首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A cyclic metabolic pathway was obtained when 3,5-di-t-butyl-4-hydroxytoluene (BHT) was incubated with a rat liver microsomal preparation. The pathway is as follows: BHT --> 4-hydroperoxy-4-methyl-2,6-di-t-butylcyclohexa-2,5-dienone (BHT-OOH) --> 4-hydroxy-4-methyl-2,6-di-t-butylcyclohexa-2,5-dienone (BHT-3(0)OH) --> BHT. This metabolic pathway suggests that antioxidants such as BHT owe their high efficacy, at least in part, to their metabolic regeneration.  相似文献   

2.
The p-peroxyquinol derived from butylated hydroxytoluene, 2,6-di-t-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadienone, was degraded by the ferric form of rat liver cytochrome P-450, and the resulting products and their mechanisms of formation were investigated. Quinoxy radical BO. from homolysis of the O-O bond reacted by competing pathways; beta-scission yielded 2,6-di-t-butyl-p-benzoquinone, and rearrangement with ring-expansion produced an oxacycloheptadienone free radical (X(.)). This rearranged radical was stabilized by the captodative effect that facilitated competitive interactions with the P-450 iron-oxo complexes formed during O-O bond scission. Approximately 15% of X(.) was captured by oxygen rebound with a hydroxyl radical from the P-450 complex (FeOH)3+ to form a hemiketal, that led to the ring-contracted product 2,5-di-t-butyl-5-(2'-oxopropyl)-4-oxa-2-cyclopentenone by spontaneous rearrangement. The major fraction of X(.), however, underwent electron transfer oxidation to form the corresponding cation. Hydration of this cation produced the ring-contracted product, and proton elimination (or, alternatively, direct H(.) removal from X(.) led to the product 2,7-di-t-butyl-4-methylene-5-oxacyclohepta-2,6-dienone. The findings indicate that cytochrome P-450 intermediate complexes are mainly responsible for oxidation of X(.). The results complement our previous study with 2,6-di-t-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadienone (Thompson, J. A., and Wand, M. D. (1985) J. Biol. Chem. 260, 10637-10644), demonstrating competitive heterolytic and homolytic mechanisms of O-O bond cleavage, and competitive rebound and oxidation processes when a substrate-derived radical interacts with P-450 complexes.  相似文献   

3.
Y Yoshida 《Mutation research》1990,242(3):209-217
The mutagenicity of butylated hydroxytoluene (BHT) and its derivatives was investigated by the Ames method using Salmonella typhimurium TA98 and TA100 with or without S9 mix. The compounds were not mutagenic in either indicator strain at concentrations ranging from 50 to 330 micrograms/plate (SQ: 3,5,3',5'-tetra-tert-butylstilbenequinone; VI-III: unidentified), 500 micrograms/plate (BE: 3,5,3',5'-tetra-tert-4,4'-dihydroxy-1,2-diphenylethylene; VI: 2,6-di-tert-butyl-4-methyl-4-tert-butylperoxy-2,5-cyclohexadienone ; VI-I: unidentified; VI-II: 3-acetyl-2,5-di-tert-cyclopenta-2,4-dienone) and 1000 micrograms/plate (BHT). The antimutagenic effects of BHT and its derivatives on mutagenesis by chemical agents were investigated in Salmonella typhimurium TA98 and TA100 and Escherichia coli WP-2 hcr-. VI-II suppressed the mutagenesis induced in TA98 and TA100 by 2-(2-furyl)-3-(5-nitro-2-furyl) acrylamide (AF-2) and that induced in WP-2 hcr- by 4-nitroquinoline-1-oxide (4NQO) without decreasing cell viability. In WP-2 hcr-, the mutagenesis induced by AF-2 and ethyl methanesulfonate was also suppressed significantly. Mutations induced by methyl methanesulfonate were slightly inhibited. However, VI-II had no effect on the mutagenesis induced by N-methyl-N'-nitro-N-nitrosoguanidine.  相似文献   

4.
2,4-Dinitrotoluene (2,4-DNT) and 2,6-DNT are priority pollutants, and 2,4-DNT dioxygenase of Burkholderia sp. strain DNT (DDO) catalyzes the initial oxidation of 2,4-DNT to form 4-methyl-5-nitrocatechol and nitrite but has significantly less activity on other dinitrotoluenes and nitrotoluenes (NT). Hence, oxidation of 2,3-DNT, 2,4-DNT, 2,5-DNT, 2,6-DNT, 2NT, and 4NT were enhanced here by performing saturation mutagenesis on codon I204 of the alpha subunit (DntAc) of DDO and by using a membrane agar plate assay to detect catechol formation. Rates of degradation were quantified both by the formation of nitrite and by the formation of the intermediates with high performance liquid chromatography. The degradation of both 2,3-DNT and 2,5-DNT were achieved for the first time (no detectable activity with the wild-type enzyme) using whole Escherichia coli TG1 cells expressing DDO variants DntAc I204L and I204Y (0.70 +/- 0.03 and 0.22 +/- 0.02 nmol/min/mg protein for 2,5-DNT transformation, respectively). DDO DntAc variant I204L also transformed both 2,6-DNT and 2,4-DNT 2-fold faster than wild-type DDO (0.8 +/- 0.6 nmol/min/mg protein and 4.7 +/- 0.5 nmol/min/mg protein, respectively). Moreover, the activities of DDO for 2NT and 4NT were also enhanced 3.5-fold and 8-fold, respectively. Further, DntAc variant I204Y was also discovered with comparable rate enhancements for the substrates 2,4-DNT, 2,6-DNT, and 2NT but not 4NT. Sequencing information obtained during this study indicated that the 2,4-DNT dioxygenases of Burkholderia sp. strain DNT and B. cepacia R34 are more closely related than originally reported. This is the first report of engineering an enzyme for enhanced degradation of nitroaromatic compounds and the first report of degrading 2,5-DNT.  相似文献   

5.
Numerous chemicals, including the xenobiotic 2,5-xylidine, are known to induce laccase production in fungi. The present study was conducted to determine whether the metabolites formed from 2,5-xylidine by fungi could enhance laccase activity. We used purified laccases to transform the chemical and then we separated the metabolites, identified their chemical structure and assayed their effect on enzyme activity in liquid cultures of Trametes. versicolor. We identified 13 oligomers formed from 2,5-xylidine. (4E)-4-(2,5-dimethylphenylimino)-2,5-dimethylcyclohexa-2,5-dienone at 1.25×10–5 M was an efficient inducer, resulting in a nine-fold increase of laccase activity after 3 days of culture. Easily synthesized in one step (67% yield), this compound could be used in fungal bioreactors to obtain a great amount of laccases for biochemical or biotechnological purposes, with a low amount of inducer.  相似文献   

6.
A model system to investigate the promotion phase of pulmonary carcinogenesis involves chronic exposure of carcinogen-initiated mice to the food additive, butylated hydroxytoluene (BHT). Previous studies strongly suggested that this activity is due to the cytochrome p450-catalyzed formation of quinone methides 2,6-di-tert-butyl-4-methylenecyclohexa-2,5-dienone (BHT-QM) and 6-tert-butyl-2-(1',1'-dimethyl-2'-hydroxy)ethyl-4-methylenecyclohexa-2,5-dienone (BHTOH-QM). The effects of these electrophiles on non-tumorigenic C10 and E10 epithelial cell lines derived from a normal mouse lung explant were compared with effects on their corresponding neoplastic siblings, the A5 and E9 spontaneous transformants, respectively. The tumorigenic cells were more resistant to cell killing, with LC(50) values of 165-180 microM for BHT-QM and 12-22 microM for BHTOH-QM, versus LC(50) values in the non-tumorigenic cells of 105-118 microM and 5.0-6.0 microM, respectively. Constitutive glutathione (GSH) concentrations were 12-20 nmol/10(6) cells, and BHT-QM toxicity was enhanced >2-fold by depleting GSH with buthionine sulfoximine (BSO). Formation of the GSH conjugate of BHT-QM accounted for a substantial fraction of the cellular GSH lost by quinone methide exposure. Enhanced lipid peroxidation and superoxide formation occurred in all cell lines treated with BHT-QM, but both tumorigenic lines contained higher levels of GSH S-transferase and superoxide dismutase (SOD) activities. These data suggest the possibility that BHT-derived quinone methides may exert their promoting effects by inducing oxidative stress; such stress is better tolerated by tumorigenic cells, which have higher levels of antioxidant enzymes. Normal cells are destroyed more readily which allows neoplastic cells to expand their proliferation.  相似文献   

7.
Bromination of estradiol-17beta by 2,4,4,6-tetrabromocyclohexa-2,5-dienone gives 2- and 4-bromoestradiols in good yields.  相似文献   

8.
Raymond P. Cox 《BBA》1975,387(3):588-598

1. 1. Chloroplasts can be suspended in aqueous/organic mixtures which are liquid at sub-zero temperatures with a good retention of the ability to reduce artificial electron acceptors. The reduction of ferricyanide and 2,6-dichlorophenolindophenol at temperatures above 0δC is about 50% inhibited by 50% (v/v) ethylene glycol. Higher concentrations cause more extensive inhibition.

2. 2. Different solvents were compared on the basis of their ability to cause a given depression of the freezing point of an aqueous solution. Ethylene glycol caused less inhibition of electron transport than glycerol, which in its turn was found to be superior to methanol.

3. 3. The reduction of oxidised 2,3,5,6-tetramethyl-p-phenylenediamine could be measured at −25δC in 40% (v/v) ethylene glycol. Using an acceptor with a high extinction coefficient, methyl purple (a derivative of 2,6-dichlorophenolindophenol) it was possible to observe electron flow at temperatures as low as −40δC in 50% (v/v) ethylene glycol.

4. 4. From studies of the effects of the inhibitors 3(3,4-dichlorophenyl)-1,1-dimethylurea and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone it is suggested that electron flow from the donor side of Photosystem II to the acceptor side of Photosystem I can occur at temperatures at least as low as −25δC. The ultimate electron donor is presumably water but it was not possible to demonstrate this directly.

Abbreviations: DCIP, 2,6-dichlorophenolindophenol; DAD, 2,3,5,6-tetramethyl-p-phenylenediamine; DCMU, 3(3,4-dichlorophenyl)-1,1-dimethylurea; DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone; DMSO, dimethylsulphoxide  相似文献   


9.
Several nonylphenol isomers with alpha-quaternary carbon atoms serve as growth substrates for Sphingomonas xenophaga Bayram, whereas isomers containing hydrogen atoms at the alpha-carbon do not. Three metabolites of 4-(1-methyloctyl)-phenol were isolated in mg quantities from cultures of strain Bayram supplemented with the growth substrate isomer 4-(1-ethyl-1,4-dimethyl-pentyl)-phenol. They were unequivocally identified as 4-hydroxy-4-(1-methyl-octyl)-cyclohexa-2,5-dienone, 4-hydroxy-4-(1-methyl-octyl)-cyclohex-2-enone, and 2-(1-methyl-octyl)-benzene-1,4-diol by high pressure liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. Furthermore, two metabolites originating from 4-n-nonylphenol were identified as 4-hydroxy-4-nonyl-cyclohexa-2,5-dienone and 4-hydroxy-4-nonyl-cyclohex-2-enone by high pressure liquid chromatography-mass spectrometry. We conclude that nonylphenols were initially hydroxylated at the ipso-position forming 4-alkyl-4-hydroxy-cyclohexa-2,5-dienones. Dienones originating from growth substrate nonylphenol isomers underwent a rearrangement that involved a 1,2-C,O shift of the alkyl moiety as a cation to the oxygen atom of the geminal hydroxy group yielding 4-alkoxyphenols, from which the alkyl moieties can be easily detached as alcohols by known mechanisms. Dienones originating from nongrowth substrates did not undergo such a rearrangement because the missing alkyl substituents at the alpha-carbon atom prevented stabilization of the putative alpha-carbocation. Instead they accumulated and subsequently underwent side reactions, such as 1,2-C,C shifts and dihydrogenations. The ipso-hydroxylation and the proposed 1,2-C,O shift constitute key steps in a novel pathway that enables bacteria to detach alpha-branched alkyl moieties of alkylphenols for utilization of the aromatic part as a carbon and energy source.  相似文献   

10.
通过对Streptosporangium sp.菌株发酵液的初步分离纯化,得到三个化合物,由波谱解析鉴定为:4,6-二甲基-6-羟基-庚烯-2酮(1),2,6-二甲基-2,6-二羟基-庚4酮(2),3,6-二异丙基-2,5-二酮哌嗪(3)。由活体试验证明2和3对粘虫有一定的抑制活性。  相似文献   

11.
Positional modification of 2,5-dimethoxyamphetamine analogues has been studied. Specifically, the 5-alkoxy substituent was translocated to the 6-position of the phenyl nucleus. Methoxy groups were also constrained by incorporation into appended dihydrofuran and furan rings. 2,6-Dimethoxy-4-methylamphetamine had an approximately 3-fold lower affinity for the 5-HT(2A) receptor compared to the parent 2,5-dimethoxy-4-methylamphetamine (DOM). The rigid compound based on the 2,3,5,6-tetrahydrobenzo[1,2-b;5,4-b']difuran nucleus and the aromatic analogue containing the benzo[1,2-b;5,4-b']difuran nucleus possessed an approximate 7- and 27-fold increase in affinity, respectively, compared to 2,6-dimethoxy-4-methylamphetamine, the non-rigid, positional isomer.  相似文献   

12.
Novel heteroaromatic quinols 4-(benzothiazol-2-yl)-4-hydroxycyclohexa-2,5-dienone (1) and 4-(1-benzenesulfonyl-1H-indol-2-yl)-4-hydroxycyclohexa-2,5-dienone (2) are promising novel anticancer agents. They exhibit in vitro antiproliferative activity against colon, renal, and breast carcinoma cell lines as well as in vivo antitumor activity in colon, renal, and breast tumor xenografts. Elucidation of the mechanism of antitumor action of these compounds is of great importance. We show in this study that the compounds induced apoptosis as demonstrated by caspase 3 and PARP cleavage at doses causing G(2)/M cell cycle arrest. Glutathione was found to play an important role in modulating quinol-mediated cytotoxicity. In HCT 116 cells, treatment with 1 and 2 caused a 2- to 3-fold increase in the total glutathione content, suggestive of a glutathione-mediated antioxidant response. Indeed, buthionine sulfoximine (BSO)-induced glutathione depleted cells were 6-10 times more sensitive to 1 and 2, while glutathione monoethyl ester supplementation decreased the antitumor potencies by 2-3 times. In further studies we determined other cellular proteins which bind to an immobilized quinol analog, and identified several proteins including beta-tubulin, heat shock protein 60, and peroxiredoxin 1 as potential molecular targets of quinols that may contribute to their proapoptotic and antiproliferative effects.  相似文献   

13.
Jiang L  Zhang S  Xuan L 《Phytochemistry》2007,68(19):2444-2449
Five oxanthrone C-glycosides, namely rumejaposide A-E, and an epoxynaphthoquinol, together with eight known compounds, 2,6-dihydroxy benzoic acid, 4-hydroxy benzoic acid, epicatechin, 4-hydroxy-3-methoxy benzoic acid, 2,6-dimethoxy-4-hydroxyl benzoic acid, rutin, emodin and 2-acetyl-1,8-dihydroxy-3-methyl-6-methoxynaphthalene, were isolated from the roots of Rumex japonicus. The structures of the oxanthrone C-glycosides were elucidated by application of spectroscopic methods as (10R)10-C-beta-glucopyranosyl-1,8,10-trihydroxy-2-carboxyl-3-methyl-9(10H)-anthracenone, (10S)10-C-beta-glucopyranosyl-1,8,10-trihydroxy-2-carboxyl-3-methyl-9(10H)-anthracenone, (10R)10-C-beta-glucopyranosyl-1,6,8,10-tetrahydroxy-2-carboxyl-3-methyl-9(10H)-anthracenone, (10R)10-C-beta-glucopyranosyl-1,6,8,10-tetrahydroxy-3-hydroxymethyl-9(10H)-anthracenone, and (10R)10-C-beta-glucopyranosyl-1,6,8,10-tetrahydroxy-3-methyl-9(10H)-anthracenone. Absolute configurations for each compound were deduced by analyses of CD spectra and comparison with those known similar compounds. The structure of epoxynaphthoquinol was elucidated by spectroscopic methods as 3-acetyl-2-methyl-1,4,5-trihydroxy-2,3-epoxynaphthoquinol, and its relative configuration was determined by a 2D-ROESY experiment.  相似文献   

14.
Treatment of methyl 2,3-anhydro-5-deoxy-α-d-ribofuranoside with lithium dimethyl cuprate gave methyl 2,5-dideoxy-2-C-methyl-α-d-arabinofuranoside (54% yield) and methyl 3,5-dideoxy-3-C-methyl-α-d-xylofuranoside (10%). The former was converted into its 3-O-acetyl and 3-O-benzyl derivatives, which, upon acid hydrolysis, afforded 3-O-acetyl- and 3-O-benzyl-2,5-dideoxy-2-C-methyl-d-arabinofuranose in 60–75% overall yield. Treatment of the 3-O-benzyl compound with ethanethiol in the presence of trifluoromethanesulfonic acid afforded 3-O-benzyl-2,5-dideoxy-2-C-methyl-d-arabinose diethyl dithioacetal (20%) and ethyl 3-O-benzyl-2,5-dideoxy-2-C-methyl-1-thio-α-d-arabinoside (73%). The former, which was also available from the latter by equilibration in acidic ethanethiol, was acetylated at O-4 and the product converted into the corresponding dimethyl acetal (85% overall yield). This compound was, after debenzylation, hydrolyzed with acid, to provide 4-O-acetyl-2,5-dideoxy-2-C-methyl-d-arabinose in 70% overall yield.  相似文献   

15.
To understand the contradictory results on the structure of the lipopolysaccharide isolated from a Yersinia enterocolitica O:3, both anomers of methyl 2-acetamido-2,6-dideoxy-d-xylo-hexopyranosid-4-ulose were prepared. The key steps of the synthetic pathway were the selective acetylation of the methyl 2-acetamido-2,6-dideoxy-alpha,beta-d-glucopyranosides, the oxidation of the 4-position to form the keto-sugars, and deacetylation to provide the target compound. Surprisingly, the last step was accompanied by a disproportionation to give methyl 2-acetamido-2,6-dideoxy-alpha- and beta-d-glucopyranosides and N-(5-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl)acetamide as side-products.  相似文献   

16.
The obligate phototrophic green alga Chlamydobotrys stellata does not evolve oxygen when grown in CO2-free atmosphere on acetate. With the application of the lipophilic acceptor 2,6-dichloro-p-benzoquinone it was investigated whether this phenomenon is caused by the inactivation of the water-splitting system or by an inhibition of the electron transport chain. It was found that in the presence of DCQ, the photoheterotrophic alga exhibited a normal period-4 flash oxygen pattern, but the steady state yield was only 25% of that measured in the autotrophic cells. After DCQ addition, the initial distribution of S-states and the values of the transition probabilities proved to be the same in the autotrophic and photoheterotrophic algae. These results indicate that photoheterotrophic growth conditions inhibit the electron transport of Chl. stellata behind the acceptor site of DCQ, but the water-splitting system remains active with a reduced oxygen evolving capacity.Abbreviations Chl chlorophyll - DCQ 2,6-dichloro-p-benzoquinone - DCMU 3-(3,4)-dichlorophenyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - pBQ 1,4-benzoquinone - PS I photosystem I - PS II photosystem II  相似文献   

17.
An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2, 4-DNT) by Burkholderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2, 6-dinitrotoluene (2,6-DNT) by a different pathway. Burkholderia cepacia strain JS850 and Hydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon and nitrogen. The initial steps in the pathway for degradation of 2,6-DNT were determined by simultaneous induction, enzyme assays, and identification of metabolites through mass spectroscopy and nuclear magnetic resonance. 2,6-DNT was converted to 3-methyl-4-nitrocatechol by a dioxygenation reaction accompanied by the release of nitrite. 3-Methyl-4-nitrocatechol was the substrate for extradiol ring cleavage yielding 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid, which was converted to 2-hydroxy-5-nitropenta-2,4-dienoic acid. 2, 4-DNT-degrading strains also converted 2,6-DNT to 3-methyl-4-nitrocatechol but did not metabolize the 3-methyl-4-nitrocatechol. Although 2,6-DNT prevented the degradation of 2,4-DNT by 2,4-DNT-degrading strains, the effect was not the result of inhibition of 2,4-DNT dioxygenase by 2,6-DNT or of 4-methyl-5-nitrocatechol monooxygenase by 3-methyl-4-nitrocatechol.  相似文献   

18.
1,10-Di-0-acetyl-2,3,4,6,7,8,9-heptadeoxy-2,6-bis(2, 4-dinitrophenylamino)-L-lyxo-decopyranose (7) and -D-ribo-decopyranose (8) have been prepared from methyl 2-acetamido-2,3,4,6-tetradeoxy-6-nitro-alpha-D-erythro-hexopyranoside via a nitro aldol reaction with 4-[(tetrahydropyranyl)oxy]butanal in the presence of cesium fluoride, and their configurations at C-6 have been established by conversion of the precursor of 8, namely, methyl 2,6-diacetamido-10-O-acetyl-2,3,4,6,7,8,9-heptadeoxy-alpha-D - ribo-decopyranoside, into the known methyl 2,6-diacetamido-2,3,4,6,7,8,9,10-octadeoxy-alpha-D-ribo-d ecopyranoside. The title fortimicin A derivatives, 7'-(3-hydroxypropyl)fortimicin A and 6'-epifortimicin A, have been synthesized by condensation of compound 7 and 8, respectively, with 2,5-di-O-benzoyl-1,4-bis[N-(methoxycarbonyl)]fortamine B, followed by deprotection and introduction of a glycyl group. Their antimicrobial activities have been found to be weak compared to that of fortimicin A.  相似文献   

19.
A series of novel pyrimido and other fused quinoline derivatives like 4-methyl pyrimido [5,4-c]quinoline-2,5(1H,6H)-dione (4a), 4-methyl-2-thioxo-1,2-dihydropyrimido [5,4-c]quinoline-5(6H)-one (4b), 2-amino-4-methyl-1,2-dihydropyrimido [5,4-c]quinolin-5(6H)-one (4c), 3-methylisoxazolo [4,5-c]quinolin-4(5H)-one (4d), 3-methyl-1H-pyrazolo [4,3-c]quinoline-4(5H)-one (5e), 5-methyl-1H-[1,2,4] triazepino [6,5-c]quinoline-2,6(3H,7H)-dione (5f), 5-methyl-2-thioxo-2,3-dihydro-1H-[1,2,4]triazepino [6,5-c]quinolin-6(7H)-one (5 g) were synthesized regioselectively from 4-hydroxy-3-acyl quinolin-2-one 3. They were screened for their in vitro antioxidant activities against radical scavenging capacity using DPPH(), Trolox equivalent antioxidant capacity (TEAC), total antioxidant activity by FRAP, superoxide radical (O(2)(°-)) scavenging activity, metal chelating activity and nitric oxide scavenging activity. Among the compounds screened, 4c and 5 g exhibited significant antioxidant activities.  相似文献   

20.
An oxidative pathway for the mineralization of 2,4-dinitrotoluene (2,4-DNT) by Burkholderia sp. strain DNT has been reported previously. We report here the isolation of additional strains with the ability to mineralize 2,4-DNT by the same pathway and the isolation and characterization of bacterial strains that mineralize 2,6-dinitrotoluene (2,6-DNT) by a different pathway. Burkholderia cepacia strain JS850 and Hydrogenophaga palleronii strain JS863 grew on 2,6-DNT as the sole source of carbon and nitrogen. The initial steps in the pathway for degradation of 2,6-DNT were determined by simultaneous induction, enzyme assays, and identification of metabolites through mass spectroscopy and nuclear magnetic resonance. 2,6-DNT was converted to 3-methyl-4-nitrocatechol by a dioxygenation reaction accompanied by the release of nitrite. 3-Methyl-4-nitrocatechol was the substrate for extradiol ring cleavage yielding 2-hydroxy-5-nitro-6-oxohepta-2,4-dienoic acid, which was converted to 2-hydroxy-5-nitropenta-2,4-dienoic acid. 2,4-DNT-degrading strains also converted 2,6-DNT to 3-methyl-4-nitrocatechol but did not metabolize the 3-methyl-4-nitrocatechol. Although 2,6-DNT prevented the degradation of 2,4-DNT by 2,4-DNT-degrading strains, the effect was not the result of inhibition of 2,4-DNT dioxygenase by 2,6-DNT or of 4-methyl-5-nitrocatechol monooxygenase by 3-methyl-4-nitrocatechol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号