首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The Rapateaceae is a small, mainly Neotropical family of terrestrial or occasionally epiphytic herbs that grow on mesic, nutrient-poor sites. Some recent studies suggest that the Rapateaceae may be closely related to the Bromeliaceae, one of the major families containing CAM plants. To investigate the photosynthetic pathway in Rapateaceae, the plant carbon-isotope ratio (δ13C) was determined for samples from dried herbarium specimens for 85 of the approximately 100 species in the family. The δ13C values ranged from - 37.7 to - 19.8 ‰. Most Rapateaceae showed δ13C values typical of C3 plants. However, six species ( Kunhardtia rhodantha Maguire, Marahuacaea schomburgkii (Maguire) Maguire, Saxofridericia compressa Maguire, Stegolepis grandis Maguire, St. guianensis Klotzsch ex Körn. and St. squarrosa Maguire) showed δ13C values less negative than - 23 ‰, i.e., at the higher end of the range for C3 plants and at the lower end of the distribution for plants exhibiting CAM. The δ13C values became significantly less negative with increasing altitude (regression analysis indicating a change from about - 30.7 ‰ at sea level to - 22.5 ‰ at 2500 m). Although other environmental factors and the type of tissue analysed may also influence δ13C values, these results suggest that some Rapateaceae may be capable of performing CAM. Further studies, including measurements of diel gas exchange patterns and leaf organic-acid fluctuations, would be needed to demonstrate CAM in Rapateaceae unequivocally, but living material of many of these enigmatic plants is difficult to obtain.  相似文献   

2.
We evaluated diurnal and seasonal patterns of carbon isotope composition of leaf dark-respired CO2 ( δ 13Cl) in the C3 perennial shrub velvet mesquite ( Prosopis velutina ) across flood plain and upland savanna ecosystems in the south-western USA. δ 13Cl of darkened leaves increased to maximum values late during daytime periods and declined gradually over night-time periods to minimum values at pre-dawn. The magnitude of the diurnal shift in δ 13Cl was strongly influenced by seasonal and habitat-related differences in soil water availability and leaf surface vapour pressure deficit. δ 13Cl and the cumulative flux-weighted δ 13C value of photosynthates were positively correlated, suggesting that progressive 13C enrichment of the CO2 evolved by darkened leaves during the daytime mainly resulted from short-term changes in photosynthetic 13C discrimination and associated shifts in the δ 13C signature of primary respiratory substrates. The 13C enrichment of dark-respired CO2 relative to photosynthates across habitats and seasons was 4 to 6‰ at the end of the daytime period (1800 h), but progressively declined to 0‰ by pre-dawn (0300 h). The origin of night-time and daytime variations in δ 13Cl is discussed in terms of the carbon source(s) feeding respiration and the drought-induced changes in carbon metabolism.  相似文献   

3.
Changes in carbon metabolism and δ13C value of transgenic potato plants with a maize pyruvate,orthophosphate dikinase (PPDK; EC 2.7.9.1) gene are reported. PPDK catalyzes the formation of phospho enol pyruvate (PEP), the initial acceptor of CO2 in the C4 photosynthetic pathway. PPDK activities in the leases of transgenic potatoes were up to 5.4‐fold higher than those of control potato plants (wild‐type and treated control plants). In the transgenic potato plants, PPDK activity in leaves was negatively correlated with pyruvate content (r2= 0.81), and was positively correlated with malate content (r2= 0.88). A significant increase in the δ13C value was observed in the transgenic potato plants, suggesting a certain contribution of PEP carboxylase as the initial acceptor of atmospheric CO2. These data suggest that elevated PPDK activity may alter carbon metabolism and lead to a partial operation of C4‐type carbon metabolism. However, since parameters associated with CO2 gas exchange were not affected, the altered carbon metabolism had only a small effect on the total photosynthetic characteristics of the transgenic plants.  相似文献   

4.
Carbon isotope ratio of leaf dry matter, δ 13C, was measured on species occurring within Baiyin desert community, consisting of valley, slope and ridge microhabitats, and within Shandan desert community, consisting of Gobi desert and seasonal flooded creek microhabitats, in Northwest China. δ 13C of C3 species increased with a decrease in soil water availability, suggesting that water-use efficiency (WUE) increased with decreasing soil moisture, whereas for all C4 species, δ 13C tended to decrease with decreasing soil water availability, suggesting that WUE also increased with decreasing soil moisture. Above results indicated that water-use pattern was conservative under drought for C4 and C3 plants. In this present study, C4 species' occurrences within different microhabitats were investigated and C4 plants were observed to be absent and/or scarce within relatively lower soil moisture microhabitats, whereas they occurred and/or even had a high abundance within relatively higher soil moisture microhabitats, suggesting limited moisture available was a key factor of limiting C4 distribution in arid region of Northwest China.  相似文献   

5.
Sempervivum monlanum and Saxifraga particulate are succulent alpine plants, with flat leaves, growing at up to 3300 m; Sedum atraium , with cylindrical leaves, is only present at the highest elevations. We have made a preliminary study of the photosynthetic mechanism (C, or CAM) of these species in relation to morphological and ultrastructural differences. The following physiological parameters were determined in plants collected at 3000 m: δ13C, night/day variations of titratable acidity and kinetic properties (Vmax, Km, S0.5, n) of phosphoenolpyruvate carboxylase (EC 4.1.1.31). The results suggest that, even at the highest elevations, the photosynthetic system can be obligate CAM ( Sempervivum monlanum ), facultative C3-CAM ( Sedum atratum ) or obligate C, ( Saxifraga paniculata ). Other parameters such as chlorophyll a/b ratio, succulence and succulence of mesophyll were measured and the results were consistent with the above mechanisms. Morphological analyses were performed by using LM, SEM and TEM. Sempervivum monlanum (CAM) leaves were found to differ from those of Saxifraga paniculata (C,) in having fewer thyreoids per granum, more plastoglobules per chloroplast, a higher plastoglobule relative density and a lower stomatal density. In Sedum atratum (facultative C3-CAM) corresponding values were intermediate.  相似文献   

6.
Leaf δ13C is an indicator of water-use efficiency and provides useful information on the carbon and water balance of plants over longer periods. Variation in leaf δ13C between or within species is determined by plant physiological characteristics and environmental factors. We hypothesized that variation in leaf δ13C values among dominant species reflected ecosystem patterns controlled by large-scale environmental gradients, and that within-species variation indicates plant adaptability to environmental conditions. To test these hypotheses, we collected leaves of dominant species from six ecosystems across a horizontal vegetation transect on the Tibetan Plateau, as well as leaves of Kobresia pygmaea (herbaceous) throughout its distribution and leaves of two coniferous tree species ( Picea crassifolia, Abies fabri ) along an elevation gradient throughout their distribution in the Qilian Mountains and Gongga Mountains, respectively. Leaf δ13C of dominant species in the six ecosystems differed significantly, with values for evergreen coniferous13C values of the dominant species and of K. pygmaea were negatively correlated with annual precipitation along a water gradient, but leaf δ13C of A. fabri was not significantly correlated with precipitation in habitats without water-stress. This confirms that variation of δ13C between or within species reflects plant responses to environmental conditions. Leaf δ13C of the dominant species also reflected water patterns on the Tibetan Plateau, providing evidence that precipitation plays a primary role in controlling ecosystem changes from southeast to northwest on the Tibetan Plateau.  相似文献   

7.
The cycad Dioon edule Lindl. inhabits a seasonally-dry tropical forest along with associated CAM plants such as bromeliads and cacti. To test the hypothesis that D . edule might also be a CAM plant, diel total-acid fluctuation was measured through the dry to wet seasons of 4 consecutive years on adult D . edule plants in their natural forest habitat in Veracruz, Mexico. Correlations between acid fluctuation index and climatic data, and also soil water potential were determined over this period. Laboratory trials were followed up to estimate diel patterns of CO2 exchange and estimation of δ13C value. A comparison of stomatal density cm−2 with other C3, CAM and CAM-facultative plants was made. The diel total titratable-acid fluctuation values, although variable, were found to be consistent and significant for the dry season. Carbon dioxide exchange was found to be typical of C3 plants when hydrated but when the plant was stressed by withholding water, although the leaf remained healthy, there was no significant dark-period CO2 output. Stomatal density was comparable to other CAM and CAM-facultative plants. It was concluded that D. edule is a C3 plant that shows CAM-cycling metabolism when water stressed. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 138 , 155–161.  相似文献   

8.
The diet of African hippopotamids can be documented through δ 13C analyses of enamel and other tissues. Analysis of a 10-million-year sequence of hippopotamids in and near the Lake Turkana Basin of northern Kenya shows that hippos have included a substantial fraction of C3 vegetation in their diets since the late Miocene when C4 vegetation first appears in hippo diet as a measurable fraction. The C4 component of vegetation becomes dominant (>50%) by Upper Burgi time ( c . 2 million years ago) but does not reach 100% for all individuals. It is therefore not unexpected that the δ 13C values of modern hippopotamids show a higher fraction of dietary C3 biomass than has been estimated from traditional observations. Analysis of δ 18O of hippos from different stratigraphic levels shows no systematic trend over time; the average value for fossil hippos over the last 10 million years is similar to that of modern hippos from the Omo River system.  相似文献   

9.
The variations in δ 13C in both leaf carbohydrates (starch and sucrose) and CO2 respired in the dark from the cotyledonary leaves of Phaseolus vulgaris L. were investigated during a progressive drought. As expected, sucrose and starch became heavier (enriched in 13C) with decreasing stomatal conductance and decreasing p i/ p a during the first half (15 d) of the dehydration cycle. Thereafter, when stomata remained closed and leaf net photosynthesis was near zero, the tendency was reversed: the carbohydrates became lighter (depleted in 13C). This may be explained by increased p i/ p a but other possible explanations are also discussed. Interestingly, the variations in δ 13C of CO2 respired in the dark were correlated with those of sucrose for both well-watered and dehydrated plants. A linear relationship was obtained between δ 13C of CO2 respired in the dark and sucrose, respired CO2 always being enriched in 13C compared with sucrose by ≈ 6‰. The whole leaf organic matter was depleted in 13C compared with leaf carbohydrates by at least 1‰. These results suggest that: (i) a discrimination by ≈ 6‰ occurs during dark respiration processes releasing 13C-enriched CO2; and that (ii) this leads to 13C depletion in the remaining leaf material.  相似文献   

10.
Leaves of 407 individuals of Reaumuria soongorica (Pall.) Maxim. collected from the major distribution areas were measured to investigate the distribution characteristics of the stable carbon isotope in this desert plant, as well as correlations between δ^13C values and environmental factors. Results showed that δ^13C values in R. soongorica ranged from -22.77‰ to -29.85‰ and that the mean δ^13C value (-26.52‰) was higher than a previously reported δ^13C value for a different desert ecosystem. This indicates that R. soongorica belongs to the C3 photosynthetic pathway and has higher water use efficiency than other species. The correlations between δ^13C values and environmental factors demonstrated that the foliar δ^13C values in R. soongorica increased significantly with decreasing mean annual precipitation and mean relative humidity, and decreased with decreasing duration of sunshine and evaporation. The spatial distribution trend of δ^13C values in R. soongorica was not obvious and there was no significant correlation between the δ^13C values and mean annual temperature. We conclude that different distribution trends in δ^13C values for R. soongorica were likely caused by stomatal limitation rather than by nutrient-related changes in photosynthetic efficiency and that precipitation played an important role in the wide distribution range of R. soongorica. This pattern of δ^13C values for R. soongorica reinforced that it is a super-xerophil in terms of its adaptive strategies to a desert environment.  相似文献   

11.
Carbon dioxide fixation in orchid aerial roots   总被引:1,自引:0,他引:1  
Acidity fluctuation, CO2 gas exchange, δ13C value, PEP carboxylase and RuBP carboxylase activities in aerial roots of selected thick-leaved orchid hybrids ( Arachnis and Aranthera ) were studied. Both aerial roots and leaves showed acidity fluctuation over a 24 h period. Dark acidification in aerial roots was enhanced at low temperature (15°C). Aerial roots had δ13C values close to those of leaves which have been previously demonstrated to possess crassulacean acid metabolism. Variation in δ13C values along the length of the roots was observed; the root tip having a less negative δ13C value (—13.34%‰) than the older portions of the roots (—14.55%‰). There was no net CO2 fixation by aerial root, although 1432CO2 fixation was observed in light and in darkness. The pattern of fluctuation in activities of PEP carboxylase and RuBP carboxylase in aerial roots was similar to that obtained for the leaves. In both aerial roots and leaves, PEP carboxylase activity was several times higher than that of RuBP carboxylase.  相似文献   

12.
Water deficit and high temperature often occur simultaneously, but their effects on plants are usually investigated separately. The aim of this study was to test how interactions between water stress and nocturnal warming affect carbon allocation in the perennial grass, Leymus chinensis . Plant biomass, dry mass allocation, 14C partitioning and carbon isotope composition (δ13C) were measured. Severe and extreme water stress during nocturnal warming decreased the allocation of dry mass and 14C partitioning below ground to the roots, but moderate water stress significantly increased the below-ground allocation of dry mass and 14C, especially at the lower night temperature. The δ13C values were more positive at day/night temperatures of 30/20°C than at 30/25°C, and greater in the roots than in the leaves. By plotting the δ13C values of the leaves against the δ13C values of the roots, the slopes of regressions were steeper at low than at high night temperature, also indicating that nocturnal warming reduces carbon allocation below ground to the roots. The results suggest that nocturnal warming may weaken acclimation during water stress in this species by regulating carbon allocation between source and sink organs.  相似文献   

13.
Abstract: Over 60 Salsola species of Chenopodiaceae from South Africa were studied for their photosynthesis type, using δ13C analysis and light microscopy of leaf anatomy. These species cover about 70 % of the total list of Southern African Salsola species and grow naturally in South and Southwest African desert regions. All species are shrubby forms and belong to the single subsection Caroxylon. Only C4 photosynthesis was found in the Salsola species determined with 13C/12C carbon isotope discrimination values that ranged from - 11.04 to - 14.03 % (PDB), plus the presence of a Kranz type assimilation tissue anatomy. The apparent absence of C3 in Salsola in South and Southwest Africa and the known presence of C3 and C3 - C4 intermediate photosynthesis in Caroxylon, Salsola species in Asia strongly indicate that the genus Salsola originated in Asia and later migrated to South Africa.  相似文献   

14.
1. Changes of δ13C and its relation to leaf development, biochemical content and water stress were monitored over a 2 year period in two co-occurring Mediterranean oak species: the deciduous Quercus pubescens and the evergreen Quercus ilex .
2. The time course of leaf δ13C showed different patterns in the two species. Young Q. pubescens leaves had a high δ13C and a marked decrease occurred during leaf growth. In contrast, leaves at budburst and maturity did not differ significantly in the case of Q. ilex . We suggest that the difference between δ13C of young leaves was linked to differential use of reserves of carbon compounds in the two species.
3. δ13C values of mature leaves were negatively correlated with minimum seasonal values of predawn water potential, suggesting that a functional adjustment to water resources occurred.
4. There was a significant correlation between individual δ13C values for two successive years. This interannual dependence showed that δ13C rankings between trees were constant through time.  相似文献   

15.
Four ecotypes of Phragmites australis from different habitats in northwest China were examined to compare their photosynthetic characteristics. In a swamp ecotype, the Δ 13C value of leaf materials was −34.0‰, and bundle sheath cells contained a small amount of organelles and round-shaped chloroplasts, as being similar to typical C3 plants. In a dune ecotype, the Δ 13C value was −20.9‰ and bundle sheath cells contained oval-shaped chloroplasts with poorly-developed grana. In light and heavy salt meadow ecotypes, Δ 13C values were −30.6‰ and −35.6‰, respectively. The shape of bundle sheath chloroplasts in the light salt meadow ecotype was intermediate between those of the swamp and dune ecotypes. Abundance of bundle sheath organelles in the heavy salt meadow ecotype was intermediate. The swamp ecotype had photosynthetic enzyme activities typical of C3 type plants, whereas the dune ecotype had an increased activity of phosphoenolpyruvate carboxylase (PEPC), a key C4 enzyme, and a decreased ribulose 1,5-bisphosphate carboxylase (Rubisco) activity. The light salt meadow and heavy salt meadow ecotypes had substantial activities of PEPC, which indicates potential for C4 photosynthesis. These data suggest that this species evolved the C3-like ecotype in swamp environments and the C4-like C3-C4 intermediate in dune desert environments, and C3-like C3-C4 intermediates in salt environments.  相似文献   

16.
Abstract: From the hygrohalophyte Borszczowia aralocaspica Bunge (Chenopodiaceae), a new leaf type with 1-layered chlorenchyma is described as "borszczovoid" and compared with other leaf types in subfamily Salsoloideae. The chlorenchyma is suspected to represent a unique C4 type. Evidence is cited from anatomical studies and documented by micrographs and Carbon isotope determinations (ä13C values). The 1-layered photosynthetic tissue combines all essential anatomical characters of a 2-layered chlorenchyma of regular C4 plants and is in intimate contact with concentrically arranged peripheral bundles. The ä13C values are − 13.03 ‰ from young stems and − 13.78 ‰ from leaves. The results are discussed in the anatomical, physiological and taxonomic framework. In addition, from distantly-related Suaeda species of section Conosperma the conospermoid leaf type is re-described. It is characterized by typical palisade and Kranz layers and differs from the C4 suaedoid type by an external water-storaging hypodermis and an arrangement of Kranz cells reminiscent of the atriplicoid type from subfamily Chenopodioideae. From eight other species of Chenopodiaceae ä13C values are given for the first time.  相似文献   

17.
Stable carbon isotope composition (δ13C) of dry matter has been widely investigated as a selection tool in cereal breeding programmes. However, reports on the possibilities of using stable oxygen isotope composition (δ18O) as a yield predictor are very scarce and only in the absence of water stress. Indeed, it remains to be tested whether changes in phenology and stomatal conductance in response to water stress overrule the use of either δ13C or δ18O when water is limited. To answer this question, a set of 24 genotypes of bread wheat ( Triticum aestivum ) were assayed in two trials with different levels of deficit irrigation and a third trial under rainfed conditions in a Mediterranean climate (northwest Syria). Grain yield (GY) and phenology (duration from planting to anthesis and from anthesis to maturity) were recorded, and the δ13C and δ18O of grains were analysed to assess their suitability as GY predictors. Both δ13C and δ18O showed higher broad-sense heritabilities ( H 2) than GY. Genotype means of GY across trials were negatively correlated with δ13C, as previously reported, but not with δ18O. Both isotopes were correlated with grain filling duration, whereas δ18O was also strongly affected by crop duration from planting to anthesis. We concluded that δ18O of grains is not a proper physiological trait to breed for suboptimal water conditions, as its variability is almost entirely determined by crop phenology. In contrast, δ13C of grains, despite being also affected by phenology, still provides complementary information associated with GY.  相似文献   

18.
Foliar δ^13C values, an indicator of long-term intercellular carbon dioxide concentration and, thus, of long-term water use efficiency (WUE) in plants, were measured for Pinus massoniana Lamb., P. elliottii Engelm., Cunninghamia laceolata (Lamb.) Hook., and Schima superba Gardn. et Champ. in a restored forest ecosystem in the Jiazhu River Basin. Seasonal variation and the relationship between the foliar δ^13C values of the four species and environmental factors (monthly total precipitation, monthly average air temperature, relative humidity, atmospheric pressure, and monthly total solar radiation and evaporation) were investigated. The monthly δ^13C values and WUE of the four species increased with increasing precipitation, air temperature, solar radiation, and evaporation, whereas δ^13C values of the four species decreased with increasing relative humidity and atmospheric pressure. Despite significant differences in δ^13C seasonal means for the four species, our results demonstrate a significant convergence in the responses of δ^13C values and WUE to seasonal variations in environmental factors among the species investigated and that the δ^13C signature for each species gives a strong indication of environmental variables.  相似文献   

19.
The antiquity of the use of seaweed to feed domestic animals was investigated through carbon ( δ 13C) and oxygen ( δ 18O) isotope analysis of tooth enamel bioapatite. The analysis was performed on sheep and cattle teeth from two Neolithic sites in Orkney (Scotland). At the Knap of Howar, c . 3600 bc , carbon isotopes reflect grazing on terrestrial plants throughout the year for both sheep and cattle, with no contribution of seaweed to their diet. At the Holm of Papa Westray North (HPWN), c . 3000 bc , significant contribution of seaweed to the sheep diet during winter is indicated by bioapatite δ 13C values as high as −5.7‰, far outside of the range of values expected for the feeding on terrestrial C3 plants, and δ 18O values higher than expected during winter, possibly caused by ingestion of oceanic water with seaweed. Ingestion of seaweed by sheep at HPWN might have been necessitated by severe reduction of pastures during winter. Results suggest that sheep ingested fresh seaweed rather than dry fodder, perhaps directly on the shore as sheep do nowadays on North Ronaldsay. A significant difference between the two populations is the exclusive reliance on seaweed by the North Ronaldsay sheep, which have developed physiological adaptations to this diet. Contribution of seaweed to the sheep winter diet at HPWN might have been a first step towards this adaptation.  相似文献   

20.
The natural abundance of 13C and 15N was measured in basidiocarps of at least 115 species in 88 genera of ectomycorrhizal, wood-decomposing and litter-decomposing fungi from Japan and Malaysia. The natural abundance of 13C and 15N was also measured in leaves, litter, soil and wood from three different sites. 15N and 13C were enriched in ectomycorrhizal and wood-decomposing fungi, respectively, relative to their substrates. Ectomycorrhizal and wood-decomposing fungi could be distinguished on the basis of their δ13C and δ15N signatures. Although there was high variability in the isotopic composition of fungi, the following isotope- enrichment factors (ε, mean±SD) of the fungi relative to substrates were observed:
εectomycorrhizal fungi/litter = 6.1±0.4‰15N
εectomycorrhizal fungi/wood = 1.4±0.8‰13C
εwood-decomposing fungi/wood = −0.6±0.7‰15N
εwood-decomposing fungi/wood = 3.5±0.9‰13C
The basis of isotope fractionation in C metabolism from wood to wood-decomposing fungus is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号