首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
3.
4.
5.
6.
A circadian rhythm for visual sensitivity has been intensively assessed in animals. This rhythm may be due to the existence of a circadian clock in the mammalian eye, which could account for fluctuating sensitivity to light over the day in certain species. However, very few studies have been devoted to the human visual system. The present experiment was designed to assess a possible rhythm of visual sensitivity using a psychophysical method over the whole 24h period. Twelve subjects underwent visual detection threshold measures in a protocol that allowed one point every 2h. The results show that the visual detection threshold changes over the 24h period, with high thresholds in the morning, a progressive decrease over the day and the early night, and an increase during the last part of the night. These data suggest that a circadian rhythm influences visual sensitivity to mesopic luminance in humans. (Chronobiology International, 17(6), 795-805, 2000)  相似文献   

7.
Observations on the rhythmic activity of 71 juvenile specimens of the inter-tidal blenny Zoarces viviparus reveal an endogenous pattern of swimming at three different periodicities. Circatidal swimming, with activity peaks phased to high water or the ebb of the subjective 12.4-h tides, was found in 50 fish and was the predominant pattern seen immediately after collection, when the rhythm generally persisted for between 3 and 12 cycles. Discrete activity peaks, with a free running period of approximately 24 h were also evident in the swimming pattern of eight fish. A circadian influence was also manifest as a modulation in amplitude, phase shifts and changes in free-running period of the circa-tidal rhythm. Overall, the activity level declined with time but those fish that remained active long enough showed a semi-lunar rhythm, with maximum activity at the time of the spring tides. A comparison of the behavior of animals collected at different times of the year suggests a seasonal variation in the persistence of circatidal swimming. The results are consistent with a control system involving circatidal, circadian, and semi-lunar oscillators. (Chronobiology International, 18(1), 27-46, 2001)  相似文献   

8.
9.
Few chronobiologists may be aware of the regression-to-the-mean (RTM) statistical artifact, even though it may have far-reaching influences on chronobiological data. With the aid of simulated measurements of the circadian rhythm phase of body temperature and a completely bogus stimulus (unicorn milk), we explain what RTM is and provide examples relevant to chronobiology. We show how RTM may lead to erroneous conclusions regarding individual differences in phase responses to rhythm disturbances and how it may appear as though unicorn milk has phase-shifting effects and can successfully treat some circadian rhythm disorders. Guidelines are provided to ensure RTM effects are minimized in chronobiological investigations. (Chronobiology International, 18(6), 1041-1053, 2001)  相似文献   

10.
The impact of environmental and behavioral factors on the 24-h profile of blood pressure (BP) has been well established. Various attempts have been made to control these exogenous factors, in order to investigate a possible endogenous circadian variation of BP. Recently, we reported the results of the first environmentally and behaviorally controlled laboratory study with 24-h recordings of BP and heart rate (HR) during maintained wakefulness. In this constant-routine study, a pronounced endogenous circadian rhythm of HR was found, but circadian variation of BP was absent. This result suggested that the circadian rhythm of BP observed in earlier controlled studies, with sleep allowed, was evoked by the sleep-wake cycle as opposed to the endogenous circadian pacemaker. In order to verify our previous finding during maintained wakefulness, we repeated the experiment five times with six normotensive, healthy young subjects. Statistical analyses of the hourly measurements of BP and HR confirmed the replicable presence of an endogenous circadian rhythm of HR, as well as the consistent absence of an endogenous circadian variation of BP. Thus, this study provided additional evidence that the 24-h profile of BP—as observed under normal circumstances—is the sole result of environmental and behavioral factors such as the occurrence of sleep, and has no endogenous circadian component. (Chronobiology International, 18(1), 85-98, 2001)  相似文献   

11.
Casein kinase I: another cog in the circadian clockworks   总被引:1,自引:0,他引:1  
Multiple components of the circadian central clock are phosphoproteins, and it has become increasingly clear that posttranslational modification is an important regulator of circadian rhythm in diverse organisms, from dinoflagellates to humans. Genetic studies in Drosophila have identified double-time (dbt), a serine/threonine protein kinase that is highly homologous to human casein kinase I epsilon (CKIε), as the first kinase linked to behavioral rhythms. Identification of a missense mutation in CKIε as the tau mutation in the Syrian hamster places CKIε within the core clock machinery in mammals. Most recently, identification of a phosphorylation site mutant of hPER2 in a family with an inherited circadian rhythm abnormality strongly suggests that PER2 is a physiologically relevant substrate of CKI. Phosphorylation may regulate multiple properties of clock proteins, including stability and intracellular localization. (Chronobiology International, 18(3), 389-398, 2001)  相似文献   

12.
TGR(mREN2)27 (TGR) transgenic rats develop hypertension due to the mouse mRen-2 gene inserted in their genome. At 5 weeks of age, the blood pressure of TGR rats starts rising, until a maximum is reached at 10 weeks of age. Adult TGR rats show peak values of blood pressure (BP) during the light phase, while heart rate (HR) and motor activity (MA) peak at night. In the present experiment, we evaluated the evolution of circadian rhythms in motor activity, heart rate, and blood pressure of TGR and Sprague-Dawley (SD) rats under 12h light-dark cycles (LD 12:12). Results confirmed that the blood pressure of TGR rats starts to increase at 5 weeks of age, reaching a plateau by the 11th week. Parallel to the increase in blood pressure levels, there was a decrease in the period length of the blood pressure rhythm, a delay in the onset of the alpha phase of the blood pressure rhythm with respect to that of motor activity and heart rate, and a decrease in heart rate levels. In all of the variables studied, the alpha phase of SD rats always started before darkness, whereas that of TGR rats started after lights off. In general, heart rate and motor activity levels of TGR rats were higher than those of SD rats. The amplitude of the circadian rhythms studied was greater in TGR rats than in SD rats. The present results suggest that the different evolution of circadian rhythms in TGR and SD rats might be due to differences in the functioning of the entrainment pathway or the circadian clock itself, which can be detected in young rats and that are probably caused by the expression of the mouse transgene. (Chronobiology International, 18(4), 627-640, 2001)  相似文献   

13.
Certain sleep-wake schedule disorders (SWSDs) cannot be successfully managed clinically using conventional methods of sleep therapy. We describe two cases of SWSD, the first following head trauma and the second originating during childhood, that had been misdiagnosed by physicians for many years. After conventional treatment for SWSD with light therapy and melatonin failed to bring about substantial improvement, it was determined that they were suffering from an incurable disability. Hence, we propose new medical terminology for such cases—SWSD disability. SWSD disability is an untreatable pathology of the circadian time structure. Patients suffering from SWSD disability should be encouraged to accept the fact that they suffer from a permanent disability, and that their quality of life can only be improved if they are willing to undergo rehabilitation. It is imperative that physicians recognize the medical condition of SWSD disability in their patients and bring it to the notice of the public institutions responsible for vocational and social rehabilitation. (Chronobiology International, 18(6), 1019-1027, 2001)  相似文献   

14.
The eclosion rhythm of a laboratory population of Drosophila melanogaster was studied under 12h light, 12h dark (LD 12:12) cycles. Although most of the flies were found to eclose just after “lights on” in LD 12:12, termed within gate (WG) flies, a few flies were found to eclose nearly 10h after peak eclosion, termed outside gate (OG) flies. The circadian parameters of the clocks controlling oviposition rhythms in the WG and the OG flies were estimated to understand the cause of such differences in the timing of eclosion. The distribution of the fraction of individual flies exhibiting single, multiple, and no significant period in the WG flies was significantly different from distribution in the OG flies. Compared to the WG flies, more OG flies were found to exhibit oviposition rhythm with multiple periodicity, whereas more WG flies exhibited an oviposition rhythm with a single significant period. The fraction of flies with arrhythmic oviposition was similar in both the WG and the OG flies. Free-running period τ in constant darkness (DD) and the phase angle difference ψ in LD 12:12 for the oviposition rhythm of WG and OG flies were significantly different. These results suggest that the differences in the time of eclosion between the flies eclosing within the gate and outside the gate of eclosion are probably due to differences in the circadian system controlling eclosion, which is reflected by the differences in their oviposition rhythm. (Chronobiology International, 18(4), 601-612, 2001)  相似文献   

15.
In previous experiments, we found that rats raised in constant light (LL) manifested a more robust circadian rhythm of motor activity in LL and showed longer phase shifts after a light pulse in constant darkness (DD) than those raised under constant darkness. In addition, we observed that the effects produced by constant light differed depending on the time of postnatal development in which it was given. These results suggest that both sensitivity to light and the functioning of the circadian pacemaker of the rat could be affected by the environmental conditions experienced during postembryonic development. Thus, the present experiment aimed to study whether postnatal exposure to light could also affect the circadian system of the mouse. Three groups of mice were formed: One group was raised under constant darkness during lactation (DD group), the second under constant light (LL group), and the third under light-dark cycles (LD group). After lactation, the three groups were submitted first to constant light of high intensity, then to LD cycles, and finally to constant darkness. In the DD stage, a light pulse was given. Finally, mice were submitted to constant light of low intensity. We observed that the circadian rhythm of the DD group was more disturbed under constant light than the rhythm of the LL group, and that, when light intensity increased, the period of the rhythm of the DD group lengthened more than that of the LL group. No significant differences among the groups were found in the phase shift induced by the light pulse. Therefore, it appears that DD mice are more sensitive to light than their LL counterparts. However, at present there is no evidence to affirm that the light environment experienced by the mouse during postnatal development affects the circadian pacemaker. (Chronobiology International, 18(4), 683-696, 2001)  相似文献   

16.
A retrospective analysis of time series of hemoglobin (Hb) destruction of 24 children (11 males and 13 females) with thalassemia from the age of 6 to 12 years showed that the Hb destruction rate typically oscillated with an average period of 50 days. A possible relation between the periodism and the severity of the disease is also suggested. (Chronobiology International, 18(4), 729-736, 2001)  相似文献   

17.
RETINAL CIRCADIAN RHYTHMS IN HUMANS *   总被引:6,自引:0,他引:6  
Circadian rhythms in the retina may reflect intrinsic rhythms in the eye. Previous reports on circadian variability in electrophysiological human retinal measures have been scanty, and the results have been somewhat inconsistent. We studied the circadian variation of the electrooculography (EOG), electroretinography (ERG), and visual threshold (VTH) in subjects undergoing a 36h testing period. We used an ultrashort sleep-wake cycle to balance effects of sleep and light-dark across circadian cycles. Twelve healthy volunteers (10 males, 2 females; mean age 26.3 years, standard deviation [SD] 8.0 years, range 19-40 years) participated in the study. The retinal functions and oral temperature were measured every 90 min. The EOG was measured in the light, whereas the ERG and the VTH were measured in the dark. Sleep was inferred from activity detected by an Actillume monitor. The EOG peak-to-peak responses followed a circadian rhythm, with the peak occurring late in the morning (acrophase 12:22). The ERG b-wave implicit time peaked in the early morning (acrophase 06:46). No statistically significant circadian rhythms could be demonstrated in the ERG a-wave implicit time or peak-to-peak amplitude. The VTH rhythm peaked in the early morning (acrophases 07:59 for blue and 07:32 for red stimuli). All retinal rhythms showed less-consistent acrophases than the temperature and sleep rhythms. This study demonstrated several different circadian rhythms in retinal electrophysiological and psychophysical measures of healthy subjects. As the retinal rhythms had much poorer signal-to-noise ratios than the temperature rhythm, these measures cannot be recommended as circadian markers. (Chronobiology International, 18(6), 957-971, 2001)  相似文献   

18.
19.
20.
As soon as they hatch, gallinaceous chicks follow broody hens. This matriarchal unit presents a temporal organization of activity. The ontogeny of this ultradian rhythm of activity was followed in Japanese quail during their first 3 weeks of life. Under controlled laboratory conditions, 12 groups of four chicks were recorded using an activity monitoring system. They were observed between the ages of 2 and 17 days. Chicks in groups presented an ultradian rhythm of activity, with a period that increased significantly from 14.3 ± 1.4 minutes when chicks were 2 days old to 26.0 ± 1.9 minutes when they were 16 days old. The increase of ultradian periodicity was particularly pronounced during their first and third weeks of life. Finally, the ultradian period was correlated positively with body weight of the chicks. (Chronobiology International, 17(6), 767-776, 2000)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号