首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The M(3) muscarinic receptor is a prototypical member of the class A family of G protein-coupled receptors (GPCRs). To gain insight into the structural mechanisms governing agonist-mediated M(3) receptor activation, we recently developed a genetically modified yeast strain (Saccharomyces cerevisiae) which allows the efficient screening of large libraries of mutant M(3) receptors to identify mutant receptors with altered/novel functional properties. Class A GPCRs contain a highly conserved Asp residue located in transmembrane domain II (TM II; corresponding to Asp-113 in the rat M(3) muscarinic receptor) which is of fundamental importance for receptor activation. As observed previously with other GPCRs analyzed in mammalian expression systems, the D113N point mutation abolished agonist-induced receptor/G protein coupling in yeast. We then subjected the D113N mutant M(3) receptor to PCR-based random mutagenesis followed by a yeast genetic screen to recover point mutations that can restore G protein coupling to the D113N mutant receptor. A large scale screening effort led to the identification of three such second-site suppressor mutations, R165W, R165M, and Y250D. When expressed in the wild-type receptor background, these three point mutations did not lead to an increase in basal activity and reduced the efficiency of receptor/G protein coupling. Similar results were obtained when the various mutant receptors were expressed and analyzed in transfected mammalian cells (COS-7 cells). Interestingly, like Asp-113, Arg-165 and Tyr-250, which are located at the cytoplasmic ends of TM III and TM V, respectively, are also highly conserved among class A GPCRs. Our data suggest a conformational link between the highly conserved Asp-113, Arg-165, and Tyr-250 residues which is critical for receptor activation.  相似文献   

2.
In G protein-coupled receptors (GPCRs), the interaction between the cytosolic ends of transmembrane helix 3 (TM3) and TM6 was shown to play an important role in the transition from inactive to active states. According to the currently prevailing model, constructed for rhodopsin and structurally related receptors, the arginine of the conserved "DRY" motif located at the cytosolic end of TM3 (R3.50) would interact with acidic residues in TM3 (D/E3.49) and TM6 (D/E6.30) at the resting state and shift out of this polar pocket upon agonist stimulation. However, 30% of GPCRs, including all chemokine receptors, contain a positively charged residue at position 6.30 which does not support an interaction with R3.50. We have investigated the role of R6.30 in this receptor family by using CCR5 as a model. R6.30D and R6.30E substitutions, which allow an ionic interaction with R3.50, resulted in an almost silent receptor devoid of constitutive activity and strongly impaired in its ability to bind chemokines but still able to internalize. R6.30A and R6.30Q substitutions, allowing weaker interactions with R3.50, preserved chemokine binding but reduced the constitutive activity and the functional response to chemokines. These results indicate that the constitutive and ligand-promoted activity of CCR5 can be modified by modulating the interaction between the DRY motif in TM3 and residues in TM6 suggesting that the overall structure and activation mechanism are well conserved in GPCRs. However, the molecular interactions locking the inactive state must be different in receptors devoid of D/E6.30.  相似文献   

3.
D3 receptor, a member of dopamine (DA) D2-like receptor family, which belongs to class A of G-protein coupled receptors (GPCRs), has been reported to play a critical role in neuropsychiatric disorders. Recently, the crystal structure of human dopamine D3 receptor was reported, which facilitates structure-based drug discovery of D3R significantly. We dock D3R-selective compounds into the crystal structure of D3R and homology structure of D2R. Then we perform 20?ns molecular dynamics (MD) of the receptor with selective compounds bound in explicit lipid and water. Our docking and MD results indicate the important residues related to the selectivity of D3R. Specifically, residue Thr7.39 in D3R may contribute to the high selectivity of R-22 with D3R. Meanwhile, the 4-carbon linker and phenylpiperazine of R-22 improve the binding affinity and the selectivity with D3R. We also dock the agonists, including dopamine, into D3R and perform MD. Our molecular dynamics results of D3R with agonist bound show strong conformational changes from TM5, TM6, and TM7, outward movement of intracellular part of TM6, fluctuation of “ionic lock” motif and conformational change of Tyr7.53, which is consistent with recent crystal structures of active GPCRs and illustrates the dynamical process during activation. Our results reveal the mechanism of selectivity and activation for D3R, which is important for developing high selective antagonists and agonists for D3R.  相似文献   

4.
Bitter taste receptors (T2Rs) are a group of 25 G protein-coupled receptors (GPCRs) in humans. The cognate agonists and the mechanism of ligand binding to the majority of the T2Rs remain unknown. Here we report the first structure-function analysis of T2R7 and study the ability of this receptor to bind to different agonists by site-directed mutagenesis. Screening of ligands for T2R7 in calcium based assays lead to the identification of novel compounds that activate this receptor. Quinine, diphenidol, dextromethorphan and diphenhydramine showed substantial activation of T2R7. Interestingly, these bitter compounds showed different pharmacological characteristics. To investigate the structural features in T2R7 that might contribute to the observed differences in agonist specificities, molecular model guided ligand docking and site-directed mutagenesis was pursued. Amino acids D65, D86, W89, N167, T169, W170, S181, T255 and E271 in the ligand-binding pocket were replaced and the mutants characterized pharmacologically. Our results suggest D86, S181 and W170 present on the extracellular side of transmembrane 3 (TM3), TM5 and in extracellular loop 2 (ECL2) are essential for agonist binding in T2R7. Mutations of these amino acids lead to loss-of-function. We also identified gain-of-function residues that are agonist specific. These results suggest that agonists bind at an extracellular site rather than deep within the TM core involving residues present in both ECL2 and TM helices in T2R7. Similar to majority of the Class A GPCRs, ECL2 in T2R7 plays a significant role in agonist binding and activation.  相似文献   

5.
Class A G protein-coupled receptors (GPCRs) are known to form dimers and/or oligomeric arrays in vitro and in vivo. These complexes are thought to play important roles in modulating class A GPCR function. Many studies suggest that residues located on the "outer" (lipid-facing) surface of the transmembrane (TM) receptor core are critically involved in the formation of class A receptor dimers (oligomers). However, no clear consensus has emerged regarding the identity of the TM helices or TM subsegments involved in this process. To shed light on this issue, we have used the M(3) muscarinic acetylcholine receptor (M3R), a prototypic class A GPCR, as a model system. Using a comprehensive and unbiased approach, we subjected all outward-facing residues (70 amino acids total) of the TM helical bundle (TM1-7) of the M3R to systematic alanine substitution mutagenesis. We then characterized the resulting mutant receptors in radioligand binding and functional studies and determined their ability to form dimers (oligomers) in bioluminescence resonance energy transfer saturation assays. We found that M3R/M3R interactions are not dependent on the presence of one specific structural motif but involve the outer surfaces of multiple TM subsegments (TM1-5 and -7) located within the central and endofacial portions of the TM receptor core. Moreover, we demonstrated that the outward-facing surfaces of most TM helices play critical roles in proper receptor folding and/or function. Guided by the bioluminescence resonance energy transfer data, molecular modeling studies suggested the existence of multiple dimeric/oligomeric M3R arrangements, which may exist in a dynamic equilibrium. Given the high structural homology found among all class A GPCRs, our results should be of considerable general relevance.  相似文献   

6.
Oligomerization of adenosine A2A and dopamine D2 receptors in living cells   总被引:5,自引:0,他引:5  
We investigated whether oligomerization of adenosine A(2A) receptor (A(2A)R) and dopamine D(2) receptor (D(2)R) exists in living cells using modified bioluminescence resonance energy transfer (BRET(2)) technology. Fusion of these receptors to a donor, Renilla luciferase (Rluc), and to an acceptor, modified green fluorescent protein (GFP(2)), did not affect the ligand binding affinity, subcellular distribution, and coimmunoprecipitation of the receptors. BRET was detected not only between Myc-D(2)R-Rluc and A(2A)R-GFP(2) but also between HA-tagged A(2A)R-Rluc and A(2A)R-GFP(2). These results indicate A(2A)R, either homomeric or heteromeric with D(2)R, exists as an oligomer in living cells.  相似文献   

7.
A key step in transmembrane (TM) signal transduction by G-protein-coupled receptors (GPCRs) is the ligand-induced conformational change of the receptor, which triggers the activation of a guanine nucleotide-binding protein. GPCRs contain a seven-TM helical structure essential for signal transduction in response to a large variety of sensory and hormonal signals. Primary structure comparison of GPCRs has shown that the second TM helix contains a highly conserved Asp residue, which is critical for agonist activation in these receptors. How conformational changes in TM2 relate to signal transduction by a GPCR is not known, because activation-induced conformational changes in TM2 helix have not been measured. Here we use modification of reporter cysteines to measure water accessibility at specific residues in TM2 of the type 1 receptor for the octapeptide hormone angiotensin II. Activation-dependent changes in the accessibility of Cys76 on TM2 were measured in constitutively activated mutants. These changes were directly correlated with measurement of function, establishing the link between physical changes in TM2 and function. Accessibility changes were measured at several consecutive residues on TM2, which suggest that TM2 undergoes a transmembrane movement in response to activation. This is the first report of in situ measurement of TM2 movement in a GPCR.  相似文献   

8.
G protein-coupled receptors (GPCRs) are key players in cell communication. Several classes of such receptors have been identified. Although all GPCRs possess a heptahelical domain directly activating G proteins, important structural and sequence differences within receptors from different classes suggested distinct activation mechanisms. Here we show that highly conserved charged residues likely involved in an interaction network between transmembrane domains (TM) 3 and 6 at the cytoplasmic side of class C GPCRs are critical for activation of the gamma-aminobutyric acid type B receptor. Indeed, the loss of function resulting from the mutation of the conserved lysine residue into aspartate or glutamate in the TM3 of gamma-aminobutyric acid type B(2) can be partly rescued by mutating the conserved acidic residue of TM6 into either lysine or arginine. In addition, mutation of the conserved lysine into an acidic residue leads to a nonfunctional receptor that displays a high agonist affinity. This is reminiscent of a similar ionic network that constitutes a lock stabilizing the inactive state of many class A rhodopsin-like GPCRs. These data reveal that despite their original structure, class C GPCRs share with class A receptors at least some common structural feature controlling G protein activation.  相似文献   

9.
Transmembrane (TM) helices of human D1-like dopaminergic receptors (hD1R and hD5R) harbor the same residues implicated in ligand binding and activation of catecholamine G protein-coupled receptors (GPCRs). Yet, hD1R and hD5R naturally display the distinct functional properties shared by wild type and constitutively active mutant GPCRs, respectively. Interestingly, we show in the present study that a class of synthetic phenylbenzazepine agonists containing a methyl on the azepine ring exhibited lower affinity for the more constitutively activated hD5R. These results cannot be explained by the “allosteric ternary complex model” postulating a higher agonist affinity for constitutively active GPCRs. We have also explored the functional role of distinct extracellular amino terminus (NT) and TM1 regions of hD1R and hD5R using a chimerical approach. Of these two regions, our studies suggest that TM1 predominantly shapes D1-like ligand affinity and selectivity. Additionally, NT and TM1 of hD1R and hD5R play no role in receptor constitutive activity but differentially modulate dopamine-mediated responsiveness. The TM1 exchange mediated drastic changes in intrinsic efficacy and activity of phenylbenzazepine drugs displaying partial agonism at hD1R and hD5R. Phenylbenzazepines were converted into strong partial agonists or full agonists in cells expressing hD1R-TM1D5 chimera while being switched from full agonists to partial agonists and partial agonists to antagonists in cells harboring hD5R-TM1D1 chimera. TM1 exchange had no effect on antipsychotic-mediated inverse agonism. In summary, our study shows that NT and TM1 of D1-like receptors control ligand binding and agonist-induced activation, poising these regions as important structural determinants for catecholamine GPCR function.  相似文献   

10.
Protein surface roughness is a structural property associated with ligand-protein and protein-protein binding interfaces. In this work we apply for the first time the concept of surface roughness, expressed as the fractal dimension, to address structure and function of G protein-coupled receptors (GPCRs) which are an important group of drug targets. We calculate the exposure ratio and the fractal dimension for helix-forming residues of the β(2) adrenergic receptor (β(2)AR), a model system in GPCR studies, in different conformational states: in complex with agonist, antagonist and partial inverse agonists. We show that both exposure ratio and roughness exhibit periodicity which results from the helical structure of GPCRs. The pattern of roughness and exposure ratio of a protein patch depends on its environment: the residues most exposed to membrane are in general most rough whereas parts of receptors mediating interhelical contacts in a monomer or protein complex are much smoother. We also find that intracellular ends (TM3, TM5, TM6 and TM7) which are relevant for G protein binding and thus receptor signaling, are exposed but smooth. Mapping the values of residual fractal dimension onto receptor 3D structures makes it possible to conclude that the binding sites of orthosteric ligands as well as of cholesterol are characterized with significantly higher roughness than the average for the whole protein. In summary, our study suggests that identification of specific patterns of roughness could be a novel approach to spot possible binding sites which could serve as original drug targets for GPCRs modulation.  相似文献   

11.
Activation of G protein-coupled receptors (GPCRs) originates in ligand-induced protein conformational changes that are transmitted to the cytosolic receptor surface. In the photoreceptor rhodopsin, and possibly other rhodopsin-like GPCRs, protonation of a carboxylic acid in the conserved E(D)RY motif at the cytosolic end of transmembrane helix 3 (TM3) is coupled to receptor activation. Here, we have investigated the structure of synthetic peptides derived from rhodopsin TM3. Polarized FTIR spectroscopy reveals a helical structure of a 31-mer TM3 peptide reconstituted into PC vesicles with a large tilt of 40-50 degrees of the helical axis relative to the membrane normal. Helical structure is also observed for the TM3 peptide in detergent micelles and depends on pH, especially in the C-terminal sequence. In addition, the fluorescence emission of the single tyrosine of the D(E)RY motif in the TM3 peptide exhibits a pronounced pH sensitivity that is abolished when Glu is replaced by Gln, demonstrating that protonation of the conserved Glu side chain affects the structure in the environment of the D(E)RY motif of TM3. The pH regulation of the C-terminal TM3 structure may be an intrinsic feature of the E(D)RY motif in other class I receptors, allowing the coupling of protonation and conformation of membrane-exposed residues in full-length GPCRs.  相似文献   

12.
Residue Arg3.50 belongs to the highly conserved DRY-motif of class A GPCRs, which is located at the bottom of TM3. On the one hand, Arg3.50 has been reported to help stabilize the inactive state of GPCRs, but on the other hand has also been shown to be crucial for stabilizing active receptor conformations and mediating receptor-G protein coupling. The combined results of these studies suggest that the exact function of Arg3.50 is likely to be receptor-dependent and must be characterized independently for every GPCR. Consequently, we now present comparative molecular-dynamics simulations that use our recently described inactive-state and Gα-bound active-state homology models of the dopamine D2 receptor (D2R), which are either bound to dopamine or ligand-free, performed to identify the function of Arg1323.50 in D2R. Our results are consistent with a dynamic model of D2R activation in which Arg1323.50 adopts a dual role, both by stabilizing the inactive-state receptor conformation and enhancing dopamine-dependent D2R-G protein coupling.  相似文献   

13.
The activated (R*) states in constitutively active mutants (CAMs) of G-protein-coupled receptors (GPCRs) are presumably characterized by lower energies than the resting (R) states. If specific configurations of TM helices differing by rotations along the long transmembrane axes possess energies lower than that in the R state for pronounced CAMs, but not for non-CAMs, these particular configurations of TM helices are candidate 3D models for the R* state. The hypothesis was studied in the case of rhodopsin, the only GPCR for which experimentally determined 3D models of the R and R* states are currently available. Indeed, relative energies of the R* state were significantly lower than that of the R state for the rhodopsin mutants G90D/M257Y and E113Q/M257Y (strong CAMs), but not for G90D, E113Q, and M257Y (not CAMs). Next, the developed build-up procedure successfully identified few similar configurations of the TM helical bundle of G90D/M257Y and E113Q/M257Y as possible candidates for the 3D model of the R* state of rhodopsin, all of them being in good agreement with the model suggested by experiment. Since constitutively active mutants are known for many of GPCRs belonging to the large rhodopsin-like family, this approach provides a way for predicting possible 3D structures corresponding to the activated states of the TM regions of many GPCRs for which CAMs have been identified.  相似文献   

14.
Together with G protein-coupled receptor (GPCR) kinases (GRKs) and β-arrestins, RGS proteins are the major family of molecules that control the signaling of GPCRs. The expression pattern of one of these RGS family members, RGS9-2, coincides with that of the dopamine D(3) receptor (D(3)R) in the brain, and in vivo studies have shown that RGS9-2 regulates the signaling of D2-like receptors. In this study, β-arrestin2 was found to be required for scaffolding of the intricate interactions among the dishevelled-EGL10-pleckstrin (DEP) domain of RGS9-2, Gβ5, R7-binding protein (R7BP), and D(3)R. The DEP domain of RGS9-2, under the permission of β-arrestin2, inhibited the signaling of D(3)R in collaboration with Gβ5. β-Arrestin2 competed with R7BP and Gβ5 so that RGS9-2 is placed in the cytosolic region in an open conformation which is able to inhibit the signaling of GPCRs. The affinity of the receptor protein for β-arrestin2 was a critical factor that determined the selectivity of RGS9-2 for the receptor it regulates. These results show that β-arrestins function not only as mediators of receptor-G protein uncoupling and initiators of receptor endocytosis but also as scaffolding proteins that control and coordinate the inhibitory effects of RGS proteins on the signaling of certain GPCRs.  相似文献   

15.
The human bitter taste receptors (T2Rs) are non-Class A members of the G-protein-coupled receptor (GPCR) superfamily, with very limited structural information. Amino acid sequence analysis reveals that most of the important motifs present in the transmembrane helices (TM1-TM7) of the well studied Class A GPCRs are absent in T2Rs, raising fundamental questions regarding the mechanisms of activation and how T2Rs recognize bitter ligands with diverse chemical structures. In this study, the bitter receptor T2R1 was used to systematically investigate the role of 15 transmembrane amino acids in T2Rs, including 13 highly conserved residues, by amino acid replacements guided by molecular modeling. Functional analysis of the mutants by calcium imaging analysis revealed that replacement of Asn-66(2.65) and the highly conserved Asn-24(1.50) resulted in greater than 90% loss of agonist-induced signaling. Our results show that Asn-24(1.50) plays a crucial role in receptor activation by mediating an hydrogen bond network connecting TM1-TM2-TM7, whereas Asn-66(2.65) is essential for binding to the agonist dextromethorphan. The interhelical hydrogen bond between Asn-24(1.50) and Arg-55(2.54) restrains T2R receptor activity because loss of this bond in I27A and R55A mutants results in hyperactive receptor. The conserved amino acids Leu-197(5.50), Ser-200(5.53), and Leu-201(5.54) form a putative LXXSL motif which performs predominantly a structural role by stabilizing the helical conformation of TM5 at the cytoplasmic end. This study provides for the first time mechanistic insights into the roles of the conserved transmembrane residues in T2Rs and allows comparison of the activation mechanisms of T2Rs with the Class A GPCRs.  相似文献   

16.
It is widely assumed that G protein-coupled receptor kinase 2 (GRK2)-mediated specific inhibition of G protein-coupled receptors (GPCRs) response involves GRK-mediated receptor phosphorylation followed by β-arrestin binding and subsequent uncoupling from the heterotrimeric G protein. It has recently become evident that GRK2-mediated GPCRs regulation also involves phosphorylation-independent mechanisms. In the present study we investigated whether the histamine H2 receptor (H2R), a Gα(s)-coupled GPCR known to be desensitized by GRK2, needs to be phosphorylated for its desensitization and/or internalization and resensitization. For this purpose we evaluated the effect of the phosphorylating-deficient GRK2K220R mutant on H2R signaling in U937, COS7, and HEK293T cells. We found that although this mutant functioned as dominant negative concerning receptor internalization and resensitization, it desensitized H2R signaling in the same degree as the GRK2 wild type. To identify the domains responsible for the kinase-independent receptor desensitization, we co-transfected the receptor with constructions encoding the GRK2 RGS-homology domain (RH) and the RH or the kinase domain fused to the pleckstrin-homology domain. Results demonstrated that the RH domain of GRK2 was sufficient to desensitize the H2R. Moreover, disruption of RGS functions by the use of GRK2D110A/K220R double mutant, although coimmunoprecipitating with the H2R, reversed GRK2K220R-mediated H2R desensitization. Overall, these results indicate that GRK2 induces desensitization of H2R through a phosphorylation-independent and RGS-dependent mechanism and extends the GRK2 RH domain-mediated regulation of GPCRs beyond Gα(q)-coupled receptors. On the other hand, GRK2 kinase activity proved to be necessary for receptor internalization and the resulting resensitization.  相似文献   

17.
The directional migration of neutrophils towards inflammatory mediators, such as chemokines and cannabinoids, occurs via the activation of seven transmembrane G protein coupled receptors (7TM/GPCRs) and is a highly organized process. A crucial role for controlling neutrophil migration has been ascribed to the cannabinoid CB(2) receptor (CB(2)R), but additional modulatory sites distinct from CB(2)R have recently been suggested to impact CB(2)R-mediated effector functions in neutrophils. Here, we provide evidence that the recently de-orphanized 7TM/GPCR GPR55 potently modulates CB(2)R-mediated responses. We show that GPR55 is expressed in human blood neutrophils and its activation augments the migratory response towards the CB(2)R agonist 2-arachidonoylglycerol (2-AG), while inhibiting neutrophil degranulation and reactive oxygen species (ROS) production. Using HEK293 and HL60 cell lines, along with primary neutrophils, we show that GPR55 and CB(2)R interfere with each other's signaling pathways at the level of small GTPases, such as Rac2 and Cdc42. This ultimately leads to cellular polarization and efficient migration as well as abrogation of degranulation and ROS formation in neutrophils. Therefore, GPR55 limits the tissue-injuring inflammatory responses mediated by CB(2)R, while it synergizes with CB(2)R in recruiting neutrophils to sites of inflammation.  相似文献   

18.
Recent years have seen tremendous breakthroughs in structure determination of G-protein-coupled receptors (GPCRs). In 2011, two agonist-bound active-state structures of rhodopsin have been published. Together with structures of several rhodopsin activation intermediates and a wealth of biochemical and spectroscopic information, they provide a unique structural framework on which to understand GPCR activation. Here we use this framework to compare the recent crystal structures of the agonist-bound active states of the β(2) adrenergic receptor (β(2)AR) and the A(2A) adenosine receptor (A(2A)AR). While activation of these three GPCRs results in rearrangements of TM5 and TM6, the extent of this conformational change varies considerably. Displacements of the cytoplasmic side of TM6 ranges between 3 and 8? depending on whether selective stabilizers of the active conformation are used (i.e. a G-protein peptide in the case of rhodopsin or a conformationally selective nanobody in the case of the β(2)AR) or not (A(2A)AR). The agonist-induced conformational changes in the ligand-binding pocket are largely receptor specific due to the different chemical nature of the agonists. However, several similarities can be observed, including a relocation of conserved residues W6.48 and F6.44 towards L5.51 and P5.50, and of I/L3.40 away from P5.50. This transmission switch links agonist binding to the movement of TM5 and TM6 through the rearrangement of the TM3-TM5-TM6 interface, and possibly constitutes a common theme of GPCR activation.  相似文献   

19.
The C-terminus domain of G protein-coupled receptors confers a functional cytoplasmic interface involved in protein association. By screening a rat brain cDNA library using the yeast two-hybrid system with the C-terminus domain of the dopamine D(3) receptor (D(3)R) as bait, we characterized a new interaction with the PDZ domain-containing protein, GIPC (GAIP interacting protein, C terminus). This interaction was specific for the dopamine D(2) receptor (D(2)R) and D(3)R, but not for the dopamine D(4) receptor (D(4)R) subtype. Pull-down and affinity chromatography assays confirmed this interaction with recombinant and endogenous proteins. Both GIPC mRNA and protein are widely expressed in rat brain and together with the D(3)R in neurons of the islands of Calleja at plasma membranes and in vesicles. GIPC reduced D(3)R signaling, cointernalized with D(2)R and D(3)R, and sequestered receptors in sorting vesicles to prevent their lysosomal degradation. Through its dimerization, GIPC acts as a selective scaffold protein to assist receptor functions. Our results suggest a novel function for GIPC in the maintenance, trafficking, and signaling of GPCRs.  相似文献   

20.
G protein-coupled receptors (GPCRs) are seven-transmembrane (TM) helical proteins that bind extracellular molecules and transduce signals by coupling to heterotrimeric G proteins in the cytoplasm. The human D4 dopamine receptor is a particularly interesting GPCR because the polypeptide loop linking TM helices 5 and 6 (loop i3) may contain from 2 to 10 similar direct hexadecapeptide repeats. The precise role of loop i3 in D4 receptor function is not known. To clarify the role of loop i3 in G protein coupling, we constructed synthetic genes for the three main D4 receptor variants. D4-2, D4-4, and D4-7 receptors contain 2, 4, and 7 imperfect hexadecapeptide repeats in loop i3, respectively. We expressed and characterized the synthetic genes and found no significant effect of the D4 receptor polymorphisms on antagonist or agonist binding. We developed a cell-based assay where activated D4 receptors coupled to a Pertussis toxin-sensitive pathway to increase intracellular calcium concentration. Studies using receptor mutants showed that the regions of loop i3 near TM helices 5 and 6 were required for G protein coupling. The hexadecapeptide repeats were not required for G protein-mediated calcium flux. Cell membranes containing expressed D4 receptors and receptor mutants were reconstituted with purified recombinant G protein alpha subunits. The results show that each D4 receptor variant is capable of coupling to several G(i)alpha subtypes. Furthermore, there is no evidence of any quantitative difference in G protein coupling related to the number of hexadecapeptide repeats in loop i3. Thus, loop i3 is required for D4 receptors to activate G proteins. However, the polymorphic region of the loop does not appear to affect the specificity or efficiency of G(i)alpha coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号