首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The investigation of Protein A and antibody adsorption on surfaces in a biological environment is an important and fundamental step for increasing biosensor sensitivity and specificity. The atomic force microscope (AFM) is a powerful tool that is frequently used to characterize surfaces coated with a variety of molecules. We used AFM in conjunction with scanning electron microscopy to characterize the attachment of protein A and its subsequent binding to the antibody and Salmonella bacteria using a gold quartz crystal. The rms roughness of the base gold surface was determined to be approximately 1.30 nm. The average step height change between the solid gold and protein A layer was approximately 3.0 +/- 1.0 nm, while the average step height of the protein A with attached antibody was approximately 6.0 +/- 1.0 nm. We found that the antibodies did not completely cover the protein A layer, instead the attachment follows an island model. Salt crystals and water trapped under the protein A layer were also observed. The uneven adsorption of antibodies onto the biosensor surface might have led to a decrease in the sensitivity of the biosensor. The presence of salt crystals and water under the protein A layer may deteriorate the sensor specificity. In this report, we have discussed the application and characterization of protein A bound to antibodies which can be used to detect bacterial and viral pathogens.  相似文献   

2.
AIMS: To develop a non-competitive direct immunoassay method for quantifying nisin in solution or adsorbed to surfaces. METHODS AND RESULTS: The developed method differs from traditional ELISA in pre-forming a complex of the nisin antibodies and the secondary antibody conjugate before addition to the nisin-coated solid phase. The modifications may help decrease interference from the nisin degradation molecules and reduce non-specific adsorption of secondary antibody conjugate. The new method has a detection limit of 65 ng nisin and correlates well (r=0.982) with the agar diffusion bioassay. CONCLUSIONS: A new sensitivity method was developed to determine the amounts of nisin adsorbed to a polymeric surface. SIGNIFICANCE AND IMPACT OF THE STUDY: The new technique can provide a reproducible and accurate method to quantitate nisin molecules in solutions and those bound on polymeric surfaces, and it is free of the limitations of the traditional agar diffusion bioassay.  相似文献   

3.
A novel chromatography method for the separation of antibodies is described. The adsorption of antibodies on the solid phase involves interaction with a ligand that combines mild hydrophobic characteristics and some degree of molecular recognition with a derivative of pyridine. This combined effect results in the adsorption of antibodies in the absence of lyotropic salts. When environmental pH is changed, the ligand becomes ionically charged, allowing the desorption of antibodies. The mechanism of adsorption, involving hydrophobic associations and ionic related interaction, is here qualified as dual-mode. Studies on the determination of the apparent dissociation constant for immunoglobulins G are presented. Adsorption of antibodies from crude feedstocks typically occurs without adjustment of pH or ionic strength. The sorbent is then washed with a buffer to eliminate protein impurities and, when lowering the environmental pH, antibodies are desorbed. The solid-phase material is used for the separation of antibodies from an ascites fluid and from a cell culture supernatant, followed by a polishing step on an hydroxyapatite column. Preliminary studies, related to the ability of the solid phase to separate antibody fragments, are also reported. In these studies, it has been demonstrated that both Fab and Fc fragments from polyclonal IgG are adsorbed to the solid phase under typical binding conditions. Under other defined physico-chemical conditions (ionic strength and pH), separation of both fragments in a single step has been achieved.  相似文献   

4.

Background

Low-density lipoprotein (LDL) particles accumulate in the arterial wall and become oxidized during atherogenesis, leading to the formation of atherosclerotic plaques. The major protein of the LDL particle, apolipoprotein B-100 (apoB-100), becomes fragmented during oxidation and a target for the immune system.

Methods

In this study we used in situ ellipsometry to monitor the adsorption of LDL to solid silica surfaces and the effects of oxidation on the structure of the adsorbed LDL layer. We additionally investigated the binding kinetics of two recombinant human antibodies with different specificities recognizing epitopes of apoB-100 in surface-bound native and CuCl2-oxidized LDL (oxLDL). The latter process was studied by adsorbing LDL and then adding the antibody and CuCl2 while continuously monitoring adsorbed amount and the thickness of the film. The molar ratios between the antibodies and surface-bound LDL and oxLDL were calculated from these data.

Results

Our results indicate that oxidation of surface-bound LDL induces swelling of the layer, accompanied by a slight desorption. We further found that both antibodies were able to recognize LDL and oxLDL in its adsorbed orientation. Quantitative information was obtained on the number of available binding sites on surface-bound LDL and oxLDL for these two antibodies.

General significance

Using ellipsometry for real-time monitoring of adsorption, in situ oxidation of LDL and binding of specific recombinant antibodies to surface-bound LDL, will open up possibilities to map different conformations and orientations of LDL in the adsorbed state.  相似文献   

5.
We reported previously that mixtures of some monoclonal antibodies directed against the glycoprotein hormone human chorionic gonadotropin (hCG) had a higher affinity for the antigen than either monoclonal antibody separately. The synergistic interaction could no longer be detected when one of the antibodies was replaced with its F(ab) fragment. This cooperative interaction has now been further characterized. One-half of 10 possible pairs prepared from five IgG1 monoclonal antibodies against hCG result in a synergistic interaction. The addition of an IgG2b monoclonal antibody to one of the IgG1 monoclonal antibodies also induces a cooperative interaction, which shows that the effect is not subclass restricted. Cooperative interactions between antibodies are also not restricted to solution conditions; adsorption of one antibody to a solid support appears to increase the cooperative effect. Indeed, one pair of antibodies that failed to bind hCG synergistically in solution did so when one antibody was bound to a solid surface. The liquid phase antibody also has an effect on the specificity of the solid phase antibody. The sensitivity of the solid phase assay system has enabled us to develop a rapid method of determining if two monoclonal antibodies can bind to an antigen simultaneously. A quantitative theoretical model has been devised that successfully predicts the cooperative behavior observed between antibodies and should be useful in devising conditions that result in sensitive solid phase radioimmunoassays.  相似文献   

6.
Development of immunobiosensor detector surfaces involves the immobilization of active antibodies on the capture surface without any significant loss of antigen binding activity. An atomic force microscope (AFM) was used to directly evaluate specific interactions between pesticides and antibodies on a biosensor surface. Oriented immobilization of antibodies against two herbicide molecules 2,4-dichlorophenoxyacetic acid (2,4-D) and atrazine, on gold, was carried out to create the active immunobiosensor surfaces. The adhesive forces between immobilized antibodies and their respective antigens were measured by force spectroscopy using hapten-carrier protein functionalized AFM cantilevers. Relative functional affinity (avidity) measurements of the antibodies carried out prior to immobilization, well correlated with subsequent AFM force measurement observations. Analysis showed that immobilization had not compromised the reactivity of the surface immobilized antibody molecules for antigen nor was there any change in their relative quality with respect to each other. The utility of the immunoreactive surface was further confirmed using a Surface Plasmon Resonance (SPR) based detection system. Our study indicates that AFM can be utilized as a convenient immunobiosensing tool for confirming the presence and also assessing the strength of antibody-hapten interactions on biosensor surfaces under development.  相似文献   

7.

The objective of the present study was to investigate the adsorption of PRP-1, PRP-3 and statherin to solid surfaces in terms of dependence on concentration, the presence of electrolyte and surface wettability. Time resolved in situ ellipsometry was used to determine the adsorbed amounts and adsorption rates of pure PRP-1, PRP-3 and statherin onto pure (hydrophilic) and methylated (hydrophobized) silica surfaces. The initial film build-up was fast and plateaus were reached within 10 min at all concentrations for both types of surfaces and all proteins. The observed adsorption and calculated diffusion rates of PRP-1, PRP-3 and statherin, respectively, indicated that the initial adsorption was mass transport controlled at low concentrations. At hydrophobic surfaces, isotherm shapes and adsorbed amounts were similar for PRP-1 and PRP-3, while statherin adsorbed to a higher extent. At hydrophilic surfaces only PRP-1 adsorbed substantially, while for PRP-3 and statherin adsorbed amounts were low. The presence of Ca 2+ ions in the phosphate buffer solution increased the adsorption of statherin and PRP-3 on hydrophobic surfaces, while PRP-1 was unaffected. On hydrophilic surfaces, all three proteins adsorbed in higher amounts in NaCl, compared to CaCl 2 at similar ionic strength. It is concluded that acidic PRPs (PRP-1 and PRP-3) and statherin readily form films on a variety of materials and solution conditions, showing that their functions may be fulfilled under a wide range of conditions.  相似文献   

8.
Human immunodeficiency virus type 1 (HIV-1) neutralizing antibodies are thought be distinguished from nonneutralizing antibodies by their ability to recognize functional gp120/gp41 envelope glycoprotein (Env) trimers. The antibody responses induced by natural HIV-1 infection or by vaccine candidates tested to date consist largely of nonneutralizing antibodies. One might have expected a more vigorous neutralizing response, particularly against virus particles that bear functional trimers. The recent surprising observation that nonneutralizing antibodies can specifically capture HIV-1 may provide a clue relating to this paradox. Specifically, it was suggested that forms of Env, to which nonneutralizing antibodies can bind, exist on virus surfaces. Here, we present evidence that HIV-1 particles bear nonfunctional gp120/gp41 monomers and gp120-depleted gp41 stumps. Using a native electrophoresis band shift assay, we show that antibody-trimer binding predicts neutralization and that the nonfunctional forms of Env may account for virus capture by nonneutralizing antibodies. We hypothesize that these nonfunctional forms of Env on particle surfaces serve to divert the antibody response, helping the virus to evade neutralization.  相似文献   

9.
Amelogenin is believed to be involved in controlling the formation of the highly anisotropic and ordered hydroxyapatite crystallites that form enamel. The adsorption behavior of amelogenin proteins onto substrates is very important because protein–surface interactions are critical to its function. We have previously used LRAP, a splice variant of amelogenin, as a model protein for the full-length amelogenin in solid-state NMR and neutron reflectivity studies at interfaces. In this work, we examined the adsorption behavior of LRAP in greater detail using model self-assembled monolayers containing COOH, CH3, and NH2 end groups as substrates. Dynamic light scattering (DLS) experiments indicated that LRAP in phosphate buffered saline and solutions containing low concentrations of calcium and phosphate consisted of aggregates of nanospheres. Null ellipsometry and atomic force microscopy (AFM) were used to study protein adsorption amounts and quaternary structures on the surfaces. Relatively high amounts of adsorption occurred onto the CH3 and NH2 surfaces from both buffer solutions. Adsorption was also promoted onto COOH surfaces only when calcium was present in the solutions suggesting an interaction that involves calcium bridging with the negatively charged C-terminus. The ellipsometry and AFM studies revealed that LRAP adsorbed onto the surfaces as small subnanosphere-sized structures such as monomers or dimers. We propose that the monomers/dimers were present in solution even though they were not detected by DLS or that they adsorbed onto the surfaces by disassembling or “shedding” from the nanospheres that are present in solution. This work reveals the importance of small subnanosphere-sized structures of LRAP at interfaces.  相似文献   

10.
A method of determining antibodies by their adsorption on large-pore or surface immunosorbents with subsequent treatment of the carrier with anti-immunoglobulin serum and antiphage serum isologous to the antibodies and then with the bacteriophage, has been presented. The adsorbed virions are split off by means of papain-induced hydrolysis of the antibody complex. The antigens are determined by the reaction of phage fixing inhibition. The method permits to determine small amounts of antibodies to proteins, haptenes and cells with objective calculation of results.  相似文献   

11.
A method of determining antibodies by their adsorption on large-pore or surface immunosorbents with subsequent treatment of the carrier with anti-immunoglobulin serum and antiphage serum isologous to the antibodies and then with the bacteriophage has been presented. The adsorbed virions are split off by means of papain-induced hydrolysis of the antibody complex. The antigens are determined by the reaction of phage fixing inhibition. The method permits to determine small amounts of antibodies to proteins, haptenes and cells with objective calculation of results.  相似文献   

12.
Past work has shown that Treponema pallidum, the causative agent of syphilis, binds host fibronectin (FN). FN and other host proteins are believed to bind to rare outer membrane proteins (OMPs) of T. pallidum, and it is postulated that this interaction may facilitate cell attachment and mask antigenic targets on the surface. This research seeks to prepare a surface capable of mimicking the FN binding ability of T. pallidum in order to investigate the impact of FN binding with adsorbed Tp0483 on the host response to the surface. By understanding this interaction, it may be possible to develop more effective treatments for infection and possibly mimic the stealth properties of the bacteria. Functionalized self-assembled monolayers (SAMs) on gold were used to investigate rTp0483 and FN adsorption. Using a quartz crystal microbalance (QCM), rTp0483 adsorption and subsequent FN adsorption onto rTp0483 were determined to be higher on negatively charged carboxylate-terminated self-assembled monolayers (-COO(-) SAMs) compared to the other surfaces analyzed. Kinetic analysis of rTp0483 adsorption using surface plasmon resonance (SPR) supported this finding. Kinetic analysis of FN adsorption using SPR revealed a multistep event, where the concentration of immobilized rTp0483 plays a role in FN binding. An examination of relative QCM dissipation energy compared to the shift in frequency showed a correlation between the physical properties of adsorbed rTp0483 and SAM surface chemistry. In addition, AFM images of rTp0483 on selected SAMs illustrated a preference of rTp0483 to bind as aggregates. Adsorption on -COO(-) SAMs was more uniform across the surface, which may help further explain why FN bound more strongly. rTp0483 antibody studies suggested the involvement of amino acids 274-289 and 316-333 in binding between rTp0483 to FN, while a peptide blocking study only showed inhibition of binding with amino acids 316-333. Finally, surface adsorbed rTp0483 with FN bound significantly less anti-RGD and gelatin compared to FN adsorbed directly to -COO(-) SAMs, indicating that one or both binding regions may play a role in binding between rTp0483 and FN.  相似文献   

13.
The physicochemical properties of natural phage-neutralizing antibodies were studied. Natural neutralizing antibodies against phages ΦX 174 and T 2 were found in the 19 S fraction isolated from normal pig serum by gel filtration on a Bio-Gel P-300 column. The 7 S fraction of normal pig serum possessed no neutralizing activity. The neutralizing activity of the 19 S fraction against phage ΦX 174 was not modified either by inactivation or by the addition of neutralizing cofactor; its activity against phage T 2 was lost by inactivation, but was restored by the addition of cofactor. The neutralizing activity of the 19 S fraction of normal pig serum was completely destroyed by 2-mercaptoethanol and was not restored by the subsequent addition of antibody cofactor. The results of attempts to release phage ΦX 174 from the neutralization complex with normal porcine serum 19 S macroglobulin antibody by the dilution method were the same as those of attempts to dissociate phage from the complex with 7 S type hyperimmune antibody. The virus particle was firmly and irreversibly adsorbed to both types of antibody and was not released by dilution. It is concluded from the results that neutralization of phage ΦX 174 by 19 S macroglobulin molecule of antibody is a simple, irreversible process, for which the thermolabile nonspecific serum components are not required.  相似文献   

14.
Complex formation of circular, single-stranded phage fd DNA with Escherichia coli DNA binding protein HD or phage fd gene 5 protein keeps infection of E. coli spheroplasts at the level of free phage DNA, whereas complexes of this DNA with E. coli DNA unwinding protein show a strongly reduced efficiency of transfection. Displacement of the unwinding protein by HD protein or gene 5 protein also maintains the poor adsorption of the complexes to spheroplasts. Free E. coli DNA unwinding protein and residual amounts of this protein bound to the DNA may interfere with the adsorption and the uptake of the phage genome.  相似文献   

15.
【目的】获得针对单增李斯特菌的特异性单域重链抗体,并对筛选过程中特异性克隆的富集规律进行分析,为筛选具有种属特异性的噬菌体展示抗体提供参考。【方法】采用固相筛选技术,以热灭活的单增李斯特菌菌体为抗原,通过四轮常规筛选和一轮消减筛选,从驼源天然噬菌体展示文库中筛选针对单增李斯特菌的单域重链抗体。采用Phage-ELISA法,对后四轮筛选洗脱物中随机挑选的噬菌体进行鉴定,阳性克隆进行基因测序及结合特异性分析。通过多序列比对分析将获得的基因序列进行分组和统计。【结果】成功筛选到2株单增李斯特菌特异性的单域重链抗体。【结论】在优化的筛选条件下,基于全细胞的筛选方法能够获得特异性识别单增李斯特菌的单域重链抗体,消减筛选对于去除非特异性克隆是有效的和必要的。  相似文献   

16.
The effect of fibronectin protein (Fn) coating onto polysaccharide layers of hyaluronic acid (Hyal) and its sulfated derivative (HyalS) on fibroblast cell adhesion was analyzed. The Hyal or HyalS were coated and grafted on the glass substrate by a photolithographic method. The Fn coating was achieved by two different routes: the immobilization of Fn by covalent bond to the polysaccharide layers and the simple adsorption of Fn onto Hyal and HyalS surfaces. AFM, SEM, and ATR-FTIR techniques were used for the chemical and topographical characterization of the surfaces. According to AFM and SEM data, the surface topography was dependent on the method used to cover the polysaccharide layers with the protein. ATR-FTIR analysis supplied information about the rearrangement of Fn after the interaction (adsorption or binding) with the Hyal and the HyalS. The conformational changes of the Fn were minimal when it was simply adsorbed on HyalS surfaces and larger once bound, whereas on the Hyal layer the protein underwent a bigger conformational change once adsorbed and covalently grafted. Then, the biological characterization was carried out by analyzing the human diploid skin fibroblasts adhesion on these surfaces. The morphology of fibroblasts was evaluated by SEM, whereas the dynamics of fibroblasts movement were recorded by a time-lapse system. Cell variations in area, perimeter, and length were analyzed at 2, 4, and 6 h. It was found that the addition of Fn (covalently bound or merely adsorbed) was fundamental in the promotion of fibroblasts adhesion and spreading. The greatest adhesion occurred onto HyalS layers covered by the adsorbed Fn.  相似文献   

17.
The design and fabrication of protein biochips requires characterization of blocking agents that minimize nonspecific binding of proteins or organisms. Nonspecific adsorption of Escherichia coli, Listeria innocua, and Listeria monocytogenes is prevented by bovine serum albumin (BSA) or biotinylated BSA adsorbed on SiO(2) surfaces of a biochip that had been modified with a C(18) coating. Biotinylated BSA forms a protein-based surface that in turn binds streptavidin. Because streptavidin has multiple binding sites for biotin, it in turn anchors other biotinylated proteins, including antibodies. Hence, biotinylated BSA simultaneously serves as a blocking agent and a foundation for binding an interfacing protein, avidin or streptavidin, which in turns anchors biotinylated antibody. In our case, the antibody is C11E9, an IgG-type antibody that binds Listeria spp. Nonspecific adsorption of another bacterium, Escherichia coli, is also minimized due to the blocking action of the BSA. The blocking characteristics of BSA adsorbed on C(18)-derivatized SiO(2) surfaces for construction of a protein biochip for electronic detection of pathogenic organisms is investigated.  相似文献   

18.
Abstract Outer membranes of Escherichia coli K-12 were used to isolate hybridoma cell lines that produce monoclonal antibodies against the FhuA (TonA) protein. Two monoclonal antibodies were obtained from independent immunization and fusion experiments. The antibodies belonged to the subclass IgG1 and κ, and IgG2b and κ, respectively. The latter antibody was purified by affinity chromatography on protein A-Sepharose. The culture supernatants of the hybridoma cell lines and the isolated antibody inhibited adsorption of the phages T5 and T1 to E. coli cells while binding of phage ø80, which also uses the FhuA protein as a receptor, remained unaffected. The specificity of the antibodies to the FhuA protein was supported by the prevention of killing of cells by colicin M and by the lack of inhibition of colicin B and of phage BG23. Transport of iron(III) as ferrichrome complex was not inhibited by the isolated antibody. However, partial competition with the adsorption of the phages T2, TuIb and T6 was observed which may indicate an organization of certain functional phage receptors into clusters.  相似文献   

19.
In the present study the atomic force microscope (AFM) was used to image the surface morphology of red blood cells (RBC) for the first time. The AFM yielded very reproducible images without appreciable modifications of the sample surfaces. In addition to this topographical imaging, we have developed an experimental approach to measure the binding strength between antibody (anti-A), and the RBC antigen A, when reversible bonds between specific molecules such as antigen and antibody mediate the adhesion. The experimental results suggest that the procedure established here may be used for specific antibody detection. This study has also enhanced our understanding under physiological conditions of molecular interaction in particular antigen-antibody.  相似文献   

20.
Previous studies have shown that certain glow discharge treated polymers strongly retain adsorbed albumin and fibrinogen. On the basis of this phenomenon, we have investigated the possibility of immobilizing antibodies on glow discharge treated surfaces for diagnostic immunoassay applications. As a model for antibody immobilization, bovine IgG was immobilized on the following polymers: polyethylene (PE), tetrafluoroethylene glow discharge treated PE (TFE/PE), poly(ethylene terephthalate) (PET), TFE/PET, poly(tetrafluoroethylene) (PTFE), ethylene glow discharge treated PET (E/PET) and hexamethyldisiloxane glow discharge treated PET (HMDS/PET). IgG was radiolabeled with 125I and immobilized by either of the following two methods: (a) physical adsorption of IgG on untreated and glow discharge treated polymers or (b) physical adsorption of albumin followed by chemical coupling of IgG to albumin by glutaraldehyde. IgG concentration as well as adsorption times were varied in order both to optimize the immobilization conditions and to investigate the adsorption and retention mechanisms. To evaluate the efficiency of the immobilization techniques, blood plasma, Tween-20, and sodium dodecyl sulfate (SDS) were used to elute the adsorbed IgG layer. We found that IgG was successfully immobilized on the fluorocarbon glow discharge treated surfaces by using either the physical adsorption or the glutaraldehyde coupling method, although the former is more efficient than the latter method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号