首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A bacterium tentatively classified as Arthrobacter strain Py1 being capable to degrade pyrrole-2-carboxylate as only source of carbon, nitrogen, and energy was isolated from soil. In contrast to many other N-heterocyclic compounds, growth of the isolate on pyrrole-2-carboxylate was not affected by molybdate or its specific inhibitor tungstate, indicating a molybdoenzyme-independent breakdown. The latter was initiated by a hydroxylation reaction catalyzed by a pyrrole-2-carboxylate oxygenase, which also exhibited an NADH-cytochrome c reductase activity. The pyrrole-2-carboxylate oxygenase reaction as examined in cell extracts depended on NADH, FAD, and pyrrole-2-carboxylate; the apparent K m values were 44, 6, and 43 M, respectively. A degradation pathway for pyrrole-2-carboxylate is proposed which involves 5-hydroxy-pyrrole-2-carboxylate and 2-oxoglutarate.  相似文献   

2.
It was recently reported that the extreme thermophile Methanopyrus kandleri contains only a H2-forming N 5, N 10-methylenetetrahydromethanopterin dehydrogenase which uses protons as electron acceptor. We describe here the presence in this Archaeon of a second N 5,N 10-methylenetetrahydromethanopterin dehydrogenase which is coenzyme F420-dependent. This enzyme was purified and characterized. The enzyme was colourless, had an apparent molecular mass of 300 kDa, an isoelectric point of 3.7±0.2 and was composed of only one type of subunit of apparent molecular mass of 36 kDa. The enzyme activity increased to an optimum with increasing salt concentrations. Optimal salt concentrations were e.g. 2 M (NH4)2SO4, 2 M Na2HPO4, 1.5 M K2HPO4, and 2 M NaCl. In the absence of salts the enzyme exhibited almost no activity. The salts affected mainly the V max rather than the K m of the enzyme. The catalytic mechanism of the dehydrogenase was determined to be of the ternary complex type, in agreement with the finding that the enzyme lacked a chromophoric prosthetic group. In the presence of M (NH4)2SO4 the V max was 4000 U/mg (k cat=2400 s-1) and the K m for N 5,N 10-methylenetetrahydromethanopterin and for coenzyme F420 were 80 M and 20 M, respectively. The enzyme was relatively heat-stable and lost no activity when incubated anaerobically in 50 mM K2HPO4 at 90°C for one hour. The N-terminal amino acid sequence was found to be similar to that of the F420-dependent N 5, N 10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Archaeoglobus fulgidus.Abbreviations H4MPT tetrahydromethanopterin - F420 coenzyme F420 - CH2=H4MPT N 5,N 10-methylenetrahydromethanopterin - CHH4MPT+ N 5,N 10-methenyltetrahydromethanopterin - methylene-H4MPT dehydrogenase N 5,N 10-methylenetetrahydromethanopterin dehydrogenase - Mops N-morpholinopropane sulfonic acid - Tricine N-[Tris(hydroxymethyl)-methyl]glycine - 1 U = 1 mol/min  相似文献   

3.
The dehydrogenation of N 5,N 10-methylenetetrahydromethanopterin (CH2=H4MPT) to N 5,N 10-methenyltetrahydromethanopterin (CH≡H4MPT+) is an intermediate step in the oxidation of methanol to CO2 in Methanosarcina barkeri. The reaction is catalyzed by CH2=H4MPT dehydrogenase, which was found to be specific for coenzyme F420 as electron acceptor; neither NAD, NADP nor viologen dyes could substitute for the 5-deazaflavin. The dehydrogenase was anaerobically purified almost 90-fold to apparent homogeneity in a 32% yield by anion exchange chromatography on DEAE Sepharose and Mono Q HR, and by affinity chromatography on Blue Sepharose. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed only one protein band with an apparent mass of 31 kDa. The apparent molecular mass of the native enzyme determined by polyacrylamide gradient gel electrophoresis was 240 kDa. The ultraviolet/visible spectrum of the purified enzyme was almost identical to that of albumin suggesting the absence of a chromophoric prosthetic group. Reciprocal plots of the enzyme activity versus the substrate concentrations were linear: the apparent K m for CH2=H4MPT and for coenzyme F420 were found to be 6 μM and 25 μM, respectively. Vmax was 4,000 μmol min-1·mg-1 protein (kcat=2,066 s-1) at pH 6 (the pH optimum) and 37°C. The Arrhenius activation energy was 40 kJ/mol. The N-terminal amino acid sequence was found to be 50% identical with that of the F420-dependent CH2=H4MPT dehydrogenase isolated from H2/CO2 grown Methanobacterium thermoautotrophicum.  相似文献   

4.
Methanopyrus kandleri belongs to a novel group of abyssal methanogenic archaebacteria that can grow at 110°C on H2 and CO2 and that shows no close phylogenetic relationship to any methanogens known so far. N 5 N 10 -Methylenetetrahydromethanopterin reductase, an enzyme involved in methanogenesis from CO2, was purified from this hyperthermophile. The apparent molecular mass of the native enzyme was found to be 300 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only one polypeptide of apparent molecular mass 38 kDa. The ultraviolet/visible spectrum of the enzyme was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was specific for reduced coenzyme F420 as electron donor; NADH, NADPH or reduced dyes could not substitute for the 5-deazaflavin. The catalytic mechanism was found to be of the ternary complex type as deduced from initial velocity plots. V max at 65°C and pH 6.8 was 435 U/mg (kcat=275 s-1) and the K m for methylenetetrahydro-methanopterin and for reduced F420 were 6 M and 4 M, respectively. From Arrhenius plots an activation energy of 34 kJ/mol was determined. The Q 10 between 40°C and 90°C was 1.5.The reductase activity was found to be stimulated over 100-fold by sulfate and by phosphate. Maximal stimulation (100-fold) was observed at a sulfate concentration of 2.2 M and at a phosphate concentration of 2.5 M. Sodium-, potassium-, and ammonium salts of these anions were equally effective. Chloride, however, could not substitute for sulfate or phosphate in stimulating the enzyme activity.The thermostability of the reductase was found to be very low in the absence of salts. In their presence, however, the reductase was highly thermostable. Salt concentrations between 0.1 M and 1.5 M were required for maximal stability. Potassium salts proved more effective than ammonium salts, and the latter more effective than sodium salts in stabilizing the enzyme activity. The anion was of less importance.The N-terminal amino acid sequence of the reductase from M. kandleri was determined and compared with that of the enzyme from Methanobacterium thermoautotrophicum and Methanosarcina barkeri. Significant similarity was found.Abbreviations H4MPT tetrahydromethanopterin - CH2=H4MPT N 5 ,N 10 -methylene-H4MPT - CH3-H4MPT N 5-methyl-H4MPT - CHH4MPT+ N 5 ,N 10 -methenyl-H4MPT - F420 coenzyme F420; 1 U=1 mol/min  相似文献   

5.
The sulfate-reducing Archaeoglobus fulgidus contains a number of enzymes previously thought to be unique for methanogenic Archaea. The purification and properties of two of these enzymes, of formylmethanofuran: tetrahydromethanopterin formyltransferase and of N 5,N 10-methylenetetrahydromethanopterin dehydrogenase (coenzyme F420 dependent) are described here. A comparison of the N-terminal amino acid sequences and of other molecular properties with those of the respective enzymes from three methanogenic Archaea revealed a high degree of similarity.Abbreviations H4MPT tetrahydromethanopterin - F420 coenzyme - F420 formyltransferase, formylmethanofuran: tetrahydromethanopterin formyltransferase - methylene-H4MPT dehydrogenase N 5,N 10-methylenetetrahydromethanopterin dehydrogenase - methylene-H4MPT recductase N 5,N 10-methylenetetrahydromethanopterin reductase - cyclohydrolase N 5,N 10-methenyltetrahydromethanopterin cyclohydrolase - APS adenosine 5-phosphosulfate - MOPS 3-(N-morpholino) propane sulfonic acid - TRICINE N-tris(hydroxymethyl)methylglycine - MES morpholinoethanesulfonic acid - 1 U 1 mol/min  相似文献   

6.
Zhang F  Vasella A 《Carbohydrate research》2007,342(17):2546-2556
Partially deuteriated 1,5,6,6-(2)H(4)-d-glucose and 1(I),1(II),5(I),5(II),6(I),6(I),6(II),6(II)-(2)H(8)-d-cellobiose were synthesized in high yields and on a large scale from d-glucose. (2)H enrichment at C-5 and C-6 of each glucopyranosyl unit in excess of 85% and 90%, respectively, was realized by (1)H-(2)H exchange in (2)H(2)O containing deuteriated Raney Ni. Nucleophilic addition of LiAlD(4) to 5,6,6-(2)H(3)-2,3,4,6-tetra-O-benzyl-d-gluconolactone led to a 98% (2)H enrichment at C-1. Deuteriated cellobiose is of interest as building block for the synthesis of a model compound of cellulose I.  相似文献   

7.
Trm1 catalyzes a two-step reaction, leading to mono- and dimethylation of guanosine at position 26 in most eukaryotic and archaeal tRNAs. We report the crystal structures of Trm1 from Pyrococcus horikoshii liganded with S-adenosyl-l-methionine or S-adenosyl-l-homocysteine. The protein comprises N-terminal and C-terminal domains with class I methyltransferase and novel folds, respectively. The methyl moiety of S-adenosyl-l-methionine points toward the invariant Phe27 and Phe140 within a narrow pocket, where the target G26 might flip in. Mutagenesis of Phe27 or Phe140 to alanine abolished the enzyme activity, indicating their role in methylating G26. Structural analyses revealed that the movements of Phe140 and the loop preceding Phe27 may be involved in dissociation of the monomethylated tRNA•Trm1 complex prior to the second methylation. Moreover, the catalytic residues Asp138, Pro139, and Phe140 are in a different motif from that in DNA 6-methyladenosine methyltransferases, suggesting a different methyl transfer mechanism in the Trm1 family.  相似文献   

8.
9.
Delta(1)-pyrroline-5-carboxylate dehydrogenase (P5CDh) plays an important role in the metabolic pathway from proline to glutamate. It irreversibly catalyzes the oxidation of glutamate-gamma-semialdehyde, the product of the non-enzymatic hydrolysis of Delta(1)-pyrroline-5-carboxylate, into glutamate with the reduction of NAD(+) into NADH. We have confirmed the P5CDh activity of the Thermus thermophilus protein TT0033 (TtP5CDh), and determined the crystal structure of the enzyme in the ligand-free form at 1.4 A resolution. To investigate the structural basis of TtP5CDh function, the TtP5CDh structures with NAD(+), with NADH, and with its product glutamate were determined at 1.8 A, 1.9 A, and 1.4 A resolution, respectively. The solved structures suggest an overall view of the P5CDh catalytic mechanism and provide insights into the P5CDh deficiencies in the case of the human type II hyperprolinemia.  相似文献   

10.
Summary The biological nature of soil H2-consumption has been investigated. Soil microorganisms were capable to remove H2 present in the gas phase at concentrations in the range of 200 ppm at rates varying between 0.2 and 1.0 l.min–1. 100 g–1. Free soil enzymes did not contribute significantly at the H2 concentrations tested. Oxygen seemed to be the predominant electron acceptor. The influence of microbiological and physical soil properties on the H2-uptake activity was examined for 38 soils.A highly significant correlation between biomass-C and H2-uptake rate of the soil was noted, suggesting that the latter parameter might be useful as an indirect estimation of soil microbial biomass. The correlation was however not applicable for soils recently grown with legumes. Indeed, soya plants nodulated with aRhizobium strain with a weak hydrogen uptake capability, strongly increased the hydrogen oxidizing capability of the surrounding soil.  相似文献   

11.
The activity lost during storage of a solution of muscle glyceraldehyde 3-phosphate dehydrogenase was rapidly restored on adding a thiol compound, but not arsenite or azide. On treatment with H2O2, the enzyme was partially inactivated and complete loss of activity occurred in the presence of glutathione. Samples of the enzyme pretreated with glutathione followed by removal of the thiol compound by filtration on a Sephadex column showed both full activity and its complete loss on adding H2O2, in the absence of added glutathione. Most of the activity was restored when the H2O2-inactivated enzyme was incubated with glutathione (25mM) or dithiothreitol (5mM) whereas arsenite or azide were partly effective and ascorbate was ineffective. The need for incubation for a long time with a strong reducing agent for restoration of activity suggests that the oxidized group (disulfide or sulfenate) must be in a masked state in the H2O2-inactivated enzyme. Analysis by SDS-PAGE gave evidence for the formation of a small quantity of glutathione-reversible disulfide-form of the enzyme. Circular dichroic spectra indicated a decrease in -helical content in the inactivated form of the enzyme. The evidence suggest that glutathione and H2O2 can regulate the active state of this enzyme.  相似文献   

12.
Abstract

Equimolar H2O/N2 fluid mixture was studied by molecular dynamics simulations for NVT ensemble. Calculations were performed with the modified Buckingham (exp-6) potentials at T = 2000 K. Particular attention was given to the phase separation at very high pressures relevant to a detonation environment. Calculations of pair correlation functions and local mole fractions clearly indicated the occurrence of the fluid separation into N2-rich and H2O-rich phase. The density at the phase boundary between homogeneous and inhomogeneous phase-separated state was determined to be p = 1.35 g/cm3 on the basis of the static cross correlation factor which is defined by the sum of the local mole fractions. The ratio of the self-diffusion coefficients of N2 and H2O at p < 1.35 g/cm3 was found to be approximately equal to the value predicted by the kinetic theory of the ideal gas, whereas the ratio was close to unity at the phase-separated state (p > 1.35 g/cm3). In addition, two distinctive behaviors of the system could be observed for the relaxation from the initial uniform mixture to the phase-separated fluid: at lower densities (1.35 < p < 2.0 g/cm3) the fluid mixture began to relax into the phase-separated system without obvious incubation time, while clear incubation period was associated for the separation at higher densities. During this incubation period, discontinuous jumps in the mean square displacements were found.  相似文献   

13.
An NAD-dependent D-2-hydroxyacid dehydrogenase (EC 1.1.1.) was isolated and characterized from the halophilic Archaeon Haloferax mediterranei. The enzyme is a dimer with a molecular mass of 101.4 ± 3.3 kDa. It is strictly NAD-dependent and exhibits its highest activity in 4 M NaCl. The enzyme is characterized by a broad substrate specificity 2-ketoisocaproate and 2-ketobutyrate being the substrates with the higher Vmax/Km. When pyruvate and 2-ketobutyrate were the substrates the optimal pH was acidic (pH 5) meanwhile for 2-ketoisocaproate maximum activity was achieved at basic pH between 7.5 and 8.5. The optimum temperature was 52 ºC and at 65 ºC there was a pronounced activity decrease. This new enzyme can be used for the production of D-2-hydroxycarboxylic acid.  相似文献   

14.
Summary Total denitrification (N2O+N2) and nitrous oxide emission were measured on intact soil cores using the acetylene inhibition technique.Total denitrification from the depth 0–8 cm during the growth period from April to August was 7 kg N/ha from plots supplied with 30 kg N/ha and 19 kg N/ha from plots supplied with 120 kg N/ha. The amounts of precipitation, plant growth, and N application were found to affect the denitrification rate. These factors also affected the ratio (N2O+N2)/N2O, which varied from 1.0 to 7.2. Plant growth and precipitation increased the proportion of N2 produced, whereas a high nitrate content increased the proportion of N2O.  相似文献   

15.
Butterbach-Bahl  K.  Willibald  G.  Papen  H. 《Plant and Soil》2002,240(1):105-116
In order to quantify N2-emissions from a spruce and a beech site at the Höglwald Forest, a new measuring system was developed, that allowed simultaneous, direct determination of N2- and N2O-emission with high accuracy (detection limit approx. 10 g N m–2 h–1 for N2 and <1 g for N2O) using a gas-flow core method. This method requires exchange of the soil atmosphere with an artificial atmosphere, that differs only in that N2 is substituted by He. The measuring system, the methodology of measurements and validation experiments are described in detail. Due to the huge heterogeneity of denitrification activity in different soil cores taken from our forest sites, no general trends of N2 and N2O production in relation to soil moisture and temperature could be demonstrated. Based on reasonable number of measurements, this work gives for the first time an estimate of the magnitude of N2-losses from temperate forest soils. Both the magnitude of N2-emissions (spruce: 7.2±0.7 kg N2-N ha–1 yr–1; beech: 12.4±3.1 kg N2-N ha–1 yr–1), as well as the N2O–N2 ratio (spruce: 0.136±0.04; beech: 0.52±0.19) were significantly higher for soils from the beech sites as compared to soils from the spruce site. The results suggests that N2-emissions from N-saturated forest soils, still receiving high loads of atmospheric N-deposition, are approx. 30% of atmospheric N-input at the spruce site, and approx. 50% at the beech site. Our results demonstrate that losses of nitrogen in the form of N2 cannot be neglected in the context of calculating N-balances for given forest sites.  相似文献   

16.
We measured F420-dependent N5,N10-methylenetetrahydro-methanopterin dehydrogenase, N5, N10-methenyltetrahydro-methanopterin cyclohydrolase, and F420-reducing hydrogenase levels in Methanosarcina barkeri grown on various substrates. Variation in dehydrogenase levels during growth on a specific substrate was usually <3-fold, and much less for cyclohydrolase. H2–CO2-, methanol-, and H2–CO2+ methanol-grown cells had roughly equivalent levels of dehydrogenase and cyclohydrolase. In acetate-grown cells cyclohydrolase level was lowered 2 to 3-fold and dehydrogenase 10 to 80-fold; this was not due to repression by acetate, since, if cultures growing on acetate were supplemented with methanol or H2–CO2, dehydrogenase levels increased 14 to 19-fold, and cyclohydrolase levels by 3 to 4-fold. Compared to H2–CO2- or methanol-grown cells, acetate-or H2–CO2 + methanol-grown cells had lower levels of and less growth phase-dependent variation in hydrogenase activity. Our data are consistent with the following hypotheses: 1. M. barkeri oxidizes methanol via a portion of the CO2-reduction pathway operated in the reverse direction. 2. When steps from CO2 to CH3-S-CoM in the CO2-reduction pathway (in either direction) are not used for methanogenesis, hydrogenase activity is lowered.Abbreviations MF methanofuran - H4MPT 5,6,7,8-tetrahydromethanopterin - HS-HTP 7-mercaptoheptanoylthreonine phosphate - CoM-S-S-HTP heterodisulfide of HS-CoM and HS-HTP - F420 coenzyme F420 (a 7,8-didemethyl-8-hydroxy-5-deaza-riboflavin derivative) - H2F420 reduced coenzyme F420 - HC+=H4MPT N5,N10-methenyl-H4MPT - H2C=H4MPT N5,N10-methylene-H4MPT - H3C=H4MPT N5-methyl-H4MPT - BES 2-bromoethanesulfonic acid  相似文献   

17.
Summary Modern multidimensional double- and triple-resonance NMR methods have been applied to assign the backbone and side-chain 13C resonances for both equilibrium conformers of the paramagnetic form of rat liver microsomal cytochrome b 5. The assignment of backbone 13C resonances was used to confirm previous 1H and 15N resonance assignments [Guiles, R.D. et al. (1993) Biochemistry, 32, 8329–8340]. On the basis of short- and medium-range NOEs and backbone 13C chemical shifts, the solution secondary structure of rat cytochrome b 5 has been determined. The striking similarity of backbone 13C resonances for both equilibrium forms strongly suggests that the secondary structures of the two isomers are virtually identical. It has been found that the 13C chemical shifts of both backbone and side-chain atoms are relatively insensitive to paramagnetic effects. The reliability of such methods in anisotropic paramagnetic systems, where large pseudocontact shifts can be observed, is evaluated through calculations of the magnitude of such shifts.Abbreviations DANTE delays alternating with nutation for tailored excitation - DEAE diethylaminoethyl - DQF-COSY 2D double-quantum-filtered correlation spectroscopy - EDTA ethylenediaminetetraacetic acid - HCCH-TOCSY 3D proton-correlated carbon TOCSY experiment - HMQC 2D heteronuclear multiple-quantum correlation spectroscopy - HNCA 3D triple-resonance experiment correlating amide protons, amide nitrogens and alpha carbons - HNCO 3D triple-resonance experiment correlating amide protons, amide nitrogens and carbonyl carbons - HNCOCA 3D triple-resonance experiment correlating amide protons, amide nitrogens and alpha carbons via carbonyl carbons - HOHAHA 2D homonuclear Hartmann-Hahn spectroscopy - HOHAHA-HMQC 3D HOHAHA relayed HMQC - HSQC 2D heteronuclear single-quantum correlation spectroscopy - IPTG isopropyl thiogalactoside - NOESY 2D nuclear Overhauser enhancement spectroscopy - NOESY-HSQC 3D NOESY relayed HSQC - TOCSY 2D total correlation spectroscopy - TPPI time-proportional phase incrementation - TSP trimethyl silyl propionate  相似文献   

18.
Previously, we reported that pyruvate production was markedly improved in TBLA-1, an H+-ATPase-defective Escherichia coli mutant derived from W1485lip2, a pyruvate-producing E. coli K-12 strain. TBLA-1 produced more than 30 g/l pyruvate from 50 g/l glucose by jar fermentation, while W1485lip2 produced only 25 g/l pyruvate (Yokota et al. in Biosci Biotechnol Biochem 58:2164–2167, 1994b). In this study, we tested the ability of TBLA-1 to produce alanine by fermentation. The alanine dehydrogenase (ADH) gene from Bacillus stearothermophilus was introduced into TBLA-1, and direct fermentation of alanine from glucose was carried out. However, a considerable amount of lactate was also produced. To reduce lactate accumulation, we knocked out the lactate dehydrogenase gene (ldhA) in TBLA-1. This alanine dehydrogenase-expressing and lactate dehydrogenase-defective mutant of TBLA-1 produced 20 g/l alanine from 50 g/l glucose after 24 h of fermentation. The molar conversion ratio of glucose to alanine was 41%, which is the highest level of alanine production reported to date. This is the first report to show that an H+-ATPase-defective mutant of E. coli can be used for amino acid production. Our results further indicate that H+-ATPase-defective mutants may be used for fermentative production of various compounds, including alanine.  相似文献   

19.
Thirty isolates of mungbean Rhizobium were tested for the presence of H2-recycling system. All the isolates were preliminary screened for detecting H2-recycling system in free culture using triphenyltetrazolium chloride reduction as screening procedure. The isolates which reduced the dye rapidly at early stages of growth were found to recycle hydrogen both in vivo as well as in vitro. Nitrogen fixing efficiency of hydrogenase positive, hydrogenase negative isolates and Hup mutants was compared by green house experiments. There was 13–56% increase in dry matter and 21–46% increase in total nitrogen of the plants inoculated with H2-recycling isolates over the plants inoculated with non-recycling isolates. There was reduction in dry matter and total nitrogen content of the plants inoculated with Hup mutants as compared to plants inoculated with wild type strain. The per cent decrease due to inoculation with Hup mutants over wild type strain was 19–22 and 20–26 of dry weight and total nitrogen in plants, respectively.Abbreviations TTC triphenyltetrazolium chloride  相似文献   

20.
In the tropics, cowpea is often intercropped with maize. Little is known about the effect of the intercropped maize on N2-fixation by cowpea or how intercropping affects nitrogen fertilizer use effiency or soil N-uptake of both crops. Cowpea and maize were grown as a monocrop at row spacings of 40, 50, 60, 80, and 120 cm and intercropped at row spacing of 40, 50, and 60 cm. Plots were fertilized with 50 kg N as (NH4)2SO4; microplots within each plot received the same amount of15N-depleted (NH4)2SO4. Using the15N-dilution method, the percentage of N derived from N2-fixation by cowpea and the recovery of N-fertilizer and soil N-uptake was measured for both crops at 50 and 80 days after planting.Significant differences in yield and total N for cowpea and maize at both harvest periods were dependent on row spacing and cropping systems. Maize grown at the closer row spacing accumulated most of its N during the first 50 days after planting, whereas maize grown at the widest row spacing accumulated a significant portion of its N during the last 30 days before the final harvest, 80 days after planting.Overall, no significant differences in the percentage of N derived from N2-fixation for monocropped or intercropped cowpea was observed and between 30 and 50% of its N was derived from N2.At 50 DAP, fertilizer and soil N uptake was dependent on row spacing with maize grown at the narrowest row spacing having a higher fertilizer and soil N recovery than maize grown at wider spacings. At 50 and 80 DAP, intercropped maize/cowpea did not have a higher fertilizer and soil N uptake than monocropped cowpea or maize at the same row spacing. Monocropped maize and cowpea at the same row spacing took up about the same amount of fertilizer or soil N. When intercropped, maize took up twice as much soil and fertilizer N as cowpea. Apparently intercropped cowpea was not able to maintain its yield potential.Whereas significant differences in total N for maize was observed at 50 and 80 DAP, no significant differences in the atom %14N excess were observed. Therefore, in this study, the atom %14N excess of the reference crop was yield independent. Furthermore, the similarity in the atom %14N excess for intercropped and monocropped maize indicated that transfer of N from the legume to the non-legume was small or not detectable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号