueous solution of adenine have been performed using different methods of charge calculation to evaluate the influence of the values of the atomic charges on the dynamical results and to incorporate new information about the interaction between adenine and water. Four sets of partial charges where computed using ab-initio methods. In all cases the hydration properties of adenine were similar. These results support the view that the simulations by molecular dynamics, at least for the regime of infinite dilution, are not sensitive with respect to the different sets of partial charges used. A net hydrophobic behavior of the adenine molecule, on the water was observed.  相似文献   

9.
A procedure has been outlined for the synthesis of ribonucleoside 3'-di- and -triphosphates. The synthetic scheme involves the conversion of a ribonucleoside 3'-monophosphate to its 2'-(5'-di)-O-(1-methoxyethyl) derivative, followed by successive treatments of the blocked ribonucleotide with 1,1'-carbonyldiimidazole and mono(tri-n-butylammonium) phosphate or pyrophosphate. The resulting ribonucleoside 3'-di- and -triphosphate derivatives are then deblocked by treatment with dilute aqueous acetic acid, pH 3.0. The use of this procedure is illustrated for adenosine 3'-monophosphate, which has been converted to its corresponding 3'-di- and -triphosphates in 61% overall yield. The decomposition of adenosine 3'-di- and -triphosphates to adenosine 2'-monophosphate, adenosine 3'-monophosphate, and adenosine cyclic 2',3'-monophosphate as a function of pH at 100 degrees has been studied as has the attempted polymerization of adenosine 3'-diphosphate with polynucleotide phosphorylase. Also prepared was guanosine 5'-diphosphate 3'-diphosphate (guanosine tetraphosphate; ppGpp), which was accessible via treatment of 2'-O-(1-methoxyethyl)guanosine 5'-monophosphate 3'-monophosphate with the phosphorimidazolidate of mono(tri-n-butyl ammonium) phosphate. The resulting blocked tetraphosphate was deblocked in dilute aqueous acetic acid to afford ppGpp in an overall yield of 18%.  相似文献   

10.
Electron structure of N-acetylglucoseamine molecule and its ion-radicals has been studied by quantum-chemical methods CNDO2 and JNDO, and by ESR as well. N-acetyl group is shown to be the only electron acceptor group of AGA molecule. Phototransformations of paramagnetic centres are studied at different pH values.  相似文献   

11.
Exhaustive conformational analysis of the 5'-deoxyadenylic acid molecule, has been carried out by the quantum-mechanical density functional theory method at the MP2/6-311++G(d,p)//DFT B3LYP/6-31G(d,p) theory level. As many as 726 of its conformations have been revealed with the relative gas phase Gibbs energies under standard conditions from 0 to 12.1 kcal/mole. It has been shown, that the energetically most favorable conformation has north sugar puckering and synorientation of the nitrogenous base and is stabilized by intramolecular O(p1)H(p1)-N3 and O3'H-O(p) hydrogen bonds. Four conformations have been shown to have their geometry similar to that of AI-DNA and four - of BI-DNA. One conformer of the 5'-deoxyadenylic acid molecule is similar to its sodium salt hexahydrate structure in crystalline state resolved by the X-ray diffraction method and taken from literature. It is shown that effective charges of C4' and C5' atoms are the most sensitive to the molecule conformation ones. The role of the intramolecular OH-N hydrogen bonds in formation of the 5'-deoxyadenylic acid molecule structure has been demonstrated.  相似文献   

12.
An optimized potential function for base-stacking interaction is constructed. Stacking energies between the complementary pairs of a dimer are calculated as a function of the rotational angle and separation distance. Using several different sets of atomic charges, the electrostatic component in the monopole-monopole approximation (MMA) is compared to the more refined segmented multipole–multipole representation (SMMA); the general features of the stacking minima are found to be correctly reproduced with IEHT or CNDO atomic charges. The electrostatic component is observed to control the location of stacking minima. The MMA, in general, is not a reliable approximation of the SMMA in regions away from minima; however, the MMA is reliable in predicting the location and nature of stacking minima. The attractive part of the Lennard-Jones 6–12 potential is compared to and parameterized against the expression for the second-order interaction terms composed of multipole-bond polarizability for the polarization energy and transition-dipole bond polarizabilities for approximation of the dispersion energy. The repulsive part of the Lennard-Jones potential is compared to a Kitaygorodski-type repulsive function; changing the exponent from its usual value of 12 to 11.7 gives significantly better agreement with the more refined repulsive function. Stacking minima calculated with the optimized potential method are compared with various perturbation-type treatments. The optimized potential method yields results that compare as well with melting data as do any of the more recent and expensive perturbation methods.  相似文献   

13.
The parameters used in the computer program ECEPP (Empirical Conformational Energy Program for Peptides) have been expanded to cover some key elements in retinal-containing proteins. These elements are 'all-trans retinal lysine with unprotonated imine', 'all-trans retinal lysine with protonated imine', '13-cis retinal lysine with unprotonated imine' and '13-cis retinal lysine with protonated imine' respectively. The geometric parameters of these four new 'amino acid residues' were derived by optimizing their molecular structures with the AM1 Hamiltonian included in MOPAC (Molecular Orbital PACkage), and their partial atomic charges were determined with a CNDO/2 (Complete Neglect of Differential Overlap) calculation. The parameters for nonbonded interactions and torsional potentials were obtained from the existing ECEPP parameters through a logical extension. The augmented ECEPP system thus obtained can be employed to investigate the conformation of bacteriorhodopsin and its proton-pumping mechanism from an energetic point of view. The computer modeling study on bacteriorhodopsin and other seven-helix membrane proteins, e.g. serotonin receptor and dopamine receptor, is under way in the Upjohn Laboratories.  相似文献   

14.
For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate, phosphatidylcholine, in phospholipase C. This catalytically essential water molecule, after being activated by an acidic residue (Asp55), performs the nucleophilic attack on the phosphorus atom in the substrate, leading to a trigonal bipyramidal pentacoordinated intermediate (and structurally similar transition state). The subsequent collapse of the intermediate, regeneration of the enzyme, and release of the products has to involve a not yet identified second water molecule. The catalytic mechanism reported here is based on a series of molecular mechanics calculations. First, the x-ray structure of phospholipase C from B. cereus including a docked substrate molecule was subjected to a stepwise molecular mechanics energy minimization. Second, the location of the nucleophilic water molecule in the active site of the fully relaxed enzyme–substrate complex was determined by evaluation of nonbonded interaction energies between the complex and a water molecule. The nucleophilic water molecule is positioned at a distance (3.8 Å) from the phosphorus atom in the substrate, which is in good agreement with experimentally observed distances. Finally, the stability of the complex between phospholipase C, the substrate, and the nucleophilic water molecule was verified during a 100 ps molecular dynamics simulation. During the simulation the substrate undergoes a conformational change, but retains its localization in the active site. The contacts between the enzyme, the substrate, and the nucleophilic water molecule display some fluctuations, but remain within reasonable limits, thereby confirming the stability of the enzyme–substrate–water complex. The protocol developed for energy minimization of phospholipase C containing three zinc ions located closely together at the bottom of the active site cleft is reported in detail. In order to handle the strong electrostatic interactions in the active site realistically during energy minimization, delocalization of the charges from the three zinc ions was considered. Therefore, quantum mechanics calculations on the zinc ions and the zinc-coordinating residues were carried out prior to the molecular mechanics calculations, and two different sets of partial atomic charges (MNDO-Mulliken and AM1-ESP) were applied. After careful assignment of partial atomic charges, a complete energy minimization of the protein was carried out by a stepwise procedure without explicit solvent molecules. Energy minimization with either set of charges yielded structures, which were very similar both to the x-ray structure and to each other, although using AM1-ESP partial atomic charges and a dielectric constant of 4, yielded the best protein structure. © 1997 John Wiley and Sons, Inc. Biopoly 42: 319–336, 1997  相似文献   

15.
Density functional calculations of the structure, atomic charges, molecular electrostatic potential and thermodynamic functions have been performed at B3LYP/6-31G(d,p) level of theory for the title compound (E)-2-[(2-hydroxy-5-nitrophenyl)-iminiomethyl]-4-nitrophenolate. The results show that the phenolate oxygen atom and all of the nitro group oxygen atoms have bigger negative charges, and the coordination ability of these atoms differs in different solvents. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6-31G(d,p) basis set by applying the Onsager method and the isodensity polarized continuum model (IPCM). The results obtained with these methods reveal that the IPCM method yielded a more stable structure than Onsager’s method. In addition, natural bond orbital and frontier molecular orbital analysis of the title compound were performed using the B3LYP/6-31G(d,p) method.  相似文献   

16.
17.
The enzymatic decarboxylation of orotidine 5'-monophosphate may proceed by an addition-elimination mechanism involving a covalently bound intermediate or by elimination of CO2 to generate a nitrogen ylide. In an attempt to distinguish between these two alternatives, 1-(phosphoribosyl)barbituric acid was synthesized with 13C at the 5-position. Interaction of this potential transition-state analogue inhibitor with yeast orotidine-5'-monophosphate decarboxylase resulted in a small (0.6 ppm) downfield displacement of the C-5 resonance, indicating no rehybridization of the kind that might have been expected to accompany 5,6-addition of an enzyme nucleophile. When the substrate orotidine 5'-monophosphate was synthesized with deuterium at C-5, no significant change in kcat (H/D = 0.99 +/- 0.06) or kcat/KM (H/D = 1.00 +/- 0.06) was found to result, suggesting that C-5 does not undergo significant changes in geometry before or during the step that determines the rate of the catalytic process. These results are consistent with a nitrogen ylide mechanism and offer no support for the intervention of covalently bound intermediates in the catalytic process.  相似文献   

18.
The purpose of this study was to systematically investigate the relationships between reactivity, cellular accumulation, and cytotoxicity of a panel of oxaliplatin analogues with different leaving groups in human carcinoma cells. The reactivity of the complexes towards the nucleotides 2'-deoxyguanosine 5'-monophosphate and 2'-deoxyadenosine 5'-monophosphate was studied using capillary electrophoresis. Cellular accumulation and cytotoxicity were measured in an oxaliplatin-sensitive and oxaliplatin-resistant ileocecal colorectal adenocarcinoma cell line pair (HCT-8/HCT-8ox). Platinum concentrations were determined by flameless atomic absorption spectrometry. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was used to assess cytotoxicity. Early cellular platinum accumulation was predominantly affected by lipophilicity. A relationship between reactivity and cellular accumulation was observed for three of four platinum complexes investigated, whereas the most lipophilic oxaliplatin analogue was an exception. Increased reactivity and reduced lipophilicity were associated with high cytotoxic activity. Resistance was influenced by lipophilicity but not by reactivity. The observed relationships may help in the design of analogues with high antitumoral activity in oxaliplatin-sensitive as well as oxaliplatin-resistant cells.  相似文献   

19.
H A Tajmir-Riahi 《Biopolymers》1991,31(9):1065-1075
The interaction of the La (III) and Tb (III) ions with adenosine-5'-monophosphate (5'-AMP), guanosine-5'-monophosphate (5'-GMP), and 2'-deoxyguanosine-5'-monophosphate (5'-dGMP) anions with metal/nucleotide ratios of 1 and 2 has been studied in aqueous solution in acidic and neutral pHs. The solid complexes were isolated and characterized by Fourier transform ir and 1H-nmr spectroscopy. The lanthanide (III)-nucleotide complexes are polymeric in nature both in the solid and aqueous solutions. In the metal-nucleotide complexes isolated from acidic solution, the nucleotide binding is via the phosphate group (inner sphere) and an indirect metal-N-7 interaction (outer-sphere) with the adenine N-1 site protonated. In the complexes obtained from neutral solution, metal chelation through the N-7 and the PO3(2-) group is prevailing. In aqueous solution, an equilibrium between the inner and outer sphere metal-nucleotide interaction has been observed. The ribose moiety shows C2'-endo/anti pucker in the free AMP anion and in the lanthanide (III)-AMP complexes, whereas the GMP anion with C2'-endo/anti sugar conformation exhibits a mixture of the C2'-endo/anti and C3'-endo/anti sugar puckers in the lanthanide (III)-GMP salts. The deoxyribose has O4'-endo/anti sugar pucker in the free dGMP anion and a C3'-endo/anti, in the lanthanide (III)-dGMP complexes.  相似文献   

20.
Orotidine 5'-monophosphate decarboxylase from Plasmodium falciparum (PfOMPDC) catalyses the final step in the de novo synthesis of uridine 5'-monophosphate (UMP) from orotidine 5'-monophosphate (OMP). A defective PfOMPDC enzyme is lethal to the parasite. Novel in silico screening methods were performed to select 14 inhibitors against PfOMPDC, with a high hit rate of 9%. X-ray structure analysis of PfOMPDC in complex with one of the inhibitors, 4-(2-hydroxy-4-methoxyphenyl)-4-oxobutanoic acid, was carried out to at 2.1 ? resolution. The crystal structure revealed that the inhibitor molecule occupied a part of the active site that overlaps with the phosphate-binding region in the OMP- or UMP-bound complexes. Space occupied by the pyrimidine and ribose rings of OMP or UMP was not occupied by this inhibitor. The carboxyl group of the inhibitor caused a dramatic movement of the L1 and L2 loops that play a role in the recognition of the substrate and product molecules. Combining part of the inhibitor molecule with moieties of the pyrimidine and ribose rings of OMP and UMP represents a suitable avenue for further development of anti-malarial drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号