首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aims: To purify and characterize an exo‐acting chitinolytic enzyme produced from a Gram‐negative bacterium Pseudomonas fluorescens JK‐0412. Methods and Results: A chitinolytic bacterial strain that showed confluent growth on a minimal medium containing powder chitin as the sole carbon source was isolated and identified based on a 16S ribosomal DNA sequence analysis and named Ps. fluorescens JK‐0412. From the culture filtrates of this strain, a chito‐oligosaccharides‐degrading enzyme was purified to apparent homogeneity with a molecular mass of 50 kDa on SDS–PAGE gels. The kinetics, optimum pH and temperature, and substrate specificity of the purified enzyme (named as NagA) were determined. Conclusions: An extracellular chitinolytic enzyme was purified from the Ps. fluorescens JK‐0412 and shown to be an exo‐type β‐N‐acetylglucosaminidase yielding GlcNAc as the final product from the natural chito‐oligosaccharides, (GlcNAc)n, n = 2–5. Significance and Impact of the Study: As NagA is secreted extracellularly in the presence of colloidal chitin, Ps. fluorescens JK‐0412 can be recognized as a potent producer for industry‐level and cost‐effective production of chitinolytic enzyme. This enzyme appears to have potential applications as an efficient tool for the degradation of chitinous materials and industry‐level production of GlcNAc. To the best of our knowledge, this is the first report on an exo‐type chitinolytic enzyme of Pseudomonas species.  相似文献   

2.
  总被引:1,自引:0,他引:1  
A beta-N-acetylglucosaminidase cDNA (CfGlcNAcase) was cloned from the spruce budworm, Choristoneura fumiferana. Western blotting analysis of developmental CfGlcNAcase expression revealed high levels of expression of the gene on the last day of the 5th instar larvae and the first day in the 6th instar larvae, followed by a decrease to background levels during the intermolt of the 6th instar. CfGlcNAcase was detected again from the last day of the 6th instar to day 2 of pupal stage. CfGlcNAcase expression was induced by tebufenozide at 24 h post treatment and remained at high levels until 72 h. Immunohistochemical localization analysis of CfGlcNAcase indicated that CfGlcNAcase was present in the molting fluid, epidermis, trachea, and hemolymph in prepupae during the transformation from larva to pupa. CfGlcNAcase cDNA was expressed into a recombinant protein in bacterial and baculovirus systems and the protein expressed in the baculovirus system had a higher chitinolytic activity than in the bacterial system and appeared to be secreted.  相似文献   

3.
Endo‐βN‐acetylglucosaminidase isolated from B. infantis ATCC 15697 (EndoBI‐1) is a novel enzyme that cleaves N‐N′‐diacetyl chitobiose moieties found in the N‐glycan core of high mannose, hybrid, and complex N‐glycans. These conjugated N‐glycans are recently shown as a new prebiotic source that stimulates the growth of a key infant gut microbe, Bifidobacterium longum subsp. Infantis. The effects of pH (4.45–8.45), temperature (27.5–77.5°C), reaction time (15–475 min), and enzyme/protein ratio (1:3,000–1:333) were evaluated on the release of N‐glycans from bovine colostrum whey by EndoBI‐1. A central composite design was used, including a two‐level factorial design (24) with four center points and eight axial points. In general, low pH values, longer reaction times, higher enzyme/protein ratio, and temperatures around 52°C resulted in the highest yield. The results demonstrated that bovine colostrum whey, considered to be a by/waste product, can be used as a glycan source with a yield of 20 mg N‐glycan/g total protein under optimal conditions for the ranges investigated. Importantly, these processing conditions are suitable to be incorporated into routine dairy processing activities, opening the door for an entirely new class of products (released bioactive glycans and glycan‐free milk). The new enzyme's activity was also compared with a commercially available enzyme, showing that EndoBI‐1 is more active on native proteins than PNGase F and can be efficiently used during pasteurization, streamlining its integration into existing processing strategies. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1331–1339, 2015  相似文献   

4.
    
β‐N‐acetylglucosaminidase (NagA) protein hs a chitin‐degrading activity and chitin is one of the most abundant polymers in nature. NagA contains a family 3 glycoside (GH3)‐type N‐terminal domain and a unique C‐terminal domain. The structurally uncharacterized C‐terminal domain of NagA may be involved in substrate specificity. To provide a structural basis for the substrate specificity of NagA, structural analysis of NagA from Thermotoga maritima encoded by the Tm0809 gene was initiated. NagA from T. maritima has been overexpressed in Escherichia coli and crystallized at 296 K using ammonium sulfate as a precipitant. Crystals of T. maritima NagA diffracted to 3.80 Å resolution and belonged to the monoclinic space group C2, with unit‐cell parameters a = 231.15, b = 133.62, c = 140.88 Å, β = 89.97°. The crystallization of selenomethionyl‐substituted protein is in progress to solve the crystal structure of T. maritima NagA.  相似文献   

5.
Glycoproteins produced by non‐engineered insects or insect cell lines characteristically bear truncated, paucimannose N‐glycans in place of the complex N‐glycans produced by mammalian cells. A key reason for this difference is the presence of a highly specific N‐glycan processing β‐N‐acetylglucosaminidase in insect, but not in mammalian systems. Thus, reducing or abolishing this enzyme could enhance the ability of glycoengineered insects or insect cell lines to produce complex N‐glycans. Of the three insect species routinely used for recombinant glycoprotein production, the processing β‐N‐acetylglucosaminidase gene has been isolated only from Spodoptera frugiperda. Thus, the purpose of this study was to isolate and characterize the genes encoding this important processing enzyme from the other two species, Bombyx mori and Trichoplusia ni. Bioinformatic analyses of putative processing β‐N‐acetylglucosaminidase genes isolated from these two species indicated that each encoded a product that was, indeed, more similar to processing β‐N‐acetylglucosaminidases than degradative or chitinolytic β‐N‐acetylglucosaminidases. In addition, over‐expression of each of these genes induced an enzyme activity with the substrate specificity characteristic of processing, but not degradative or chitinolytic enzymes. Together, these results demonstrated that the processing β‐N‐acetylglucosaminidase genes had been successfully isolated from Trichoplusia ni and Bombyx mori. The identification of these genes has the potential to facilitate further glycoengineering of baculovirus‐insect cell expression systems for the production of glycosylated proteins. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

6.
7.
    
The stability and structure of several beta-hairpin peptide variants derived from the C-terminus of the B1 domain of protein G were investigated by a number of experimental and computational techniques. Our analysis shows that the structure and stability of this hairpin can be greatly affected by one or a few simple mutations. For example, removing an unfavorable charge near the N-terminus of the peptide (Glu42 to Gln or Thr) or optimization of the N-terminal charge-charge interactions (Gly41 to Lys) both stabilize the peptide, even in water. Furthermore, a simple replacement of a charged residue in the turn (Asp47 to Ala) changes the beta-turn conformation. Finally, we show that the effects of combining these single mutations are additive, suggesting that independent stabilizing interactions can be isolated and evaluated in a simple model system. Our results indicate that the structure and stability of this beta-hairpin peptide can be modulated in numerous ways and thus contributes toward a more complete understanding of this important model beta-hairpin as well as to the folding and stability of larger peptides and proteins.  相似文献   

8.
  总被引:27,自引:0,他引:27  
Extracellular enzymes are the proximate agents of organic matter decomposition and measures of these activities can be used as indicators of microbial nutrient demand. We conducted a global-scale meta-analysis of the seven-most widely measured soil enzyme activities, using data from 40 ecosystems. The activities of beta-1,4-glucosidase, cellobiohydrolase, beta-1,4-N-acetylglucosaminidase and phosphatase g(-1) soil increased with organic matter concentration; leucine aminopeptidase, phenol oxidase and peroxidase activities showed no relationship. All activities were significantly related to soil pH. Specific activities, i.e. activity g(-1) soil organic matter, also varied in relation to soil pH for all enzymes. Relationships with mean annual temperature (MAT) and precipitation (MAP) were generally weak. For hydrolases, ratios of specific C, N and P acquisition activities converged on 1 : 1 : 1 but across ecosystems, the ratio of C : P acquisition was inversely related to MAP and MAT while the ratio of C : N acquisition increased with MAP. Oxidative activities were more variable than hydrolytic activities and increased with soil pH. Our analyses indicate that the enzymatic potential for hydrolyzing the labile components of soil organic matter is tied to substrate availability, soil pH and the stoichiometry of microbial nutrient demand. The enzymatic potential for oxidizing the recalcitrant fractions of soil organic material, which is a proximate control on soil organic matter accumulation, is most strongly related to soil pH. These trends provide insight into the biogeochemical processes that create global patterns in ecological stoichiometry and organic matter storage.  相似文献   

9.
    
Vibrio harveyiβ‐N‐acetylglucosaminidase (VhGlcNAcase) is a new member of the GH20 glycoside hydrolase family responsible for the complete degradation of chitin fragments, with N‐acetylglucosamine (GlcNAc) monomers as the final products. In this study, the crystallization and preliminary crystallographic data of wild‐type VhGlcNAcase and its catalytically inactive mutant D437A in the absence and the presence of substrate are reported. Crystals of wild‐type VhGlcNAcase were grown in 0.1 M sodium acetate pH 4.6, 1.4 M sodium malonate, while crystals of the D437A mutant were obtained in 0.1 M bis‐tris pH 7.5, 0.1 M sodium acetate, 20% PEG 3350. X‐ray data from the wild‐type and the mutant crystals were collected at a synchrotron‐radiation light source and were complete to a resolution of 2.5 Å. All crystals were composed of the same type of dimer, with the substrate N,N′‐diacetylglucosamine (GlcNAc2 or diNAG) used for soaking was cleaved by the active enzyme, leaving only a single GlcNAc molecule bound to the protein.  相似文献   

10.
    
Two new compounds, 14-methyl stigmast-9(11)-en-3alpha-ol-3beta-D-glucopyranoside (1) and cholest-11-en-3beta, 6beta, 7alpha, 22beta-tetraol-24-one-3beta-palmitoleate (2), along with the known compound beta-sitosteryl-3beta-D-glucopyranosyl-6'-linoleiate (3), were isolated from the methanolic extract of rice (Oryza sativa) hulls. The structures of the two new compounds were elucidated using one- and two-dimensional NMR in combination with IR, EI/MS, FAB/MS, HR-EI/MS and HR-FAB/MS. In bioassays with blue-green algae, Microcystis aeruginosa UTEX 2388 and duckweed, Lemna paucicostata Hegelm 381, the efficacy of bioactivity of the two new compounds linearly increased as the concentration increased from 0.3 to 300 IgM. Compared with momilactone A, compounds 1 and 2 showed similar and higher inhibitory activities against the growth of M. aeruginosa at a concentration of 300 microM. However, compound 2 was similar to momilactone A in inhibiting L. paucicostata growth at a concentration of 300 microM. As a result, compound 2 appears to have a strong potential for the environmentally friendly control of weed and algae that are harmful to water-logged rice.  相似文献   

11.
    
Twenty analogues were synthesized of [Pmp1, D-Trp2, Arg8]oxytocin, PA, (Pmp = beta,beta-pentamethylene-beta-mercaptopropionic acid), a potent antagonist of the uterotonic effect of oxytocin in the rat (uterotonic test in vitro, pA2 = 7.77) and in the baboon. Systematic substitution of Pmp1 was made with beta-mercaptopropionic acids featuring replacement of the 4-methylene group of the cyclohexyl ring of Pmp with isosteric O, S, NH or with C=O. Since the more hydrophilic NH and C=O substitutions showed a sharply decreased antagonistic potency (rat uterotonic test in vitro), additional modifications were made to reduce their hydrophilicity. Acylation of the NH group with various acyl groups, and ketalization or thioketalization of C=O with more or less bulky substituents led to a partial restoration of potency, the N-carbamyl- and the 2-mercapto-2-adamantaneacetyl analogues being equipotent with PA. Internal cyclization by amidation of the NH-group with Gly-9, resulted in a bicyclic analogue, (cyclo 1-9)[(HN)Pmp1, Gly9]PA which was equipotent with PA. When Pen-6 was introduced into the bicyclic derivative instead of Cys-6, to reduce the flexibility of the rings, the resulting (cyclo 1-9)[(HN)Pmp1, Pen6, Gly9]PA had somewhat better potency (pA2 = 8.17) in the uterotonic test and no detectable activity in the antidiuretic assay. In the case of substitution of PA with beta,beta-(3-thiapentamethylene)-beta-mercaptopropionic acid, (S)Pmp, there was also an increase in inhibitory potency in the uterotonic test (pA2 = 8.08): the analogue had extremely weak antidiuretic activity. To establish the importance of the steric effects of the Pen-6 substitution, analogues [Pen6]PA and [(S)Pmp1, Pen6]PA were made and found to be very potent, with a pA2 of 8.72 and 8.86, respectively. The high potency of the latter analogue and its extremely weak action in the diuretic assay makes it an attractive candidate for studies on the inhibition of the biological effects of oxytocin and for the prevention of preterm labour.  相似文献   

12.
The pathogenic yeast Trichosporon asahii is the major causative agent of deep-seated trichosporonosis in immunocompromised patients. Although infection by this microorganism is becoming increasingly frequent, information related to its pathogenicity and virulence factors is still limited. Therefore, we investigated phenotypic switching in colony morphology, and the production of extracellular enzymes as a virulence factor. Sixty-one clinical isolates of T. asahii produced four different morphological types on Sabouraud dextrose agar (SDA): 69% WF (white farinose), 18% WP (white pustular), 10% Y (yellowish white), and 3% WC (white cerebriform). Strains of the three major types (WF, WP, and Y) produced two to five colony types when cultured on SDA at 37 C. The frequency of switching between colony types was 10(-2) to 10(-4), as in Candida albicans and Cryptococcus neoformans. Notably, most of the colonies switched to the smooth (S) type irreversibly, at frequencies of 10(-2) to 10(-3). No secreted aspartic proteinase or phospholipase activity was detected in T. asahii, while beta-N-acetylhexosaminidase activity, which catalyzes the hydrolysis of terminal nonreducing N-acetyl-D-hexosamine residues in N-acetyl-beta-D-hexosaminides, was found. Furthermore, enzymatic activity of the S type was significantly greater than that of the parent type in all strains. No other clinically relevant Trichosporon species (T. mucoides, T. inkin, and T. ovoides ) produced this enzyme. These results provide basal information for understanding the pathogenic potential of T. asahii.  相似文献   

13.
  总被引:1,自引:0,他引:1  
  相似文献   

14.
    
β‐N‐acetylglucosaminidase (NAG) is a key enzyme in insect chitin metabolism and plays an important role in many physiological activities of insects. The HvNAG1 gene was identified from the Heortia vitessoides Moore (Lepidoptera: Crambidae) cDNA library and its expression patterns were determined using quantitative real‐time polymerase chain reaction. The results indicated that HvNAG1 mRNA levels were high in the midgut and before molting, and 20E could induce its expression. Subsequently, the HvNAG1 gene was knocked down via RNA interference to identify its functions. We found that 3 μg of dsNAG1 resulted in optimal interference at 48 and 72 hr after injection, causing a decrease in NAG1 protein content, which resulted in abnormal or lethal phenotypes, and a sharp decrease in the survival rate. These results indicate that HvNAG1 plays a key role in the molting process of H. vitessoides. However, the silencing of HvNAG1 had no significant effect on the chitin metabolism‐related genes tested in this study. Our present study provides a reference for further research on the utility of key genes involved in the chitin metabolic pathway in the insect molting process.  相似文献   

15.
    
Knock out mice deficient for the splice-isoform alphaalpha of neuronal nitric oxide synthase (nNOSalphaalpha) display residual nitric oxide synthase activity and immunosignal. To attribute this signal to the two minor neuronal nitric oxide synthase splice variants, betabeta and gammagamma, we generated isoform-specific anti-peptide antibodies against the nNOSalphaalpha specific betabeta-finger motif involved in PDZ domain scaffolding and the nNOSbetabeta specific N-terminus. The nNOSalphaalpha betabeta-finger-specific antibody clearly recognized the 160-kDa band of recombinant nNOSalphaalpha on Western blots. Using immunocytochemistry, this antibody displayed, in rats and wild-type mice, a labeling pattern similar to but not identical with that obtained using a commercial pan-nNOS antibody. This similarity indicates that the majority of immunocytochemically detectable nNOS is not likely to be complexed with PDZ-domain proteins via the betabeta-finger motif. This conclusion was confirmed by the inhibition of PSD-95/nNOS interaction by the nNOSalphaalpha betabeta-finger antibody in pull-down assays. By contrast, nNOSalphaalpha betabeta-finger labeling was clearly reduced in hippocampal and cortical neuropil areas enriched in NMDA receptor complex containing spine synapses. In nNOSalphaalpha knock out mice, nNOSalphaalpha was not detectable, whereas the pan-nNOS antibody showed a distinct labeling of cell bodies throughout the brain, most likely reflecting betabeta/gammagamma-isoforms in these cells. The nNOSbetabeta antibody clearly detected bacterial expressed nNOSbetabeta fusion protein and nNOSbetabeta in overexpressing HEK cells by Western blotting. Immunocytochemically, individual cell bodies in striatum, cerebral cortex, and in some brain stem nuclei were labeled in knock out but not in wild-type mice, indicating an upregulation of nNOSbetabeta in nNOSalphaalpha deficient animals.  相似文献   

16.
    
Overexpression of DeltaNp63 has been observed in a number of human cancers, suggesting a role for DeltaNp63 in carcinogenesis. In the present study, we show that inhibition of glycogen synthase kinase-3beta (GSK-3beta) by lithium chloride (LiCl) elicited a stimulatory effect on DeltaNp63 promoter activity in HEK 293T cells. Exposure to LiCl induced DeltaNp63 promoter activation as well as DeltaNp63 protein expression in the cells. The effect of GSK-3beta on DeltaNp63 expression was further confirmed by the use of two highly specific GSK-3beta inhibitors, SB216763 and SB415286. Further study showed the presence of a putative beta-catenin responsive element (beta-catenin-RE) in the DeltaNp63 promoter region, and the stimulation of DeltaNp63 promoter activity by GSK-3beta inhibitor is markedly abolished by mutation or deletion of the putative beta-catenin-RE. Data are also presented to show that beta-catenin acts together with Lef-1 to influence DeltaNp63 promoter activity and protein expression.  相似文献   

17.
  总被引:4,自引:0,他引:4  
Drosophila is emerging as a model organism to investigate egg fertilization in insects and the possible conservation of molecular mechanisms of gamete interactions demonstrated in higher organisms. This study shows that the spermatozoa of several species of Drosophila belonging to the melanogaster group have a plasma membrane associated alpha-L-fucosidase with features in common with alpha-L-fucosidases from sperm of other animals, including mammals. The enzyme has been purified and completely characterized in D. ananassae, because of its stability in this species. The sperm alpha-L-fucosidase is an integral protein terminally mannosylated, with the catalytic site oriented toward the extracellular space. It has a M(r) of 256 kDa and a multimeric structure made up by subunits of 48 and 55 kDa. Enzyme characterization included kinetic properties, pI, optimal pH, and thermal stability. A soluble form of the enzyme similar to the sperm associated alpha-L-fucosidase is secreted by the seminal vesicles. Synthetic peptides designed from the deduced product of the D. melanogaster gene encoding an alpha-L-fucosidase were used to raise a specific polyclonal antibody. Immunofluorescence labeling of spermatozoa showed that the enzyme is present in the sperm plasma membrane overlying the acrosome and the tail. Lectin cytochemistry analysis of the egg surface indicated that alpha-L-fucose terminal residues are present on the chorion with a strongly polarized localization on the micropyle. The alpha-L-fucosidase of Drosophila sperm plasma membrane appears to be potentially involved in gamete recognition by interacting with its glycoside ligands present on the egg surface at the site of sperm entry.  相似文献   

18.
    
In recent studies, we discovered that the three beta-peptidyl aminopeptidases, BapA from Sphingosinicella xenopeptidilytica 3-2W4, BapA from S. microcystinivorans Y2, and DmpA from Ochrobactrum anthropi LMG7991, possess the unique feature of cleaving N-terminal beta-amino acid residues from beta- and alpha/beta-peptides. Herein, we investigated the use of the same three enzymes for the reverse reaction catalyzing the oligomerization of beta-amino acids and the synthesis of mixed peptides with N-terminal beta-amino acid residues. As substrates, we employed the beta-homoamino acid derivatives H-beta hGly-pNA, H-beta3 hAla-pNA, H-(R)-beta3 hAla-pNA, H-beta3 hPhe-pNA, H-(R)-beta3 hPhe-pNA, and H-beta3 hLeu-pNA. All three enzymes were capable of coupling the six beta-amino acids to oligomers with chain lengths of up to eight amino acid residues. With the enzyme DmpA as the catalyst, we observed very high conversion rates, which correspond to dimer yields of up to 76%. The beta-dipeptide H-beta3 hAla-beta3 hLeu-OH and the beta/alpha-dipeptide H-beta hGly-His-OH (carnosine) were formed with almost 50% conversion, when a five-fold excess of beta3-homoleucine or histidine was incubated with H-beta3 hAla-pNA and H-beta hGly-pNA, respectively, in the presence of the enzyme BapA from S. microcystinivorans Y2. BapA from S. xenopeptidilytica 3-2W4 turned out to be a versatile catalyst capable of coupling various beta-amino acid residues to the free N-termini of beta- and alpha-amino acids and even to an alpha-tripeptide. Thus, these aminopeptidases might be useful to introduce a beta-amino acid residue as an N-terminal protecting group into a 'natural' alpha-peptide, thereby stabilizing the peptide against degradation by other proteolytic enzymes.  相似文献   

19.
Non-proteolytic group 2 allergen, Der p 2 (DP2) is known as a major allergen derived from house dust mite Dermatophagoides pteronyssinus.Paracellular epithelial barrier, being composed of a number of tight junction (TJ) molecules, plays pivotal roles in resistance of pathogen invading. However, whether DP2 affects epithelial TJ molecules is unclear. Therefore, we aimed to investigate the effects of DP2 on epithelial TJ molecules, and the mechanism by which expression of junction molecules is regulated by DP2. Cell cycle and mRNA expression of TJ proteins of lung alveolar cell A549 were analyzed by RT-PCR and flow cytometry. Level of claudin-2, subcellular distribution of b-catenin and kinase activation was determined using immunoblot. Our findings revealed that DP2 had no significant influence on cell cycle distribution but affected mRNA expression of TJ molecules including claudin-2, occludin, and ZO-1 in A549 cells. Our results showed that DP2 significantly elevated level of claudin-2 and increased expression and nuclear translocation of b-catenin. Moreover, DP2 enhanced the phosphorylation of glycogen synthase kinase-3b (GSK-3b) and its potential upstream regulator Akt. The DP2-induced claudin-2 expression was also suppressed by GSK-3b inhibitor (lithium chloride) and phosphatidyl inositol 3-phosphate kinase (PI3K) inhibitor (wortamannin). Taken together, these findings showed that DP2 increased claudin-2 expression and its cell surface distribution in A549 cells, which may attribute to phosphorylation of GSK-3b and Akt and the consequent increase and nuclear translocation of b-catenin. It is suggested that presence of DP2 may alter epithelial junction by regulating expression of TJ molecules.  相似文献   

20.
  总被引:3,自引:0,他引:3  
The support vector machines (SVMs) method is proposed because it can reflect the sequence-coupling effect for a tetrapeptide in not only a beta-turn or non-beta-turn, but also in different types of beta-turn. The results of the model for 6022 tetrapeptides indicate that the rates of self-consistency for beta-turn types I, I', II, II', VI and VIII and non-beta-turns are 99.92%, 96.8%, 98.02%, 97.75%, 100%, 97.19% and 100%, respectively. Using these training data, the rate of correct prediction by the SVMs for a given protein: rubredoxin (54 residues. 51 tetrapeptides) which includes 12 beta-turn type I tetrapeptides, 1 beta-turn type II tetrapeptide and 38 non-beta-turns reached 82.4%. The high quality of prediction of the SVMs implies that the formation of different beta-turn types or non-beta-turns is considerably correlated with the sequence of a tetrapeptide. The SVMs can save CPU time and avoid the overfitting problem compared with the neural network method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号