首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Primary and secondary structure of U2 snRNA   总被引:11,自引:5,他引:11       下载免费PDF全文
With the improved rapid sequencing techniques, the earlier sequence of U2 RNA of Novikoff hepatoma (Shibata et al, J. Biol. Chem. 250, 3909-3920, 1975) was reanalyzed and modified. The improved sequence of U2 RNA is 188 (or 189) nucleotides long and is in register with a characterized U2 RNA pseudogene (Denison et al, PNAS 78, 810-814, 1981) except for an 11 nucleotide sequence (nucleotides 147-157) which is absent from the pseudogene. From these results, a secondary structure of U2 RNA is proposed which is supported by the preferred cleavage sites with T1-RNase, RNase A and S1 nuclease. Isolated U2 RNA was cleaved by T1-RNase preferentially at positions 64 and 164, whereas U2 RNA in U2-snRNP was cleaved only at position 64, indicating that position 164 is protected in U2-snRNP. As with U1 RNA (Epstein et al, PNAS 78, 1562-1566, 1981) the 5'-end of isolated U2 RNA was not preferentially cleaved by T1-RNase.  相似文献   

2.
Using a combination of RNA sequencing and construction of cDNA clones followed by DNA sequencing, we have determined the primary nucleotide sequence of U3 snRNA in Xenopus laevis and Xenopus borealis. This molecule has a length of 219 nucleotides. Alignment of the Xenopus sequences with U3 snRNA sequences from other organisms reveals three evolutionarily conserved blocks. We have probed the secondary structure of U3 snRNA in intact Xenopus laevis nuclei using single-strand specific chemical reagents; primer extension was used to map the positions of chemical modification. The three blocks of conserved sequences fall within single-stranded regions, and are therefore accessible for interaction with other molecules. Models of U3 snRNA function are discussed in light of these data.  相似文献   

3.
4.
The nucleotide sequence of Physarum polycephalum U4 snRNA*** was determined and compared to published U4 snRNA sequences. The primary structure of P polycephalum U4 snRNA is closer to that of plants and animals than to that of fungi. But, both fungi and P polycephalum U4 snRNAs are missing the 3' terminal hairpin and this may be a common feature of lower eucaryote U4 snRNAs. We found that the secondary structure model we previously proposed for 'free' U4 snRNA is compatible with the various U4 snRNA sequences published. The possibility to form this tetrahelix structure is preserved by several compensatory base substitutions and by compensatory nucleotide insertions and deletions. According to this finding, association between U4 and U6 snRNAs implies the disruption of 2 internal helical structures of U4 snRNA. One has a very low free energy, but the other, which represents one-half of the helical region of the 5' hairpin, requires 4 to 5 kcal to be open. The remaining part of the 5' hairpin is maintained in the U4/U6 complex and we observed the conservation, in all U4 snRNAs studied, of a U bulge residue at the limit between the helical region which has to be melted and that which is maintained. The 3' domain of U4 snRNA is less conserved in both size and primary structure than the 5' domain; its structure is also more compact in the RNA in solution. In this domain, only the Sm binding site and the presence of a bulge nucleotide in the hairpin on the 5' side of the Sm site are conserved throughout evolution.  相似文献   

5.
6.
The U6 spliceosomal snRNA forms an intramolecular stem-loop structure during spliceosome assembly that is required for splicing and is proposed to be at or near the catalytic center of the spliceosome. U6atac snRNA, the analog of U6 snRNA used in the U12-dependent splicing of the minor class of spliceosomal introns, contains a similar stem-loop whose structure but not sequence is conserved between humans and plants. To determine if the U6 and U6atac stem-loops are functionally analogous, the stem-loops from human and budding yeast U6 snRNAs were substituted for the U6atac snRNA structure and tested in an in vivo genetic suppression assay. Both chimeric U6/U6atac snRNA constructs were active for splicing in vivo. In contrast, several mutations of the native U6atac stem-loop that either delete putatively unpaired residues or disrupt the putative stem regions were inactive for splicing. Compensatory mutations that are expected to restore base pairing within the stem regions restored splicing activity. However, other mutants that retained base pairing potential were inactive, suggesting that functional groups within the stem regions may contribute to function. These results show that the U6atac snRNA stem-loop structure is required for in vivo splicing within the U12-dependent spliceosome and that its role is likely to be similar to that of the U6 snRNA intramolecular stem-loop.  相似文献   

7.
Novel structure of a human U6 snRNA pseudogene   总被引:2,自引:0,他引:2  
H Theissen  J Rinke  C N Traver  R Lührmann  B Appel 《Gene》1985,36(1-2):195-199
A genomic DNA library containing human placental DNA cloned into phage lambda Charon 4A was screened for snRNA U6 genes. In vitro 32P-labeled U6 snRNA isolated from HeLa cells was used as a hybridization probe. A positive clone containing a 4.6-kb EcoRI fragment of human chromosomal DNA was recloned into the EcoRI site of pBR325 and mapped by restriction endonuclease digestion. Restriction fragments containing U6 RNA sequences were identified by hybridization with isolated U6[32P]RNA. The sequence analysis revealed a novel structure of a U6 RNA pseudogene, bearing two 17-nucleotide(nt)-long direct repeats of genuine U6 RNA sequences arranged in a head-to-tail fashion within the 5' part of the molecule. Hypothetical models as to how this type of snRNA U6 pseudogene might have been generated during evolution of the human genome are presented. When compared to mammalian U6 RNA sequences the pseudogene accounts for a 77% overall sequence homology and contains the authentic 5'- and 3'-ends of the U6 RNA.  相似文献   

8.
The removal of noncoding sequences (introns) from eukaryotic precursor mRNA is catalyzed by the spliceosome, a dynamic assembly involving specific and sequential RNA-RNA and RNA-protein interactions. An essential RNA-RNA pairing between the U2 small nuclear (sn)RNA and a complementary consensus sequence of the intron, called the branch site, results in positioning of the 2'OH of an unpaired intron adenosine residue to initiate nucleophilic attack in the first step of splicing. To understand the structural features that facilitate recognition and chemical activity of the branch site, duplexes representing the paired U2 snRNA and intron sequences from Saccharomyces cerevisiae were examined by solution NMR spectroscopy. Oligomers were synthesized with pseudouridine (psi) at a conserved site on the U2 snRNA strand (opposite an A-A dinucleotide on the intron strand, one of which forms the branch site) and with uridine, the unmodified analog. Data from NMR spectra of nonexchangeable protons demonstrated A-form helical backbone geometry and continuous base stacking throughout the unmodified molecule. Incorporation of psi at the conserved position, however, was accompanied by marked deviation from helical parameters and an extrahelical orientation for the unpaired adenosine. Incorporation of psi also stabilized the branch-site interaction, contributing -0.7 kcal/mol to duplex deltaG degrees 37. These findings suggest that the presence of this conserved U2 snRNA pseudouridine induces a change in the structure and stability of the branch-site sequence, and imply that the extrahelical orientation of the branch-site adenosine may facilitate recognition of this base during splicing.  相似文献   

9.
The solution structure of human U1 snRNA was investigated by using base-specific chemical probes (dimethylsulfate, carbodiimide, diethylpyrocarbonate) and RNase V1. Chemical reagents were employed under various conditions of salt and temperature and allowed information at the Watson-Crick base-pairing positions to be obtained for 66% of the U1 snRNA bases. Double-stranded or stacked regions were examined with RNase V1. The dat gained from these experiments extend and support the previous 2D model for U1snRNA. However, to elucidate some aspects of the solution data that could not be accounted for by the secondary structure model, the information gathered from structure probing was used to provide the experimental basis required to construct and to test a tertiary structure model by computer graphics modeling. As a result, U1 snRNA is shown to adopt an asymmetrical X-shape that is formed by two helical domains, each one being generated by coaxial stacking of helices at the U1 snRNA cruciform. Chemical reactivities and model building show that a few nucleotides, previously proposed to be unpaired, can form A.G and U.U non Watson-Crick base-pairs, notably in stem-loop B. The structural model we propose for regions G12 to A124 integrates stereochemical constraints and is based both on solution structure data and sequence comparisons between U1 snRNAs.  相似文献   

10.
Nuclear mRNA precursors are spliced by a large macromolecular complex called the spliceosome which contains, in most eucaryotes, five small nuclear RNAs (snRNAs) each in the form of a small ribonucleoprotein particle (the U1, U2, U5, and U4/U6 snRNPs). Although secondary structures have been derived for all five spliceosomal snRNAs based on phylogenetic, biochemical, and genetic data, little tertiary structure information is available. Here we use the general cross-linking reagent nitrogen mustard [bis-(2-chloroethyl)methylamine] to detect tertiary interactions within U2 snRNA. After the cross-linking of deproteinized HeLa nuclear extract, two intramolecularly cross-linked U2 species with anomalous electrophoretic mobility can be detected (X-U2#1 and X-U2#2). The 3' and 5' boundaries of each cross-link were determined by rapid enzymatic RNA sequencing of end-labeled RNA. X-U2#1 is cross-linked between the region U41-U55 and G105 or G106, X-U2#2 between U53 and G97 or G98. We then tested the ability of the two cross-linked species to bind snRNP proteins in vitro (in nuclear extract or S100) and in vivo (in Xenopus oocytes). X-U2#2 reconstituted efficiently both in vitro and in vivo but X-U2#1 did not, as judged by immunoprecipitation with antibodies specific for Sm- and U2-specific proteins. Since the cross-link in X-U2#2 involves the Sm binding site but does not block snRNP assembly, our data strongly suggest that the Sm binding site lies on the surface of the native snRNP.  相似文献   

11.
Secondary structures for all five spliceosomal small nuclear (sn) RNAs (U1, U2, U4, U5, and U6 snRNAs) have been derived from phylogenetic, biochemical, and genetic data, but tertiary structure information has been more difficult to obtain. Here we have used the general cross-linking reagent nitrogen mustard (bis-(2-chloroethyl)methylamine) to explore the tertiary conformation of naked U1 snRNA. We detected two intramolecularly cross-linked U1 species (X-U1#1 and X-U1#2) after cross-linking of deproteinized HeLa nuclear extract. We determined the cross-linked sites and found that X-U1#1 is cross-linked between the C82-A85 and U129, while X-U1#2 is cross-linked between U105-G108 and A118. We then tested the ability of these two cross-linked species to bind small nuclear ribonucleo-protein (snRNP) proteins in vitro (in HeLa nuclear extract or S100) and in vivo (in Xenopus oocytes). Both X-U1#1 and X-U1#2 were found to reconstitute efficiently in vitro and in vivo, as judged by immunoprecipitation with antibodies specific for Sm and U1-specific proteins. Our data suggest that (i) the Sm-binding site lies on the surface of the native U1 snRNP, since the cross-link in X-U1#1 involves the Sm-binding site but does not block snRNP assembly, and (ii) U1 snRNA may adopt the correct tertiary conformation even in the absence of U1 snRNP proteins.  相似文献   

12.
The yeast homologue of U3 snRNA.   总被引:50,自引:10,他引:40       下载免费PDF全文
snR17, one of the most abundant capped small nuclear RNAs of Saccharomyces cerevisiae, is equivalent to U3 snRNA of other eukaryotes. It is 328 nucleotides in length, 1.5 times as long as other U3 RNAs, but shares significant homology both in nucleotide sequence and in predicted secondary structure. Human scleroderma antiserum specific to nucleolar U3 RNP can enrich snR17 from sonicated yeast nuclear extracts. Unlike other yeast snRNAs which are encoded by single copy genes, snR17 is encoded by two genetically unlinked genes: SNR17A and SNR17B. The RNA snR17A is more abundant than snR17B. Deleting one or other of the genes has no obvious phenotypic effect, except that the steady-state level of snR17B is increased in snr17a- strains. Haploid strains with both genes deleted are inviable, therefore yeast U3 is essential.  相似文献   

13.
In vitro synthesis of vertebrate U1 snRNA.   总被引:17,自引:1,他引:16       下载免费PDF全文
  相似文献   

14.
The NMR structure of the 3' stem-loop (3'SL) from human U4 snRNA was determined to gain insight into the structural basis for conservation of this stem-loop sequence from vertebrates. 3'SL sequences from human, rat, mouse and chicken U4 snRNA each consist of a 7 bp stem capped by a UACG tetraloop. No high resolution structure has previously been reported for a UACG tetraloop. The UACG tetraloop portion of the 3'SL was especially well defined by the NMR data, with a total of 92 NOE-derived restraints (about 15 per residue), including 48 inter-residue restraints (about 8 per residue) for the tetraloop and closing C-G base pair. Distance restraints were derived from NOESY spectra using MARDIGRAS with random error analysis. Refinement of the 20mer RNA hairpin structure was carried out using the programs DYANA and miniCarlo. In the UACG tetraloop, U and G formed a base pair stabilized by two hydrogen bonds, one between the 2'-hydroxyl proton of U and carbonyl oxygen of G, another between the imino proton of G and carbonyl oxygen O2 of U. In addition, the amino group of C formed a hydrogen bond with the phosphate oxygen of A. G adopted a syn orientation about the glycosidic bond, while the sugar puckers of A and C were either C2'-endo or flexible. The conformation of the UACG tetraloop was, overall, similar to that previously reported for UUCG tetraloops, another member of the UNCG class of tetraloops. The presence of an A, rather than a U, at the variable position, however, presents a distinct surface for interaction of the 3'SL tetraloop with either RNA or protein residues that may stabilize interactions important for active spliceosome formation. Such tertiary interactions may explain the conservation of the UACG tetraloop motif in 3'SL sequences from U4 snRNA in vertebrates.  相似文献   

15.
16.
17.
U6 snRNA is the most conserved of all the snRNAs involved in pre-mRNA splicing, and likely plays an important role in splicing catalysis. Using a U6 snRNA fragment encompassing residues 25-99, we have identified a strong, UV-sensitive tertiary intramolecular interaction. A 5' deletion that removed sequences up to nt 37 only slightly reduced crosslinking, but further deletion of 11 bases, eliminating the nearly invariant ACAGAGA sequence, essentially abolished crosslinking, as did deletion of sequences 3' of 82A. The crosslinked residues were mapped to 44G in the ACAGAGA sequence and to 81C, the nucleotide at the base of the U6 intramolecular helix, opposite the G of the invariant AGC trinucleotide. This interaction is striking in that it has the potential to juxtapose invariant regions of U6 believed to play critical roles in splicing catalysis.  相似文献   

18.
Functional characterization of X. laevis U5 snRNA genes.   总被引:19,自引:6,他引:13       下载免费PDF全文
M Kazmaier  G Tebb    I W Mattaj 《The EMBO journal》1987,6(10):3071-3078
  相似文献   

19.
Nucleotide sequence of a pea U2 snRNA gene.   总被引:8,自引:8,他引:0       下载免费PDF全文
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号