首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, has been found to be implicated in an unique type of renal fibrosis, designated Chinese herbs nephropathy (CHN), and associated with the development of urothelial cancer in CHN patients. Understanding, which enzymes are involved in AA activation and/or detoxication is important in the assessment of individual susceptibility of humans to this natural carcinogen. Using the nuclease P1 version of the 32P-postlabeling assay we examined the ability of microsomal NADPH: CYP reductase to activate AA to metabolites forming DNA adducts. Renal and hepatic microsomes, containing NADPH:CYP reductase, generated AA-DNA adduct patterns reproducing those found in renal tissues in patients suffering from a renal fibrosis CHN and urothelial cancer. 7-(Deoxyadenosin-N6-yl)aristolactam I, 7-(deoxyguanosin-N2-yl)aristolactam I and 7-(deoxyadenosin-N6-yl)aristolactam II were identified as AA-DNA adducts formed by AAI. Two AA-DNA adducts, 7-(deoxyguanosin-N2-yl) aristolactam II and 7- (deoxyadenosin-N6-yl) aristolactam II, were generated from AAII. According to the structures of the DNA adducts identified, nitroreduction is the crucial pathway in the metabolic activation of AA. The identity of NADPH: CYP reductase as activating enzyme in microsomes has been proved with different cofactors and an enzyme inhibitor. Alpha-lipoic acid, a selective inhibitor of NADPH: CYP reductase, significantly decreased the amount of the adducts formed by microsomes. Likewise, only a cofactor of the enzyme, NADPH, supported the DNA adduct formation of AAI and AAII, while NADH was ineffective. These results demonstrate an involvement of NADPH: CYP reductase in the activation pathway of AAI and AAII in the microsomal system. Moreover, using the purified enzyme, the participation of this enzyme in the formation of AA-DNA adducts was confirmed. The results presented here are the first report demonstrating a reductive activation of natural nitroaromatic compounds, AA, by NADPH: CYP reductase.  相似文献   

2.
Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, is implicated in an unique type of renal fibrosis, designated Chinese herbs nephropathy (CHN), which can develop to urothelial cancer. Understanding which enzymes are involved in AA activation and/or detoxication is important in the assessment of an individual susceptibility to this natural carcinogen. We examined the ability of prostaglandin H synthase (PHS) to activate AA to metabolites forming DNA adducts with the nuclease P1 and 1-butanol extraction enrichment procedure of the (32)P-postlabeling assay. PHS is a prominent enzyme in the kidney and urothelial tissues. Ram seminal vesicle (RSV) microsomes, which contain high levels of PHS, generated AA-DNA adduct patterns reproducing those found in renal tissues in CHN patients. 7-(Deoxyadenosin-N(6)-yl)aristolactam I, 7-(deoxyguanosin-N(2)-yl)aristolactam I and 7-(deoxyadenosin-N(6)-yl)aristolactam II were identified as AA-DNA adducts formed by AAI. Two adducts, 7-(deoxyguanosin-N(2)-yl)aristolactam II and 7-(deoxyadenosin-N(6)-yl)aristolactam II, were generated from AAII. According to the structures of the DNA adducts identified, nitroreduction is the crucial pathway in the metabolic activation of AA. The identity of PHS as the activating enzyme in RSV microsomes was proven with different cofactors and inhibitors. Only indomethacin, a selective inhibitor of PHS, significantly decreased the amount of adducts formed by RSV microsomes. The inhibitor of NADPH:CYP reductase (alpha-lipoic acid) and some selective inhibitors of cytochromes P450 (CYP) were not effective. Likewise, only cofactors of PHS, arachidonic acid and hydrogen peroxide, supported the DNA adduct formation of AAI and AAII, while NADPH and NADH were ineffective. These results demonstrate a key role of PHS in the activation pathway of AAI and AAII in the RSV microsomal system and were corroborated with the purified enzyme, namely ovine PHS-1. The results presented here are the first report demonstrating a reductive activation of nitroaromatic compounds by PHS-1.  相似文献   

3.
Aristolochic acid (AA), derived from the herbal genus Aristolochia and Asarum, has recently been shown to be associated with the development of nephropathy. Upon enzyme activation, AA is metabolized to the aristolactam-nitrenium ion intermediate, which reacts with the exocyclic amino group of the DNA bases via an electrophilic attack at its C7 position, leading to the formation of the corresponding DNA adducts. The AA-DNA adducts are believed to be associated with the nephrotoxic and carcinogenic effects of AA. In this study, liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS) was used to identify and quantify the AA-DNA adducts isolated from the kidney and liver tissues of the AA-dosed rats. The deoxycytidine adduct of AA (dC-AA) and the deoxyadenosine-AA adduct (dA-AA) were detected and quantified in the tissues of rats with one single oral dose (5mg or 30mg AA/kg body weight). The deoxyguanosine adduct (dG-AA), however, was detected only in the kidney of rats that were dosed at 30mg AA/kg body weight for three consecutive days. The amount of AA-DNA adducts found in the rats correlated well with the dosage.  相似文献   

4.
Aristolochic acid (AA), a naturally occurring nephrotoxin and carcinogen, is associated with tumor development in patients suffering from Chinese herbs nephropathy (now termed aristolochic acid nephropathy, AAN) and may also be a cause for the development of a similar type of nephropathy, the Balkan endemic nephropathy (BEN). Major DNA adducts [7-(deoxyadenosin-N6-yl)-aristolactam and 7-(deoxyguanosin-N2-yl)aristolactam] formed from AA after reductive metabolic activation were found in renal tissues of patients with both diseases. Understanding which human enzymes are involved in AA activation and/or detoxication is important in the assessment of an individual's susceptibility to this plant carcinogen. This paper reviews major hepatic and renal enzymes responsible for AA-DNA adduct formation in humans. Phase I biotransformation enzymes play a crucial role in the metabolic activation of AA to species forming DNA adducts, while a role of phase II enzymes in this process is questionable. Most of the activation of AA in human hepatic microsomes is mediated by cytochrome P450 (CYP) 1A2 and, to a lower extent, by CYP1A1; NADPH:CYP reductase plays a minor role. In human renal microsomes NADPH:CYP reductase is more effective in AA activation. Prostaglandin H synthase (cyclooxygenase, COX) is another enzyme activating AA in human renal microsomes. Among the cytosolic reductases, NAD(P)H:quinone oxidoreductase (NQO1) is the most efficient in the activation of AA in human liver and kidney. Studies with purified enzymes confirmed the importance of CYPs, NADPH:CYP reductase, COX and NQO1 in the AA activation. The orientation of AA in the active sites of human CYP1A1, -1A2 and NQO1 was predicted from molecular modeling and explains the strong reductive potential of these enzymes for AA detected experimentally. We hypothesized that inter-individual variations in expressions and activities of enzymes activating AA may be one of the causes responsible for the different susceptibilities to this carcinogen reflected in the development of AA-induced nephropathies and associated urothelial cancer.  相似文献   

5.
Aristolochic acids (AAs), major components of plant extracts from Aristolochia species, form (after metabolic activation) pro-mutagenic DNA adducts in renal tissue. The DNA adducts can be used as biomarkers for studies of AA toxicity. Identification of these adducts is a complicated and time-consuming procedure. We present here a fast, nonisotopic, fluorescence-based assay for the detection of AA-DNA adducts in multiple samples. This approach allows analysis of AA adducts in synthetic DNA with known nucleotide composition and analysis of DNA adducts formed from chemically diverse AAs in vitro. The method can be applied to compare AA-DNA adduct formation in cells and tissues.  相似文献   

6.
Aristolochic acid nephropathy (AAN) is associated with the prolonged exposure to nephrotoxic and carcinogenic aristolochic acids (AAs). DNA adducts induced by AAs have been proven to be critical biomarkers for AAN. Therefore, accurate and specific quantification of AA-DNA adducts is important. In this study, a specific method using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed and applied for the determination of 7-(deoxyadenosin-N(6)-yl)aristolactam I (dA-AAI) in exfoliated urothelial cells of AA-dosed rats. After the isolation from urine samples, DNA in urothelial cells were subjected to enzymatic digestion and solid-phase extraction on a C(18) Sep-Pak cartridge for the enrichment of DNA adducts. The sample extracts were analyzed by reverse-phase UPLC-MS/MS with electrospray ionization in positive ion mode. The quantification of the AA-DNA adduct was performed by using multiple reaction monitoring with reserpine as internal standard. The method provided good accuracy and precision with a detection limit of 1 ng/ml, which allowed the detection of trace of dA-AAI in exfoliated urothelial cells. After one-month oral dose of AAI at 10 mg/kg/day, 2.1±0.3 dA-AAI per 10(9) normal dA was detected in exfoliated urothelial cells of rats. Compared to the traditional methods such as (32)P-postlabelling and HPLC with fluorescence detection, the developed UPLC-MS/MS method is more specific and rapid with a retention time of 4 min. The outcome of this study may have clinical significance for diagnosing and monitoring AA-associated disease because detection of DNA adducts in exfoliated urothelial cells is non-invasive and convenient.  相似文献   

7.
Ochratoxin A (OTA), a nephrotoxic and nephrocarcinogenic mycotoxin, leads to the formation of DNA adducts after administration to animals. This could be due to an epigenetic effect. In vitro assays can exclude an indirect effect, where the xenobiotic can generate, in vivo, endogenous reactive compounds which give adducts on DNA. Microsomes prepared from mice or rabbit kidney and liver, used as metabolic activators, were incubated in the presence of commercial salmon testes DNA and OTA, with NADPH or arachidonic acid used as cofactors. Upto 126 DNA adducts for 10(9) nucleotides were detected using the 32P postlabeling method after incubation with the mouse kidney system. Similar results were obtained with rabbit kidney microsomes. Using liver microsomes, the number of DNA adducts detected was much lower. When NADPH was used as a cosubstrate (to explore the cytochrome P450 metabolic pathways), with mice kidney microsomes, the adduct level was only 44% of the one obtained with arachidonic acid. These results lend support to the hypothesis of the preferential activation of OTA by the peroxidase activity of prostaglandin synthases and/or lipoxygenases to direct genotoxic metabolites, and are in agreement with the previously obtained results after in vivo treatment of mice. In order to identify the nucleotides of DNA modified by the OTA metabolites, dAMP, dGMP, dTMP and dCMP were used as substrates under the same conditions as with DNA. The adducts were found only on dGMP. The total adduct level was of 344 adducts per 10(9) nucleotides with the appearance of three major adducts in the presence of arachidonic acid. With NADPH, 271 adducts were obtained per 10(9) nucleotides, with again three major adducts, but only two of them were similar to two adducts obtained in the presence of arachidonic acid. Desferal (desferrioxamine B methanesulphonate), at a 50 microM concentration, did not reduce the adduct level. Adducts were also obtained when polydG, polydC and dG-p-dG were used as alternative substrates, whereas no adducts were obtained with polydA, polydT and polydC. The major adduct obtained after incubation of DNA with OTA, comigrated with the major adduct obtained with dGMP, in two chromatographic solvents. These results show that OTA is metabolized to genotoxic metabolite(s) which interact with the guanine residues of DNA.  相似文献   

8.
Aristolochic acid (AA) is a potent nephrotoxin and carcinogen and is the causative factor for Chinese herb nephropathy. AA has been associated with the development of urothelial cancer in humans, and kidney and forestomach tumors in rodents. To investigate the molecular mechanisms responsible for the tumorigenicity of AA, we determined the DNA adduct formation and mutagenicity of AA in the liver (nontarget tissue) and kidney (target tissue) of Big Blue rats. Groups of six male rats were gavaged with 0, 0.1, 1.0 and 10.0 mg AA/kg body weight five times/week for 3 months. The rats were sacrificed 1 day after the final treatment, and the livers and kidneys were isolated. DNA adduct formation was analyzed by 32P-postlabeling and mutant frequency (MF) was determined using the λ Select-cII Mutation Detection System. Three major adducts (7-[deoxyadenosin-N6-yl]-aristolactam I, 7-[deoxyadenosin-N6-yl]-aristolactam II and 7-[deoxyguanosin-N2-yl]-aristolactam I) were identified. There were strong linear dose-responses for AA-induced DNA adducts in treated rats, ranging from 25 to 1967 adducts/108 nucleotides in liver and 95–4598 adducts/108 nucleotides in kidney. A similar trend of dose-responses for mutation induction also was found, the MFs ranging from 37 to 666 × 10−6 in liver compared with the MFs of 78–1319 × 10−6 that we previously reported for the kidneys of AA-treated rats. Overall, kidneys had at least two-fold higher levels of DNA adducts and MF than livers. Sequence analysis of the cII mutants revealed that there was a statistically significant difference between the mutation spectra in both kidney and liver of AA-treated and control rats, but there was no significant difference between the mutation spectra in AA-treated livers and kidneys. A:T → T:A transversion was the predominant mutation in AA-treated rats; whereas G:C → A:T transition was the main type of mutation in control rats. These results indicate that the AA treatment that eventually results in kidney tumors in rats also results in significant increases in DNA adduct formation and cII MF in kidney. Although the same treatment does not produce tumors in rat liver, it does induce DNA adducts and mutations in this tissue, albeit at lower levels than in kidney.  相似文献   

9.
The environmental contaminant 3-nitrobenzanthrone (3-nitro-7H-benz[d, e]anthracen-7-one) was recently shown to be a very strong bacterial mutagen, suggesting a new class of mutagenic compounds present in airborne particulate matter and diesel exhaust. Using the 32P-postlabeling assay, we investigated the capacity for 3-nitrobenzanthrone to form DNA adducts in vitro. Calf thymus DNA was incubated with 3-nitrobenzanthrone and either xanthine oxidase, a mammalian nitroreductase or rat liver S9 or zinc. Under these conditions 3-nitrobenzanthrone formed a total of seven adducts detectable by 32P-postlabeling. Using enrichment by butanol extraction the highest level of DNA adduct formation was found with activation by zinc (RAL: 88.4+/-32 per 108 nucleotides) followed by activation with xanthine oxidase (RAL: 75.5+/-12) and activation by rat liver S9 (RAL: 48.6+/-8). Three of the seven adduct spots were detected in all activation systems, however different amounts of individual spots were obtained in the different in vitro systems. The adduct pattern observed for the enzymatic incubations consisted of three major spots and was essentially identical. Chemical reduction of 3-nitrobenzanthrone by zinc resulted in five adduct spots whose formation was found to be concentration dependent. All adducts of 3-nitrobenzanthrone observed in this study migrated primarily along a diagonal zone, typical for DNA adducts derived from extracts of airborne particulate matter. When butanol enrichment was compared with nuclease P1 enrichment one adduct was clearly sensitive to the 3'-monophosphatase activity of nuclease P1. Our results demonstrate that 3-nitrobenzanthrone binds covalently to DNA after metabolic activation, forming multiple DNA adducts in vitro all of which are reduction products. These adducts may contribute to the known genotoxicity and carcinogenicity of extracts from airborne particulates.  相似文献   

10.
Zhao C  Tyndyk M  Eide I  Hemminki K 《Mutation research》1999,424(1-2):117-125
Detection of 7-alkylguanine DNA adducts is useful to assess human exposure to and the resulting DNA damage caused by simple alkylating agents. The background 7-methylguanine (7-MG) and 7-hydroxyethylguanine (7-HEG) adduct levels were determined in human and rat tissues, using thin-layer chromatography (TLC) combined with high pressure liquid chromatography (HPLC). In addition, these two adduct levels were also compared in various tissues between smokers and non-smokers. The results demonstrated that the background level of 7-alkylguanine adducts in WBC and lung tissues of non-smokers was 2.9 and 4.0 adducts/107 nucleotides, respectively. In smokers with lung cancers 7-MG adduct level in lung samples (6.3+/-1.9 adducts/107 nucleotides) and in bronchus samples (6.1+/-1.5 adducts/107 nucleotides) was significantly higher than that in WBC samples (3.3+/-0.9 adducts/107 nucleotides). 7-HEG adduct levels obtained from the same individuals were 0.8+/-0.3 in lung, 1.0+/-0.8 in bronchus and 0.6+/-0.2 adducts/107 nucleotides in WBC, respectively. Animal studies showed that background levels of 7-MG (2.1-2.5 adducts/107 nucleotides) in control rats were approximately 2-4-fold higher than 7-HEG levels (0.6-0.9 adducts/107 nucleotides). After a 3-day exposure to 300 ppm ethene, 7-HEG adducts accumulated to a similar extent in different tissues of rats, with the mean adduct level of 5.6-7.0 in liver, 7.4 in lymphocytes and 5.5 adducts/107 nucleotides in kidney.  相似文献   

11.
12.
Pierisin-1, a cytotoxic protein from the cabbage butterfly (Pieris rapae), induces apoptosis in mammalian cell lines. Binding of its C-terminal region to glycosphingolipid Gb3 and Gb4 receptors on cell membrane is necessary for incorporation into cells, while the N-terminal polypeptide catalyzes transfer of the ADP-ribose moiety of NAD at N2 of dG in DNA. Resulting DNA adducts cause mutation if they are present at low levels. If the DNA damage is more severe, the cells undergo apoptosis. In the present study, we examined the repair system for ADP-ribosylated dG adducts using nucleotide excision repair (NER) mutants of Chinese hamster ovary (CHO) cell lines. Pierisin-1 showed cytotoxic effects in all cases: IC50 values of them were; 650 ng/ml for AA8 (wild), 230 ng/ml for UV5, 190 ng/ml for UV20, 260 ng/ml for UV41, and 240 ng/ml for UV135. Thus, wild-type AA8 proved most resistant to pierisin-1-induced cytotoxicity. When these CHO cell lines were treated with pierisin-1, the adduct levels of ADP-ribosylated dG increased to 2.5-4.8/10(5) nucleotides time-dependently in all cell lines at 12 h. After removal of pierisin-1, the adduct levels remained constant or increased to 4-14/10(5) nucleotides in all NER mutant cells (UV5, UV20, UV41, UV135), while those rapidly decreased to 0.27/10(5) nucleotides in the repair proficient AA8 cells for 24 h. From these results, it is suggested that the NER system is involved in the repair of ADP-ribosylated dG adducts in DNA.  相似文献   

13.
Male Sprague-Dawley rats and B6C3F1 mice were exposed to either a single 6h or a multiple (5) daily (6h) nose-only dose of 1,3-[2,3-(14)C]-butadiene at exposure concentrations of nominally 1, 5 or 20 ppm. The aim was to compare the results with those from a similar previous study at 200 ppm. DNA isolated from liver, lung and testis of exposed rats and mice was analysed for the presence of butadiene related adducts, especially the N7-guanine adducts. Total radioactivity present in the DNA from liver, lung and testis was quantified and indicated more covalent binding of radioactivity for mouse tissue DNA than rat tissue DNA. Following release of the depurinating DNA adducts by neutral thermal hydrolysis, the liberated depurinated DNA adducts were measured by reverse phase HPLC coupled with liquid scintillation counting. The guanine adduct G4, assigned as N7-(2,3,4-trihydroxybutyl)- guanine, was the major adduct measured in liver, lung and testis DNA in both rats and mice. Higher levels of G4 were detected in all mouse tissues compared with rat tissue. The dose-response relationship for the formation of adduct G4 was approximately linear for all tissues studied for both rats and mice exposed in the 1-20 ppm range. The formation of G4 in liver tissue was about three times more effective for mouse than rat in this exposure range. Average levels of adduct G4 measured in liver DNA of rats and mice exposed to 5 x 6 h 1, 5 and 20 ppm 1,3-[2,3-(14)C]-butadiene were, respectively, for rats: 0.79 +/- 0.30, 2.90 +/- 1.19, 16.35 +/- 4.8 adducts/10(8) nucleotides and for mice: 2.23 +/- 0.71, 12.24 +/- 2.15, 48.63 +/- 12.61 adducts/10(8) nucleotides. For lung DNA the corresponding values were for rats: 1.02 +/- 0.44, 3.12 +/- 1.06, 17.02 +/- 4.07 adducts/10(8) nucleotides, and for mice: 3.28 +/- 0.32, 14.04 +/- 1.55, 42.47 +/- 13.12 adducts/10(8) nucleotides. Limited comparative data showed that the levels of adduct G4 formed in liver and lung DNA of mice exposed to a single exposure to butadiene in the present 20 ppm study and earlier 200 ppm study were approximately directly proportional across dose, but this was not observed in the case of rats. From the available evidence it is most likely that adduct G4 was formed from a specific isomer of the diol-epoxide metabolite, 3,4-epoxy-1,2-butanediol rather than the diepoxide, 1,2,3,4-diepoxybutane. Another adduct G3, possibly a diastereomer of N7-(2,3,4-trihydroxybutyl)-guanine or most likely the regioisomer N7-(1-hydroxymethyl-2,3-dihydroxypropyl)-guanine, was also detected in DNA of mouse tissues but was essentially absent in DNA from rat tissue. Qualitatively similar profiles of adducts were observed following exposures to butadiene in the present 20 ppm study and the previous 200 ppm study. Overall the DNA adduct levels measured in tissues of both rats and mice were very low. The differences in the profiles and quantity of adducts seen between mice and rats were considered insufficient to explain the large difference in carcinogenic potency of butadiene to mice compared with rats.  相似文献   

14.
Mitomycin C (MMC) is a clinically used drug with mutagenic and antitumor activities, presumably elicited through its covalent binding to DNA, however, little is known about MMC binding to DNA in vivo. A 32P-postlabeling method that does not require radiolabeled test compounds was employed here to study the formation of DNA adducts in somatic and reproductive tissues of rats 24 h after an i.p. dose of 9 mg/kg MMC. Among 14 tissues studied in female rats, MMC-DNA adduct levels were within a 2-fold range in 11 tissues, i.e. bladder, colon, esophagus, heart, kidney, liver, lung, ovary, pancreas, small intestine and stomach (minimum levels of 9.6-21.9 adducts per 10(7) N). Three other tissues, i.e. brain, spleen and thymus, exhibited lower adduct levels (0.2 5.4 and 1.4 adducts, respectively, per 10(7) N). Liver DNA adduct levels were 32% lower in male than in female rats. Testicular DNA contained 2.5 adducts per 10(7) N, i.e. 5.3 times less than ovarian DNA. 32P-labeled adduct patterns were qualitatively similar among the different tissues and consisted of 10 adducts, one of which comprised 71 (+/- 5)% of the total. All these adducts were chromatographically identical to adducts formed by the reaction of chemically reduced MMC with DNA in vitro, demonstrating that metabolic activation of MMC occurred via reduction. Using homopolydeoxyribonucleotides modified with MMC, in vivo adducts were shown to be mostly (greater than 90%) guanine derivatives and small amounts of adenine, cytosine and thymine products. Most of the adducts appeared to be monofunctional derivatives of DNA nucleotides. Dose-dependent MMC-DNA adduct formation was determined in rat liver over an 82-fold range of MMC administered (0.11-9.0 mg/kg). The lowest dose level studied was 4.5 times lower than the recommended single dose for human cancer chemotherapy (20 mg/m2). Thus, these results predict that 32P-postlabeling methodology is suitable to monitor and quantify DNA adducts in tissue biopsies of patients receiving MMC chemotherapy.  相似文献   

15.
Aristolochia as human carcinogen Aristolochic acid (AA), the active principle of the old drug Aristolochia ssp. has recently been classified as human carcinogen. The elucidation of the molecular mechanism of carcinogenesis of AA in animals led to the establishment of two specific biomarkers which were used to prove a causative role of AA in human cancers. These are AA‐DNA adducts, biomarkers of exposure to AA and AT→TA transversion mutations induced by these DNA adducts, biomarkers of effect. By detecting both biomarkers in individuals who ingested Aristolochia herbs during a weight‐reduction regimen in Belgium and in farmers in the Balkans where Aristolochia ssp are growing as weeds in cereal fields AA was identified as the cause for urothelial cancer and a disease of the kidney (AAN).  相似文献   

16.
Aluminium production plant workers are exposed to a great number of airborne polycyclic aromatic hydrocarbons and epidemiological studies suggest that these workers are at increased risk of lung and bladder cancer. Blood samples from 46 workers at 2 primary aluminium plants and from 29 occupationally unexposed control individuals were analysed. DNA was isolated from the peripheral blood lymphocytes and aromatic DNA adducts were detected by 32P-postlabelling assay using the nuclease P1 digestion procedure for the enrichment of the adducts. The total levels of DNA adducts of exposed individuals varied from the detection limit of about 0.5 adducts/10(8) nucleotides up to 7.1 adducts/10(8) nucleotides and control adduct levels were up to 2.42 adducts/10(8) nucleotides. There was no significant difference between the mean adduct levels of the control group and of the individuals of one plant. However, the mean DNA adduct level obtained from workers of the second plant was significantly higher than that of the controls (p less than 0.001) and of the first plant (p less than 0.01), respectively. This difference can be attributed to differences in the design of technology and different levels of exposure at the 2 plants. The results of this study encourage further investigations of the use of peripheral white blood cells as marker cells and of 32P-postlabelling analysis for monitoring occupational exposure to mixtures of environmental carcinogenic pollutants.  相似文献   

17.
DNA adducts of mitomycin C (MMC) were detected by 32P-postlabeling analysis in both surgical specimens and an autopsy sample of the liver of patients with hepatocellular carcinoma who had received chemotherapy with MMC. Four kinds of adducts were detected in all 6 patients treated with MMC. These adducts had identical chromatographic mobilities to those of adducts in the liver of rats treated with MMC, but 1 additional adduct was detected in rat liver. In patients treated with MMC, about 3 adducts/10(8) nucleotides were found 4 days after MMC treatment, and 1 adduct/10(8) nucleotides 14 days after treatment and the latter level was maintained for up to 56 days. MMC-DNA adducts were also detected in peripheral blood leukocytes from a patient 1 and 7 days after MMC treatment, at levels of 1 and 0.6 adduct/10(8) nucleotides, respectively. These results suggest the tumor-initiating activity of MMC in humans.  相似文献   

18.
Acellular assay of calf thymus DNA ± rat liver microsomal S9 fraction coupled with 32P-postlabelling was used to study the genotoxic potential of organic compounds bound onto PM10 particles collected in three European cities—Prague (CZ), Kosice (SK) and Sofia (BG) during summer and winter periods. B[a]P alone induced DNA adduct levels ranging from 4.8 to 768 adducts/108 nucleotides in the concentration dependent manner. However, a mixture of 8 c-PAHs with equimolar doses of B[a]P induced 3.7–757 adducts/108 nucleotides, thus suggesting the inhibition of DNA adduct forming activity by interaction among various PAHs. Comparison of DNA adduct levels induced by various EOMs indicates higher variability among seasons than among localities. DNA adduct levels for Prague collection site varied from 19 to 166 adducts/108 nucleotides, for Kosice from 22 to 85 and for Sofia from 6 to 144 adducts/108 nucleotides. Bioactivation with S9 microsomal fraction caused 2- to 7-fold increase in DNA adduct levels compared to −S9 samples, suggesting a crucial role of indirectly acting genotoxic EOM components, such as PAHs. We have demonstrated for the first time a significant positive correlation between B[a]P content in EOMs and total DNA adduct levels detected in the EOM treated samples (R = 0.83; p = 0.04). These results suggest that B[a]P content in EOM is an important factor for the total genotoxic potential of EOM and/or B[a]P is a good indicator of the presence of other genotoxic compounds causing DNA adducts. Even stronger correlation between the content of genotoxic compounds in EOMs and total DNA adduct levels detected (R = 0.94; p = 0.005) was found when eight c-PAHs were taken into the consideration. Our findings support a hypothesis that a relatively limited number of EOM components is responsible for a major part of its genotoxicity detectable as DNA adducts by 32P-postlabelling.  相似文献   

19.
Further evidence that eugenol does not bind to DNA in vivo   总被引:1,自引:0,他引:1  
The naturally-occurring alkenylbenzene, eugenol, was examined for its ability to form DNA adducts in the livers of mice that had been treated with up to 10 mg of the compound. No adducts were detected by 32P-postlabelling with a limit of detection of 1 adduct in 10(9) nucleotides. Under these conditions adducts were readily detected in liver DNA from the structurally-related hepatocarcinogen safrole.  相似文献   

20.
The carcinogenicity of many alkylating agents is derived from their ability to form persistent DNA adducts that induce mutations. This paper presents and validates methodology, based on LC with tandem mass spectrometry, for the separate or concurrent quantification by isotope dilution of O(6)-methyl-2'-deoxyguanosine (O(6)Me-dG) and O(6)-ethyl-2'-deoxyguanosine (O(6)Et-dG) DNA adducts. The limits of quantification were estimated to be < or =0.2 adducts/10(8) nucleotides for either adduct. This sensitivity permitted evaluation of adduct levels in livers from separate groups of untreated adult C57BL/6N/Tk(+/-) and C57BL/6N X Sv129 mice (undetectable to 5.5+/-6.7 O(6)Me-dG/10(8) nucleotides; undetectable to 0.04 O(6)Et-dG/10(8) nucleotides). Treatment of adult C57BL/6N/Tk(+/-) mice with equimolar doses (342micromol/kg body weight) of N-methyl-N-nitrosourea and N-ethyl-N-nitrosourea produced adduct levels in liver of 1700+/-80 O(6)Me-dG/10(8) nucleotides and 260+/-60 O(6)Et-dG/10(8) nucleotides, respectively, when assessed 4h after dosing. These methods should be useful for evaluations of DNA adducts in relation to cellular processes that modify carcinogenic and toxicological responses in experimental animals and humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号