首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A single SH group in the B chain (33 kDa), generated by the specific reduction of the single interchain SS bond of human urinary urokinase, was alkylated (UK X B) with iodoacetamide to prevent a spontaneous SH-SS interchange. An SS bond in UK X B was exclusively alkylated with iodoacetamide (R X CAM-UK X B) after reduction with dithiothreitol in 0.3 M guanidine X HCl in the presence of the competitive inhibitor N alpha-benzoyl-L- argininamide with concomitant loss of 65-68% of the esterolytic activity towards N-acetyl-glycyl-L-lysine methyl ester. This specific SS bond was located at Cys194 - Cys222 whose SS loop contained the active-site Ser198 , as determined by amino acid analyses and identification of the N and C termini of the tryptic digest. Transformation of UK X B into R X CAM-UK X B induced no shift of the optimal pH in the bell-shaped pH/activity profile; pH values for 50% activity were similar (pH 9.7) for 10-min alkalization of the enzyme but different between UK X B (pH 9.4) and R X CAM-UK X B (pH 8.8) for 18-h alkalization. An unaltered Km value and a decline by 64% in kcat in the esterolytic activity indicate that the pretransition Michaelis complex is formed without degeneration of the primary substrate-binding site, but the catalytic pathway thereafter has deteriorated. In affinity labeling with dansyl chloride or N alpha-tosyl-L-lysine chloromethylketone, which interrupted the catalysis at the latest at a stage involving the abortive acyl intermediate, the second-order rate constant for UK X B was lowered to 28% or 35% for R X CAM-UK X B, respectively, but the labeling yields were similar. The results indicate that indispensable structural elements, such as the catalytic triad and oxyanion hole, are maintained but a local conformation, which is necessary for efficient transition to the acyl intermediate and/or for resistance against alkaline inactivation, is destabilized with Cys194 - Cys222 scission.  相似文献   

2.
Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions. Residues C3-C31, C5-C20, and C10-C30 form disulfide pairs in the native structure of the peptide. The major tissue in which HD5 is expressed is the crypt of the small intestine, an anaerobic niche that should allow for substantial pools of both oxidized and (partly) reduced HD5. We used ion mobility coupled to mass spectrometry to track the structural changes in HD5 upon disulfide bond reduction. We found evidence of stepwise unfolding of HD5 with sequential reduction of the three disulfide bonds. Alkylation of free cysteines followed by tandem mass spectrometry of the corresponding partially reduced states revealed a dominant pathway of reductive unfolding. The majority of HD5 unfolds by initial reduction of C5-C20, followed by C10-C30 and C3-C31. We find additional evidence for a minor pathway that starts with reduction of C3-C31, followed by C5-C20 and C10-C30. Our results provide insight into the pathway and conformational landscape of disulfide bond reduction in HD5.  相似文献   

3.
4.
Unfolding--refolding of Escherichia coli disulfide isomerase C (DsbC) induced by GdnHCl was studied by intrinsic fluorescence. Interpretation of experimental fluorescence data was done together with the analysis of protein 3D structure. It is shown that although Cys 141 is the next neighbour of a single tryptophan residue Trp 140, sulfur atoms of the disulfide bond Cys 141--Cys 163 are far apart from the indole ring and cannot quench its fluorescence, while the potential quenchers are Met 136 and His 170. It has been revealed that, though each subunit of DsbC contains eight tyrosine residues, only three tyrosine residues (Tyr 171, Tyr 38 and Tyr 52) contribute to the bulk fluorescence of the molecule. The character of intrinsic fluorescence intensity changes induced by GdnHCl (equilibrium and kinetic data), the character of parametric dependencies between fluorescence intensity recorded at 320 and 365 nm, and the existence of an isosbestic point of protein fluorescence spectra in solutions with different GdnHCl concentrations, allowed suggesting a one-step character of DsbC denaturation. The reversibility of this process is also shown.  相似文献   

5.
The 55- (H-UK) and 36-kDa forms (L-UK) of human urinary urokinase lost most of esterase activity toward acetyl-glycyl-L-lysine methyl ester upon reductive cleavage of 3 SS bonds with dithiothreitol in the presence of the competitive inhibitor, N alpha-benzoyl-L-arginine amide (BAA), bound to polyacrylyl azide with C16N3-arm (PAA) at 0.3 M guanidine, a threshold point of the native state where a protein-denaturating transition began. One of the 3 SS bonds was protected from reduction, with an unaltered activity, under the similar conditions except for replacement of BAA-PAA conjugate by glycine-PAA conjugate. This "specific" SS bond was reduced and, after the other SH groups produced were blocked with iodoacetamide (IAM), selectively reoxidized, which resulted in complete reactivation. The intact B-chain isolated from H-UK was completely inactivated when its specific SS bond was reduced and selectively alkylated with IAM after the other SH groups were reversibly blocked with 5, 5'-dithiobis (2-nitrobenzoic acid), which was finally removed. The results indicate that a single specific SS bond is essential for retaining a conformation necessary to activity exhibition.  相似文献   

6.
Although native beta(2)-microglobulin (beta2-m), the light chain of the major histocompatibility complex class I antigen, assumes an immunoglobulin domain fold, it is also found as a major component of dialysis-related amyloid fibrils. In the amyloid fibrils, the conformation of beta2-m is considered to be largely different from that of the native state, and a monomeric denatured form is likely to be a precursor to the amyloid fibril. To obtain insight into the conformational dynamics of beta2-m leading to the formation of amyloid fibrils, we studied the reduction and reoxidation of the disulfide bond by reduced and oxidized dithiothreitol, respectively, and the effects on the reduction of the chaperonin GroEL, a model protein that might destabilize the native state of beta2-m. We show that beta2-m occasionally unfolds into a denatured form even under physiological conditions and that this transition is promoted upon interaction with GroEL. The results imply that in vivo interactions of beta2-m with other proteins or membrane components could destabilize its native structure, thus stabilizing the amyloid precursor.  相似文献   

7.
8.
9.
10.
It was shown that selective hydrolysis of the disulfide bridge between the A- and B-chains of human thrombin in the absence of denaturating agents decrease its proteolytic (e.g., fibrinogen-binding), esterase and amidase activities. Both chains remain bound by non-covalent interactions. A preparation of partially reduced thrombin was obtained and its kinetic parameters were determined. The experimental results suggest that the S-S bond connecting the A- and B-chains of thrombin is involved in the stabilization of the enzyme active center.  相似文献   

11.
Disulfide bonds in alpha 2-macroglobulin (alpha 2M) were reduced with the thioredoxin system from Escherichia coli. Under the conditions selected, 3.5-4.1 disulfide bonds were cleaved in each alpha 2M molecule, as determined by the consumption of NADPH during the reaction and by the incorporation of iodo[3H]acetate into the reaction product. This extent of disulfide bond reduction, approximately corresponding to that expected from specific cleavage of all four interchain disulfide bonds of the protein, coincided with the nearly complete dissociation of the intact alpha 2M molecule to a species migrating as an alpha 2M subunit in gel electrophoresis, under both denaturing and nondenaturing conditions. The dissociation was accompanied by only small changes of the spectroscopic properties of the subunits, which thus retain a near-native conformation. Reaction of isolated subunits with methylamine or trypsin led to the appearance of approximately 0.55 mol of thiol group/mol of subunits, indicating that the thio ester bonds are largely intact. Moreover, the rate of cleavage of these bonds by methylamine was similar to that in the whole alpha 2M molecule. Although the bait region was specifically cleaved by nonstoichiometric amounts of trypsin, the isolated subunits had minimal proteinase binding ability. Reaction of subunits with methylamine or trypsin produced changes of farultraviolet circular dichroism and near-ultraviolet absorption similar to those induced in the whole alpha 2M molecule, although in contrast with whole alpha 2M no fluorescence change was observed. The methylamine- or trypsin-treated subunits reassociated to a tetrameric species, migrating as the "fast" form of whole alpha 2M in gradient gel electrophoresis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Conformational changes induced in 4-aminobutyrate aminotransferase (4-aminobutyrate:2-oxoglutarate aminotransferase, EC 2.6.1.19) by conversion of pyridoxal-5-P to pyridoxyl-5-P were examined by two independent methods. The reactivity of the SH groups of the reduced enzyme is increased by chemical modification of the cofactor. 1.8 SH per dimer of modified enzyme react with DTNB, whereas 1.2 SH per dimer of the native enzyme react with the attacking reagent under identical experimental conditions. The modified and native forms of the enzyme bind the fluorescent probe ANS, but the number of binding sites for ANS is increased as result of conversion of P-pyridoxal to P-pyridoxyl. After the conformational changes onset by reduction of the cofactor, the modified enzyme binds one molecule of pyridoxal-5-P with a Kd of 0.1 microM to become catalytically competent. The catalytic site of the reduce enzyme was probed with P-pyridoxal analogs. Like resolved 4-aminobutyrate aminotransferase, the reduced species recognize the phosphorothioate analog and regain 40% of the total enzymatic activity. Since the catalytic parameters of reduced and native 4-aminobutyrate aminotransferase are indistinguishable, it is concluded that the additional catalytic site of the reduced enzyme is functionally identical to that of the native enzyme.  相似文献   

13.
Conformational changes induced by the binding of nickel to horseradish peroxidase C (HRPC) were studied by electronic absorption spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Incubation of HRPC with various concentrations of Ni(2+) for 5 minutes resulted in changes in the enzyme absorption spectrum, including variations in the intensities of the Soret, beta and charge transfer (CT1) bands absorption, shift in the Soret, beta and CT1 bands maxima and absorption increase at 275 nm. Increases in the enzyme's intrinsic fluorescence as determined by fluorescence spectroscopy, as well as changes in the alpha-helical content, as determined by circular dichroism spectroscopy, were also found. Correlatively, alterations of the enzymatic activity by Ni(2+) were studied by following the H(2)O(2)-mediated oxidation of o-dianisidine and 2,2'-azinobis(3-ethylbenzothiazolinesulfonic acid) (ABTS) by HRPC. With both reducing substrates, it was found that in the presence of sufficient amount of enzyme, 1-10 mM nickel would enhance the enzymatic activity, while higher Ni(2+) concentrations (20-50 mM) would inhibit it. The enzyme was completely inhibited after 5 minutes incubation in 50 mM Ni(2+). Prolonged incubation would induce complete inhibition at lower Ni(2+) concentrations. Spectrophotometry investigations also showed that inhibitory concentrations of Ni(2+) altered compounds I and II formation, compound II being the first affected. Based on spectrophotometry, fluorescence and circular dichroism spectroscopy, and data on compounds I and II formation, a scheme is suggested for HRPC conformational changes in different Ni(2+) concentrations. HRPC was found to have four potential attachment sites for Ni(2+) which were sequentially occupied in a dose- and time-dependent manner by the metallic ion.  相似文献   

14.
Summary We have previously shown that the human red cell glucose transport protein and the anion exchange protein, band 3, are in close enough contact that information can be transmitted from the glucose transport protein to band 3. The present experiments were designed to show whether information could be transferred in the reverse direction, using changes in tryptophan fluorescence to report on the conformation of the glucose transport protein. To see whether tryptophan fluorescence changes could be attributed to the glucose transport protein, we based our experiments on procedures used by Helgerson and Carruthers [Helgerson, A.L., Carruthers, A., (1987)J. Biol. Chem. 262:5464–5475] to displace cytochalasin B (CB), the specificd-glucose transport inhibitor, from its binding site on the inside face of the glucose transport protein, and we showed that these procedures modified tryptophan fluorescence. Addition of 75mm maltose, a nontransportable disaccharide which also displaces CB, caused a timedependent biphasic enhancement of tryptophan fluorescence in fresh red cells, which was modulated by the specific anion exchange inhibitor, DBDS (4,4-dibenzamido-2,2-stilbene disulfonate). In a study of nine additional disaccharides, we found that both biphasic kinetics and DBDS effects depended upon specific disaccharide conformation, indicating that these two effects could be attributed to a site sensitive to sugar conformation. Long term (800 sec) experiments revealed that maltose binding (±DBDS) caused a sustained damped anharmonic oscillation extending over the entire 800 sec observation period. Mathematical analysis of the temperature dependence of these oscillations showed that 2 m DBDS increased the damping term activation energy, 9.5±2.8 kcal mol–1 deg–1, by a factor of four to 39.7±5.1 kcal mol–1 deg–1, providing strong support for the view that signalling between the glucose transport protein and band 3 goes in both directions.  相似文献   

15.
Inaka K  Kanaya E  Kikuchi M  Miki K 《Proteins》2001,43(4):413-419
The three-dimensional structure of a mutant human lysozyme, W64CC65A, in which a non-native disulfide bond Cys64--Cys81 is substituted for the Cys65--Cys81 of the wild type protein by replacing Trp64 and Cys65 with Cys and Ala, respectively, was determined by X-ray crystallography and refined to an R-value of 0.181, using 33,187 reflections at 1.87-A resolution. The refined model of the W64CC65A protein consisted of four molecules, which were related by two noncrystallographic twofold axes and a translation vector. Although no specific structural differences could be observed among these four molecules, the overall B-factors of each molecule were quite different. The overall structure of W64CC65A, especially in the alpha-helical domain, was found to be quite similar to that of the wild type protein. Moreover, the side-chain conformation of the newly formed Cys64--Cys81 bond was quite similar to that of the Cys65--Cys81 bond of the wild-type protein. However, in the beta-sheet domain, the main-chain atoms of the loop region from positions 66-75 could not be determined, and significant structural changes due to the formation of the non-native disulfide bond could be observed. From these results, it is clear that the loop region of the mutant protein does not fold with the specific folding as observed in the wild-type protein.  相似文献   

16.
The mutant human lysozyme, [Ala77, Ala95]lysozyme, in which the disulfide bond Cys77-Cys95 is eliminated, is known to exhibit increased secretion in yeast, compared to wild-type human lysozyme [Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M. & Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967]. To investigate this phenomenon, mammalian cells were used to analyze the secretion kinetics of [Ala77, Ala95]lysozyme and wild-type human lysozyme. The secretion rate of [Ala77, Ala95]lysozyme during the 150-min chase period was significantly accelerated [half-life (t1/2) = 29 min] compared to that of wild-type human lysozyme (t1/2 = 83 min), when expressed at the same levels within the cells. In contrast, after the 150-min chase, the rates of disappearance of both wild-type and mutant human lysozymes within the cells were similar, and considerably slower (t1/2 = 220 min), respectively. The remaining intracellular wild-type human lysozyme was localized mainly in the endoplasmic reticulum, whereas accelerated transport of the [Ala77, Ala95]lysozyme mutant protein from the endoplasmic reticulum to the Golgi apparatus was observed. Also in yeast cells, similar secretion kinetics and the differences in t1/2 for wild-type and mutant human lysozymes during the early chase period were observed. The two-phase kinetics of disappearance of intracellular human lysozymes suggest that only a proportion of the proteins becomes secretion competent soon after synthesis and is completely secreted during the early chase period, whereas others enter the distinct, slow pathways of intracellular transport and/or degradation. Increased secretion of [Ala77, Ala95]lysozyme is possibly due to enhanced competence for secretion acquired in the endoplasmic reticulum at the early stage of transport events, which is closely connected with the removal of a disulfide bond.  相似文献   

17.
The successful completion of the fertilization process requires the properly choreographed unsheathing of the tightly packaged sperm once it has been fully incorporated into the egg's cytoplasm. The nuclear and accessory structures of mammalian sperm become stabilized by disulfide bonds (S-S) during epididymal maturation. This stabilization is reversed during fertilization by the reduction of S-S cross-linking, but little is known about the effect of S-S reduction on individual disulfide-hardened structures such as the sperm's connecting piece, fibrous sheath, and mitochondria. Here, we demonstrate the action of the S-S-reducing environment on the mitochondrial sheath of mammalian sperm, visualized by the vital fluorescent probe Mito Tracker and by electron microscopy. In both human and bull sperm, mitochondria form a compact helix (mitochondrial sheath) wrapped around the midpiece and connecting piece that can be fluorescently labelled by a short incubation with 100 mM Mito-Tracker. Exposure of bull sperm to 0.1–10 mM dithiothreitol (DTT; a disulfide bond-reducing agent) induced a time and dose-dependent sliding of the mitochondrial sheath down the axoneme, accompanied by the excision of the sperm tail and decondensation of the sperm nucleus. Increasing the concentration of DTT to 100 mM accelerated mitochondrial movement, causing a completed stripping of sperm mitochondria and partial disassembly of the connecting piece. Likewise, human sperm responded to DTT treatment by the sliding or removal of the mitochondrial sheath and decondensation of the sperm chromatin. These events were not observed in the sperm of lower vertebrates and invertebrates (Xenopus laevis and Lytechinus pictus, respectively) exposed to an excess of DTT. Thus the sensitivity of sperm mitochondria to the S-S reducing environment seems to be an exclusive feature of mammalian sperm. The movement of sperm mitochondria induced by S-S reduction may be an initial critical step in the disassembly of the mammalian sperm tail during fertilization. Mol. Reprod. Dev. 47:79–86, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Kinetics of disulfide reduction in alpha-lactalbumin by dithiothreitol are investigated by measuring time-dependent changes in absorption at 310 nm and in CD ellipticity at 270 nm (pH 8.5 or 7.0, and 25 degrees C). When the disulfide-intact protein is folded, the kinetics are biphasic. The disulfide bond between the half-cystines-6 and -120 is reduced in the fast phase, and the other three disulfide bonds are reduced in the slow phase. The apparent rate constants of the two phases are both proportional to the concentration of dithiothreitol, indicating that both phases are expressed by bimolecular reactions. However, detailed molecular mechanisms that determine the reaction rates are markedly different between the two phases. The slow phase shows a sigmoidal increase in the reaction rate with increasing concentration of a denaturant, urea, and is also accelerated by destabilization of the native state on removal of the bound Ca2+ ion in the protein. The disulfide bonds are apparently protected against the reducing agent in the native structure. The fast phase reaction rate is, however, decreased with an increase in the concentration of urea, and the disulfide bond shows extraordinary superreactivity in native conditions. It is 140 times more reactive than normal disulfides in the fully accessible state, and three-disulfide alpha-lactalbumin produced by the fast phase assumes nativelike structure under a strongly native condition. As ionic strength does not affect the superreactivity of this disulfide bond, electrostatic contributions to the reactivity must be negligible. Inspection of the disulfide bond geometry based on the refined X-ray coordinates of baboon alpha-lactalbumin [Acharya et al. (1989) J. Mol. Biol. 208, 99-127] and comparison of the geometry with those in five other proteins clearly demonstrate that the superreactivity arises from the geometric strain imposed on this disulfide bond by the native structure folding. Relationships of the disulfide strain energy to the protein stability and the disulfide reactivity are discussed.  相似文献   

19.
Human sources of urokinase have led to the contamination of in-process lots of commercially available material with human pathogens. Effective pathogen inactivation of urokinase preparations can be achieved through the use of gamma-irradiation. Additionally, the presence of a free radical scavenger (ascorbate) and the control of temperature have resulted in maintenance of the enzymatic activity of urokinase without a significant effect on the pathogen inactivation properties of gamma-irradiation. In this study we have optimized the conditions during gamma-irradiation to achieve inactivation of porcine parvovirus by 5 logs and vaccinia virus to levels below the limits of detection, while maintaining 92% of urokinase activity. Product specific optimization of gamma-irradiation has the potential to provide effective pathogen inactivation while maintaining substantial functional activity for many therapeutic proteins.  相似文献   

20.
Conformational changes in a replication origin induced by an initiator protein   总被引:37,自引:0,他引:37  
S Mukherjee  I Patel  D Bastia 《Cell》1985,43(1):189-197
The replication initiator protein of the plasmid R6K binds to seven contiguous 22 bp direct repeats that form an indispensable part of the three replication origins alpha, beta, and gamma. Binding of the initiator to the direct repeats induced a marked bending of the region of gamma replication origin. Binding of the initiator also promoted unwinding of the origin DNA by at least two turns. Distamycin appeared to antagonize the binding of the initiator to the seven 22 bp direct repeats. At the appropriate DNA and protein concentrations the initiator enhanced topoisomerase-induced catenation of the origin containing supercoiled DNA but not of DNA lacking the origin sequence. Thus, the initiator protein caused significant changes in the secondary and tertiary structures of the replication origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号