共查询到20条相似文献,搜索用时 15 毫秒
1.
Heinrich Kuhn 《Flexible Services and Manufacturing Journal》1995,7(3):229-254
The paper considers the loading problem in flexible manufacturing systems (FMSs). This problem involves the assignment to the machine tools of all operations and associated cutting tools required for part types that have been selected to be produced simultaneously. The loading problem is first formulated as a linear mixed 0–1 program with the objective to minimize the greatest workload assigned to each machine. A heuristic procedure is presented in which an assignment of operations to machine tools is obtained by solving a parameterized generalized assignment problem with an objective function that approximates the use of tool slots required by the operations assigned to the machines. The algorithm is coded in FORTRAN and tested on an IBM-compatible personal computer. Computational results are presented for different test problems to demonstrate the efficiency and effectiveness of the suggested procedure. 相似文献
2.
3.
System setup problems in flexible manufacturing systems deal with short-term planning problems such as part type selection, machine grouping, operation assignment, tooling, fixture and pallet allocation, and routing. In this article, we consider three of the subproblems: part type selection, machine grouping, and loading. We suggest a heuristic approach to solve the subproblems consistently with the objective of maximizing the expected production rate. The proposed procedure includes routines to generate all possible machine grouping alternatives for a given set of machines, to obtain optimal target workloads for each grouping alternative, and to allocate operations and tools to machine groups. These routines are executed iteratively until a good solution to the system setup problem is obtained. Computational experience is reported. 相似文献
4.
In the increasingly competitive global markets, enterprises face challenges in responding to customer orders quickly, as well as producing customized products cost-effectively. This paper proposes a dynamic heuristic-based algorithm for the part input sequencing problem of flexible manufacturing systems (FMSs) in a mass customization (MC) environment. The FMS manufactures a variety of parts, and customer orders arrive dynamically with order size as small as one. Segmental set functions are established in the proposed algorithm to apply the strategy of dynamic workload balancing, and the shortest processing time (SPT) scheduling rule. Theoretical analysis is performed and the effectiveness of the algorithm in dynamic workload balancing under the complex and dynamic environment is proven. The application of the algorithm is illustrated by an example. The potential of its practical applications to the FMSs in make-to-order (MTO) supply chains is also discussed. Further research is provided. 相似文献
5.
Panos Afentakis 《Flexible Services and Manufacturing Journal》1989,1(2):175-196
The interconnection pattern of the processing modules of a computerized manufacturing system affects its performance. In this article, we discuss a set of requirements that the interconnection network should satisfy. Subsequently, we concentrate on a simple and popular architecture, the loop network. The problem we address is to design the layout of the system so that the number of machines that the part types cross in their manufacturing process is minimized. We formulate the problem mathematically and solve it by a heuristic that obtains consistently better results than an earlier popular method. 相似文献
6.
In automated production systems like flexible manufacturing systems (FMSs), an important issue is to find an adequate workload for each machine for each time period. Many integer linear programming (ILP) models have been proposed to solve the FMS loading problems, but not all of them take tools into account. Those that do not consider tooling are quite unrealistic, especially when setup times are important with respect to processing times. When tool loading has to be handled by the model, the load assignment may have to be changed completely. In this article we consider FMSs with a tool management of the following type: the system works in time periods whose durations are fixed or not; and tools are loaded on the machines at the beginning of each time period and stay there for the whole time period. Tool changes may occur only at the end of each time period when the system is stopped. We present some integer programming models for handling these situations with several types of objectives. Emphasis is laid on the ILP formulations. Computational complexities are discussed. 相似文献
7.
Manbir S. Sodhi Alessandro Agnetis Ronald G. Askin 《Flexible Services and Manufacturing Journal》1994,6(4):287-310
The allocation of tools to machines determines potential part routes in flexible manufacturing systems. Given production requirements and a minimum feasible set of tools, the decision of how to fill vacant slots in tool magazines to maximize routing flexibility is shown to be a minimum cost network flow problem for the cases when routing flexibility is a function of the average workload per tool aggregated over tool types, or of the number of possible routes through the system. A linear programming model is then used to plan a set of routes for each part type so as to minimize either the material handling requirement or the maximum workload on any machine. The impact of these tool addition strategies on the material handling and workload equalization is investigated and computational results presented. The advantage of the overall approach is computational simplicity at each step and the ability to react to dynamic changes. 相似文献
8.
Paul J. Schweitzer Abraham Seidmann Paulo B. Goes 《Flexible Services and Manufacturing Journal》1991,4(1):17-50
This article treats several performance management decision problems in flexible manufacturing systems (FMSs). This work differs from a number of other studies in that we allow the processing rates at the machines to be varied, and the system has to meet a given throughput goal per unit time. The managerial decision options modeled here include part routing and allocation of tasks to machines, work-in-progress (WIP) levels, capacity expansions, tool-type selection, the setting of throughput goals, and multiperiod production planning. We discuss and explain the insights and implications, partly nonintuitive, gained from our investigations. Finally, extensive numerical evaluations are included to illustrate the economic and performance impact of the various performance management alternatives. These results demonstrate that substantial economic benefits can be achieved by careful tuning of the FMS operational parameters. 相似文献
9.
Ulrich A. W. Tetzlaff 《Flexible Services and Manufacturing Journal》1995,7(2):127-146
This paper presents a mathematical programming model to help select equipment for a flexible manufacturing system, i.e., the selection of the types and numbers of CNC machines, washing stations, load/unload stations, transportation vehicles, and pallets. The objective is to minimize equipment costs and work-in-process inventory cost, while fulfilling production requirements for an average period. Queueing aspects and part flow interactions are considered with the help of a Jacksonian-type closed queueing network model in order to evaluate the system's performance. Since the related decision problem of our model can be shown to be NP-complete, the proposed solution procedure is based on implicit enumeration. Four bounds are provided, two lower and two upper bounds. A tight lower bound is obtained by linearizing the model through the application of asymptotic bound analysis. Furthermore, asymptotic bound analysis allows the calculation of a lower bound for the number of pallets in the system. The first upper bound is given by the best feasible solution and the second is based on the anti-starshaped form of the throughput function. 相似文献
10.
A branch and bound algorithm is proposed for the two-dimensional protein folding problem in the HP lattice model. In this algorithm, the benefit of each possible location of hydrophobic monomers is evaluated and only promising nodes are kept for further branching at each level. The proposed algorithm is compared with other well-known methods for 10 benchmark sequences with lengths ranging from 20 to 100 monomers. The results indicate that our method is a very efficient and promising tool for the protein folding problem. 相似文献
11.
W. C. Ng 《Flexible Services and Manufacturing Journal》1996,8(1):45-65
The article studies the scheduling problem of a material handling hoist in a circuit board production line. The existing models for the problem assume that the times required to perform inter-tank moves are given constants. However, as shown in a simple example, the optimal solutions obtained under this assumption may not be the actual optimal solutions. In this article the times for inter-tank moves are decision variables of a mixed integer program proposed for the problem. An efficient branch and bound algorithm is developed for solving the problem optimally. A numerical example is used to illustrate the algorithm. Computational experience with benchmark problems and randomly generated test problems is discussed. 相似文献
12.
Production planning in flexible manufacturing may require the solution of a large-scale discrete-event dynamic stochastic optimization problem, due to the complexity of the system to be optimized, and to the occurrence of discrete events (new orders and hard failures). The production planning problem is here approached for a multistage multipart-type manufacturing shop, where each work cell can share its processing time among the different types of parts. The solution of this problem is obtained by an open-loop-feedback control strategy, updated each time a new event occurs. At each event time, two coupled problems are solved: 1) a product-order scheduling problem, conditioned on estimated values of the production capacities of all component work cells; and 2) a production-capacity planning problem, conditioned on predefined sequences of the product orders to be processed. In particular, the article aims at defining a production planning procedure that integrates both analytical tools, derived from mathematical programming, and knowledge-based rules, coming from experience. The objective is to formulate a hybrid (knowledge-based/analytical) planning architecture, and to analyze its use for multicell multipart-type manufacturing systems. 相似文献
13.
High productivity is the primary goal of flexible manufacturing systems (FMSs) in which semi-independent workstations are integrated using automated material-transport systems and hierarchical local networks. Availability of various subsystems and of the system as a whole is a prerequisite for achieving functional integration as well as high throughput. An FMS also has inherent routing and operation flexibilities that provide it with a certain degree of fault tolerance. A certain volume of production can thus be maintained in the face of subsystem (i.e., machines, robots, material handling system, etc.) failures. In this article, we propose two reliability measures, namely, part reliability (PR) and FMS reliability (FMSR) for manufacturing systems and present algorithms to evaluate them. We also consider the dynamic or time-dependent reliability analysis as a natural generalization of the static analysis. The methods outlined use an algorithm that generates process-spanning graphs (PSGs), which are used to evaluate the reliability measures. 相似文献
14.
Good methods are needed to specify, test, and debug material-handling control logic. This article surveys a number of representative methods for defining and describing control algorithms for programmable material-handling equipment used in flexible manufacturing systems. The methods are evaluated with regard to their suitability for communication between people and as bases for interfaces to automatic program generators. It is concluded that no single method is entirely satisfactory. Three methods (position diagrams, function block diagrams, and operation networks) have potential to be combined into an effective hybrid approach that minimizes the need for the user to switch between various conceptual models. 相似文献
15.
Production lead-time performance in flexible manufacturing systems is influenced by several factors which include: machine groupings, demand rates, machine processing rates, product batching, material handling system capacity, and so on. Hence, control of lead-time performance can be affected through the manipulation of one or more of these variables. In this article, we investigate the potential of batch sizing as a control variable for lead-time performance through the use of a queueing network model. We establish a functional relationship between the two variables, and incorporate the relationship in an optimization model to determine the optimal batch size(s) which minimizes the sum of annual work-in-process inventory and final inventory costs. The nonlinear batch sizing problem which results is solved by discrete optimization via marginal analysis. Results show that batch sizing can be a cheap and effective variable for controlling flexible manufacturing system throughput. 相似文献
16.
Claudio Arbib Mario Lucertini Fernando Nicolò 《Flexible Services and Manufacturing Journal》1991,3(1):5-25
Problems related to the flow management of a flexible manufacturing system (FMS) are here formulated in terms of combinatorial optimization. We consider a system consisting of several multitool automated machines, each one equipped with a possibly different tool set and linked to each other by a transportation system for part moving. The system operates with a given production mix. The focused flow-management problem is that of finding the part routings allowing for an optimal machine workload balancing. The problem is formulated in terms of a particular capacity assignment problem. With the proposed approach, a balanced solution can be achieved by routing parts on a limited number of different paths. Such a balancing routing can be found in polynomial time. We also give polynomial-time and-space algorithms for choosing, among all workload-balancing routings, the ones that minimize the global amount of part transfer among all machines. 相似文献
17.
George Chryssolouris James E. Pierce Kristian Dicke 《Flexible Services and Manufacturing Journal》1992,4(3-4):309-330
This paper introduces a generic decision-making framework for assigning resources of a manufacturing system to production tasks. Resources are broadly defined production units, such as machines, human operators, or material handling vehicles; and tasks are activities performed by resources. In the specific context of FMS, resources correspond to individual machines; tasks correspond to operations to be performed on parts. The framework assumes a hierarchical structure of the system and calls for the execution of four consecutive steps to make a decision for the assignment of a resource to a task. These steps are 1) establishment of decision-making criteria, 2) formation of alternative assignments, 3) estimation of the consequences of the assignments, and 4) selection of the best alternative assignment. This framework has been applied to an existing FMS as an operational policy that decides what task will be executed on which resource of this FMS. Simulation runs provide some initial results of the application of this policy. It is shown that the policy provides flexibility in terms of system performance and computational effort. 相似文献
18.
We report a new method for predicting protein tertiary structure from sequence and secondary structure information. The predictions result from global optimization of a potential energy function, including van der Waals, hydrophobic, and excluded volume terms. The optimization algorithm, which is based on the alphaBB method developed by Floudas and coworkers (Costas and Floudas, J Chem Phys 1994;100:1247-1261), uses a reduced model of the protein and is implemented in both distance and dihedral angle space, enabling a side-by-side comparison of methodologies. For a set of eight small proteins, representing the three basic types--all alpha, all beta, and mixed alpha/beta--the algorithm locates low-energy native-like structures (less than 6A root mean square deviation from the native coordinates) starting from an unfolded state. Serial and parallel implementations of this methodology are discussed. 相似文献
19.
Udayan Nandkeolyar David P. Christy 《Flexible Services and Manufacturing Journal》1992,4(3-4):267-292
Evaluating the design of flexible manufacturing systems is complex. Developing a measure of performance useful for evaluating alternate designs continues to be interesting. Here, total productivity of the system is proposed as an appropriate measure. Specification of parameters based upon strategic considerations for this measure are discussed. Finally, the usefulness of the measure is demonstrated through an example. 相似文献
20.
Mu Der Jeng 《Flexible Services and Manufacturing Journal》1995,7(3):287-310
This paper proposes a modular Petri net synthesis method for modeling flexible manufacturing systems based on synchronization among control processes of the manufacturing resources (such as robots and machines). In the method, the target system is modeled in a bottom-up and uniform manner by first describing the system's control processes using strongly connected state machines (SCSMs) as the basic modules. Each SCSM may contain multiple tokens to represent resources from the same type such as spaces in a buffer. Next, the common transitions and common transition subnets of the modules are merged to represent their synchronization. The system model constructed is proven to be conservative and thus bounded. Moreover, a restricted class of merged nets is proven to be live and reversible. For general classes of merged nets, this paper shows theorems that easily calculateP-invariants of the final net without solving the linear system equations. TheseP-invariants can be used to help in verifying the model's qualitative properties such as liveness. 相似文献