首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of antidepressant compounds on the synthesis of brain lipids from [1-14C] acetate in vivo in 15 day old rats have been investigated. Compounds used included the drug desmethylimipramine (DMI), the tetrabenazine antagonist 3-methylamino-1:1-diphenylprop-1-ene (II) and the primary (I) and tertiary (III) amine analogues of (II). Compound (II), the most potent tetrabenazine antagonist in the diphenylpropene series, significantly increased lipogenesis, whereas the remaining compounds did not. The results from fractionation of the lipid extract from rats treated with (II) indicated that the incorporation of radioactivity from [1-14C] acetate increased proportionally in all neutral lipids and phospholipids. Tetrabenazine also increased brain lipogenesis in vivo and altered the distribution within lipid classes of radioactivity from [1-14C] acetate. Using [14C] labelled compound, the concentration of (II) in the brain under the present experimental conditions has been determined.  相似文献   

2.
Derivatives of ferrocene (dicyclopentadienyliron) (Fc) were examined as active site directed inhibitors of type I procollagen N-proteinase, the enzyme that cleaves the NH2-terminal propeptides from type I procollagen. The compounds were shown here to be reversible, competitive inhibitors of the enzyme. The effectiveness of the Fc inhibitors varied with modification of the cyclopentadienyl (cp) rings. The monocarboxylic acid (I) and the 1,1'-dicarboxylic acid (II) derivatives of Fc inhibited 50% of the enzymic activity (I50) at concentrations of 1.0 and 0.5 mM, respectively. The Ki values were 0.3 mM for both I and II. Derivatization of the carbonyl alpha to the cp ring of compound I (FcCOCH2CH2COOH, III) increased the inhibitory activity (I50 = 0.100 mM; Ki = 0.065 mM). Removal of the carbonyl alpha to the cp ring of III did not improve inhibitory activity: FcCH2CH2COOH, I50 = 2 mM; FcCH = CHCOOH, I50 = 1.5 mM. The active inhibitory species apparently contained iron in the 3+ valence state since two ferrocenium derivatives were very effective inhibitors: ferrocenium tetrachloroferrate, IV (I50 = 0.030 mM; Ki = 0.004 mM), and carboxyferrocenium hexafluorophosphate, V (I50 less than 0.1 mM; Ki less than 0.05 mM). In addition, reduction of III with ascorbic acid abolished its inhibitory activity. Compounds I and III stabilized the enzyme to heat denaturation in the absence of exogenous calcium; compound IV did not stabilize the enzyme. Further observations indicated that Fc derivatives were specific inhibitors of procollagen N-proteinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The present study characterizes the serial reactions of H2O2 with compounds I and II of lignin peroxidase isozyme H1. These two reactions constitute part of the pathway leading to formation of the oxy complex (compound III) from the ferric enzyme. Compounds II and III are the only complexes observed; no compound III* is observed. Compound III* is proposed to be an adduct of compound III with H2O2, formed from the complexation of compound III with H2O2 (Wariishi, H., and Gold, M. H. (1990) J. Biol. Chem. 265, 2070-2077). We provide evidence that demonstrates that the spectral data, on which the formation of compound III* is based, are merely an artifact caused by enzyme instability and, therefore, rule out the existence of compound III*. The reactions of compounds II and III with H2O2 are pH-dependent, similar to that observed for reactions of compounds I and II with the reducing substrate veratryl alcohol. The spontaneous decay of the compound III of lignin peroxidase results in the reduction of ferric cytochrome c. The reduction is inhibited by superoxide dismutase, indicating that superoxide is released during the decay. Therefore, the lignin peroxidase compound III decays to the ferric enzyme through the dissociation of superoxide. This mechanism is identical with that observed with oxymyoglobin and oxyhemoglobin but different from that for horseradish peroxidase. Compound III is capable of reacting with small molecules, such as tetranitromethane (a superoxide scavenger) and fluoride (a ligand for the ferric enzyme), resulting in ferric enzyme and fluoride complex formation, respectively.  相似文献   

4.
The in vitro incorporation of acetate 14C in platelets lipids was compared in control female rats (Gr. I) to rats treated for 4 days either by an oral contraceptive ethinyl oestradiol + lynestrenol (Gr. II), or by ethinyl oestradiol alone (Gr. III) or lynestrenol alone (Gr. IV). An increase of 43--45% in the incorporation of acetate could be observed in the two groups (II and III) which received ethinyl oestradiol, while the incorporation in group IV was similar to that of the controls. The lipid fractions of which the synthesis was the most considerably stimulated by the oestrogen treatment, were the neutral lipids as separated from the other lipids by TLC. In groups II and III the incorporation in cholesterol and cholesterol esters was increased by 8 fold and by 10 fold in the free fatty acid fraction. In these two groups, even in the phospholipid fractions PS + PI and PE, the radioactivity was significantly increased. The observed effect of the oral contraceptive studied here on platelet lipid synthesis in female rats, appears to be essentially due to the estrogens, since lynestrenol had only minimal effects in that respect.  相似文献   

5.
The cytosolic human carbonic anhydrase (hCA, EC 4.2.1.1) isozyme III (hCA III) has been cloned and purified by the GST-fusion protein method. Recombinant pure hCA III had the following kinetic parameters for the CO(2) hydration reaction at 20 degrees C and pH 7.5: k(cat) of 1.3 x 10(4) s(- 1) and k(cat)/K(M) of 2.5.10(5) M(- 1) s(- 1). The first detailed inhibition study of this enzyme with anions is reported. Inhibition data of the cytosolic isozymes hCA I - hCA III with a large number of anions (halides, pseudohalides, bicarbonate, carbonate, nitrate, nitrite, hydrosulfide, sulfate, sulfamic acid, sulfamide, etc.), were determined and these values are comparatively discussed for these three cytosolic isoforms. Fluoride, nitrate, nitrite, phenylboronic acid and phenylarsonic acid (as anions) were weak hCA III inhibitors (K(I)s of 21-78.5 mM), whereas bicarbonate, chloride, bromide, sulfate and several other simple anions showed K(I)s around 1 mM. The best hCA III inhibitors were carbonate, cyanide, thiocyanate, azide and hydrogensulfide, which showed K(I)s in the range of 10-90 microM. It is difficult to explain the inhibitory activity of carbonate (K(I) of 10 microM) against hCA III, also considering the fact that this ion has an affinity of 15-73 mM for hCA I and II and is in equilibrium with one of the substrates of this enzyme, i.e., bicarbonate, which is a much weaker inhibitor (K(I) of 0.74 mM against hCA III, of 12 mM against hCA I and of 85 mM against hCA II).  相似文献   

6.
D,L-beta-(3,4-dihydroxyphenyl)lactic acid (I), D,L-beta-(5-hydroxyindolyl-3)lactic acid (II), and L-alpha-methyl-DOPA (III) inhibited the aromatic amino acid decarboxylase (AAAD) competitively. In difference from the compound III, I and II were not AAAD substrates. Compound II selectively suppressed decarboxylation of L-5-hydroxytryptophane. Compounds I and III potentiated the excitation caused in mice by L-DOPA and failed to influence the excitation due to L-5-hudroxytryptophane (L-5-HTP). Compound II attenuated the excitation caused by L-DOPA and L-5-HTP. Pyridoxine hydrochloride and pyridoxalphosphate attenated the excitation caused by L-DOPA and L-5-HTP. Compounds I and III eliminated this action of vitamins B6.  相似文献   

7.
Lactoperoxidase (LPO) is the major consumer of hydrogen peroxide (H(2)O(2)) in the airways through its ability to oxidize thiocyanate (SCN(-)) to produce hypothiocyanous acid, an antimicrobial agent. In nasal inflammatory diseases, such as cystic fibrosis, both LPO and myeloperoxidase (MPO), another mammalian peroxidase secreted by neutrophils, are known to co-localize. The aim of this study was to assess the interaction of LPO and hypochlorous acid (HOCl), the final product of MPO. Our rapid kinetic measurements revealed that HOCl binds rapidly and reversibly to LPO-Fe(III) to form the LPO-Fe(III)-OCl complex, which in turn decayed irreversibly to LPO Compound II through the formation of Compound I. The decay rate constant of Compound II decreased with increasing HOCl concentration with an inflection point at 100 μM HOCl, after which the decay rate increased. This point of inflection is the critical concentration of HOCl beyond which HOCl switches its role, from mediating destabilization of LPO Compound II to LPO heme destruction. Lactoperoxidase heme destruction was associated with protein aggregation, free iron release, and formation of a number of fluorescent heme degradation products. Similar results were obtained when LPO-Fe(II)-O(2), Compound III, was exposed to HOCl. Heme destruction can be partially or completely prevented in the presence of SCN(-). On the basis of the present results we concluded that a complex bi-directional relationship exists between LPO activity and HOCl levels at sites of inflammation; LPO serve as a catalytic sink for HOCl, while HOCl serves to modulate LPO catalytic activity, bioavailability, and function.  相似文献   

8.
Acronycine (I) is a broad-spectrum antitumor agent whose development as a clinically useful agent has been hindered, in part, due to its poor solubility characteristics. With the goal of acquiring information that may prove of value in the development of structurally related compounds of greater clinical utility, mechanistic studies were performed with acronycine (I) and two semisynthetic derivatives, 2-nitroacronycine (II) and acronycine azine (III). These three substances demonstrated cytotoxic activity with several human tumor cell lines (breast, colon, lung, melanoma, KB-3, and drug-resistant KB-V1). Compounds II and III demonstrated greater activity than I, and more detailed studies were performed with cultured human breast cancer cells (UISO-BCA-1). Acronycine azine (III) induced the cells to accumulate in the G0/G1 phase of the cell cycle. It effectively inhibited the in vitro catalytic activities of partially purified DNA and RNA polymerases in a manner that was competitive with respect to DNA substrate. As judged by spectrophotometric titration, compound III interacted with calf thymus DNA, calf liver RNA, and a variety of single- and double-stranded (deoxy)ribonucleotides. Although no nucleic acid base specificity was discernable, this interaction appeared to be related to the cytotoxic mechanism of this dimeric substance. Monomeric compounds I and II did not interact with nucleic acids, but were effective inhibitors of DNA and RNA synthesis as judged by in vitro systems comprised of cultured UISO-BCA-1 cells or homogenates derived from these cells. The relative inhibitory activities of compounds I and II correlated with their cytotoxic activities suggesting a causal relationship. In addition, these two compounds induced cultured cells to accumulate in the phase of the cell cycle wherein the DNA content ranged from 2n-4n (S + G2/M), and inhibited in vitro DNA and RNA synthesis in a manner that was competitive with respect to nucleotide (TTP or UTP) substrate. Compounds I and II demonstrated greater cytotoxic activity with drug-resistant KB-V1 cells as compared with the parent (drug-sensitive) cell line, whereas this was not the case with compound III. Based on these results and previous literature reports, compounds I, II and III are likely to function by multiple mechanisms of action. However, it appears that alteration of nucleic acid metabolism is key to the activity of each of the substances.  相似文献   

9.
Spectral scans in both the visible (650-450 nm) and the Soret (450-380 nm) regions were recorded for the native enzyme, Compound II, and Compound III of lactoperoxidase and thyroid peroxidase. Compound II for each enzyme (1.7 microM) was prepared by adding a slight excess of H2O2 (6 microM), whereas Compound III was prepared by adding a large excess of H2O2 (200 microM). After these compounds had been formed it was observed that they were slowly reconverted to the native enzyme in the absence of exogenous donors. The pathway of Compound III back to the native enzyme involved Compound II as an intermediate. Reconversion of Compound III to native enzyme was accompanied by the disappearance of H2O2 and generation of O2, with approximately 1 mol of O2 formed for each 2 mol of H2O2 that disappeared. A scheme is proposed to explain these observations, involving intermediate formation of the ferrous enzyme. According to the scheme, Compound III participates in a reaction cycle that effectively converts H2O2 to O2. Iodide markedly affected the interconversions between native enzyme, Compound II, and Compound III for lactoperoxidase and thyroid peroxidase. A low concentration of iodide (4 microM) completely blocked the formation of Compound II when lactoperoxidase or thyroid peroxidase was treated with 6 microM H2O2. When the enzymes were treated with 200 microM H2O2, the same low concentration of iodide completely blocked the formation of Compound III and largely prevented the enzyme degradation that otherwise occurred in the absence of iodide. These effects of iodide are readily explained by (i) the two-electron oxidation of iodide to hypoiodite by Compound I, which bypasses Compound II as an intermediate, and (ii) the rapid oxidation of H2O2 to O2 by the hypoiodite formed in the reaction between Compound I and iodide.  相似文献   

10.
Chalcones (1,3-diaryl-2-propen-1-ones) are alpha, beta-unsaturated ketones with cytotoxic and anticancer properties. Several reports have shown that compounds with cytotoxic properties may also interfere with DNA topoisomerase functions. Five derivatives of 4'-hydroxychalcones were examined for cytotoxicity against transformed human T (Jurkat) cells as well as plasmid supercoil relaxation experiments using mammalian DNA topoisomerase I. The compounds were 3-phenyl-1-(4'-hydroxyphenyl)-2-propen-1-one (I), 3-(p-methylphenyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (II), 3-(p-methoxyphenyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (III), 3-(p-chlorophenyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (IV), and 3-(2- thienyl)-1-(4'-hydroxyphenyl)-2-propen-1-one (V). The order of the cytotoxicity of the compounds was; IV > III > II > I > V. Compound IV, had the highest Hammett and log P values (0.23 and 4.21, respectively) and exerted both highest cytotoxicity and strongest DNA topoisomerase I inhibition. Compounds I and II gave moderate interference with the DNA topoisomerase I while III & V did not interfere with the enzyme.  相似文献   

11.
The inhibition of five human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, the cytosolic hCA I and II, the membrane-bound hCA IV, the mitochondrial hCA V and the tumour associated, transmembrane hCA IX, with complex anions incorporating fluoride, chloride and cyanide, as well as B(III), Si(IV), P(V), As(V), Al(III), Fe(II), Fe(III), Pd(II), Pt(II), Pt(IV), Cu(I), Ag(I), Au(I) and Nb(V) species has been investigated. Apparently, the most important factors influencing activity of these complexes are the nature of the central metal ion/element, and its charge. Geometry of these compounds appears to be less important, since both linear, tetrahedral, octahedral as well as pentagonal bipyramidal derivatives led to effective inhibitors. However, the five isozymes showed very different affinities for these anion inhibitors. The best hCA I inhibitors were cyanide, dicyanocuprate and dicyanoaurate (K(I)s in the range of 0.5-7.7 microM), whereas the least effective were fluoride and hexafluoroarsenate. The best hCA II inhibitors were cyanide, hexafluoroferrate and tetrachloroplatinate (K(I)s in the range of 0.02-0.51 mM), whereas the most ineffective ones were fluoride, hexafluoroaluminate and chloride. The best hCA IV inhibitors were dicyanocuprate (K(I) of 9.8 microM) and hexacyanoferrate(II) (K(I) of 10.0 microM), whereas the worst ones were tetrafluoroborate and hexafluoroaluminate (K(I)s in the range of 124-126 mM). The most effective hCA V inhibitors were cyanide, heptafluoroniobate and dicyanocuprate (K(I)s in the range of 0.015-0.79 mM), whereas the most ineffective ones were fluoride, chloride and tetrafluoroborate (K(I)s in the range of 143-241 mM). The best hCA IX inhibitors were on the other hand cyanide, heptafluoroniobate and dicyanoargentate (K(I)s in the range of 4 microM-0.33 mM), whereas the worst ones were hexacyanoferrate(III) and hexacyanoferrate(II).  相似文献   

12.
Three oxygenated unsaturated fatty acids were investigated to determine whether they were present in seedlings of corn (Zea mays L. cv. NK PX443) and sunflower (Helianthus annuus L. cv. Sundak). The three compounds, 13-hydroxy-12-oxo-cis-9-octadecenoic acid (I), 13-hydroxy-12-oxo-cis,cis-9, 15-octadecadienoic acid (II), and 12-oxo-cis,cis-10, 15-phy-todienoic acid (III), were detected and estimated by gas chromatography-mass spectrometry selected ion monitoring of their trimethylsilyloxy, methyloxime derivatives with 20-carbon analogs added as internal standards. In corn, the concentration of III increased between 5 and 10 days, while I and II remained relatively constant. A higher concentration of II was observed in corn seedlings grown in the light than those grown in the dark. Wounding increased the levels of all three compounds. In sunflower seedlings, the concentrations of I, II, and III increased between 6 and 10 days. The intracellular concentration of III in 10-day-old light-grown seedlings was estimated to be 200 nm in corn and 40 nm in sunflower.  相似文献   

13.
Spectral examinations of the reaction of reduced cytochrome oxidase with molecular oxygen has revealed the formation of at least three intermediates, which are designated as Compounds I, II, and III according to the order of their appearance. From the difference spectrum against the oxidized oxidase, Compound I is characterized by a maximum at 605 nm, Compound II at 578 nm, and Compound III by double peaks at around 600 and 580 nm. In the Soret region, Compound I shows a peak at 435 nm and a trough at 412 nm, Compound III exhibits a peak at 442 to 443 nm and a trough at 418 nm. In the absence of cytochrome c, the spontaneous decay of Compound I precedes that of Compound II; the first order rate constants have been found to be 4 X 10(-3) s(-1) and 8 X 10(-4) s(-1) for Compounds I and II, respectively. Compound III, however, does not revert back to the oxidized form even after several hours. The decay of Compound I is accelerated in the presence of ferrocytochrome c by a factor of 10(3) to 10(4) depending on the concentration of the latter. The time for sequential differentiation between Compound I and Compound II becomes less clear in the presence than in the absence of ferrocytochrome c. On the contrary ferricytochrome c does not show such an accelerating effect. These and other observations lead us to postulate Compound I as an active intermediate, the true oxygenated compound in the cytocchrome oxidase reaction.  相似文献   

14.
J E Reardon  R H Abeles 《Biochemistry》1987,26(15):4717-4722
The conversion of mevalonate to cholesterol in rat liver homogenates (IC50 = 0.01-1.0 mM) is inhibited by 6- (I), 6,6-di- (II), and 6,6,6-trifluoromevalonate (III), as well as 4,4-difluoromevalonate (IV). Addition of compound I, III, or IV to rat liver homogenates results in the accumulation of 5-phospho- and 5-pyrophosphomevalonate. The conversion of isopentenyl pyrophosphate to cholesterol is not inhibited by the fluorinated analogues. It thus appears likely that the decarboxylation of mevalonate 5-pyrophosphate is inhibited. Rat liver homogenates catalyze the phosphorylation of I and III. The inhibition of the decarboxylation of mevalonate 5-pyrophosphate by I and III was demonstrated directly with partially purified decarboxylase. Compound I is a remarkably effective inhibitor of the decarboxylation (Ki = 10 nM). Similar results were reported by Nave et al. [Nave, J. F., d'Orchymont, H., Ducep, J. B., Piriou F., & Jung, M. J. (1985) Biochem. J. 227, 247]. It is likely that the phosphorylated or pyrophosphorylated forms of all inhibitors tested are responsible for inhibition. We also describe a chemical method for the synthesis of mevalonate 5-pyrophosphate.  相似文献   

15.
1. Micrococcus denitrificans excretes three catechol-containing compounds, which can bind iron, when grown aerobically and anaerobically in media deficient in iron, and anaerobically in medium with a high concentration of Ca2+. 2. One of these compounds was identified as 2,3-dihydroxybenzoic acid (compound I), and the other two were tentatively identified as N1N8-bis-(2,3-dihydroxybenzoyl)spermidine (compound II) and 2-hydroxybenzoyl-N-L-threonyl-N4[N1N8-bis-(2,3-dihydroxybenzoyl)]spermidine (compound III). 3. The equimolar ferric complex of compound III was prepared; compound III also forms complexes with Al3+, Cr3+ and Co2+ ions. 4. Cell-free extracts from iron-deficient organisms catalyse the formation of compound II from 2,3-dihydroxybenzoic acid and spermidine, and of compound III from compound II, L-threonine and 2-hydroxybenzoic acid; both reactions require ATP and dithiothreitol, and Mg2+ stimulates activity. The enzyme system catalysing the formation of compound II has optimum activity at pH 8.8 Fe2+ (35muM), Fe3+ (35muM) and Al3+ (65muM) inhibit the reaction by 50 percent. The enzyme system forming compound III has optimum activity at pH 8.6. Fe2+ (110 muM), Fe3+ (110 muM) and Al3+ (135 muM) inhibit the reaction by 50 percent. 5. At least two proteins are required for the formation of compound II, and another two proteins for its conversion into compound III. 6. The changes in the activities of these two systems were followed after cultures became deficient in iron. 7. Ferrous 1,10-phenanthroline is formed when a cell-free extract from iron-deficient cells is incubated with the ferric complex of compound III, succinate, NADH and 1,10-phenanthroline under N2.  相似文献   

16.
The interaction of five human carbonic anhydrase (hCA, EC 4.2.1.1) isozymes, that is, hCA I, II, IV, V, and IX with a small library of phosphonic acids/organic phosphates, including methylphosphonic acid, MPA; phenylphosphonic acid, PPA; N-(phosphonoacetyl)-L-aspartic acid, PALA, methylene diphosphonic acid MDPA, the O-phosphates of serine (Ser-OP) and threonine (Thr-OP) as well as the antiviral phosphonate foscarnet has been studied. hCA I was activated by all these compounds, with the best activators being MPA and PPA (K(A)s of 0.10-1.20 microM). MPA and PPA were on the other hand nanomolar inhibitors of hCA II (K(I)s of 98-99 nM). PALA showed an affinity of 7.8 microM, whereas the other compounds were weak, millimolar inhibitors of this isozyme. The best hCA IV inhibitors were PALA (79 nM) and PPA (5.4 microM), whereas the other compounds showed K(I)s in the range of 0.31-5.34 mM. The mitochondrial isozyme was weakly inhibited by all these compounds (K(I)s in the range of 0.09-41.7 mM), similarly to the transmembrane, tumor-associated isozyme (K(I)s in the range of 0.86-2.25 mM). Thus, phosphonates may lead to CA inhibitors with selectivity against two physiologically relevant isozymes, the cytosolic hCA II or the membrane-bound hCA IV.  相似文献   

17.
A novel class of inhibitors for the branched-chain 2-oxo acid dehydrogenase (BCOAD) complex has been synthesized and studied. The sodium salts of arylidenepyruvates: e.g., furfurylidenepyruvate (compound I), 4-(3-thienyl)-2-oxo-3-butenoate (compound II), cinnamalpyruvate (compound III) and 4-(2-thienyl)-2-oxo-3-butenoate (compound IV) inhibit the overall and kinase reactions of the BCOAD complex from bovine liver. Inhibitions of the overall reaction occur at the decarboxylase (E1) step as determined by a spectrophotometric assay with 2,6-dichlorophenolindophenol as an electron acceptor. Inhibition of the E1 reaction by compound I (Ki = 0.5 microM) is competitive, whereas inhibitions by compounds II (Ki = 150 microM) and III (Ki = 500 microM) are non-competitive with respect to the substrate 2-oxoisovalerate. The Km value for 2-oxoisovalerate is 6.7 microM as measured by the E1 assay. Inhibition of the E1 step by compounds I, II and III are reversible at low inhibitor concentrations based on the Michaelis-Menten kinetics observed. By comparison, compound I does not significantly inhibit pyruvate and 2-oxoglutarate dehydrogenase complexes. The arylidenepyruvates (compounds I, II and IV) inhibit the BCOAD kinase reaction in a manner similar to the substrate 2-oxo acids. The inhibition of the kinase reaction by compound I is non-competitive with respect to ATP, with an apparent Ki value of 4.5 mM. The results suggest that arylidenepyruvates may be useful probes for elucidating the reaction mechanisms of the BCOAD complex and its kinase.  相似文献   

18.
Prolylcarboxypeptidase was purified from human kidney 1200-fold with 18% yield. The enzyme had no cathepsin A activity and appeared to be homogeneous in gel electrophoresis. The molecular weight of prolylcarboxypeptidase was estimated to be 115,000 by gel filtration. Under denaturing conditions the enzyme dissociated into subunits of 45,000 and 66,500 molecular weight. The enzyme cleaved benzyloxycarbonyl (Cbz)-Pro-Phe, representing the COOH-terminal end of angiotensin II and des-Asp1-angiotensin II (angiotensin III), at a rate of 31 micronmol/h/mg of protein. The rate of hydrolysis increased when phenylalanine in the N-protected dipeptide was replaced with alanine, valine, or leucine or when the octapeptide angiotensin II or the heptapeptide angiotensin III were the substrates. The enzyme also cleaved the angiotensin II antagonist saralasin (Sar1-Ala8-angiotensin II). The Km values were 1 mM, 2mM, and 0.77 mM with Cbz-Pro-Phe, angiotensin II, and angiotensin III, respectively. The enzyme had an acid pH optimum (4.5 to 5.5), but hydrolyzed angiotensin III at pH 7 at 50% of the optimal rate. Prolylcarboxypeptidase was inhibited by diisopropyl phosphorofluoridate and pepstatin, but not by sequestering agents or -SH reagents.  相似文献   

19.
The 4-hydroxycinnamate decarboxylase (4-HCD)-inducing activity of several substrate analogs toward Klebsiella oxytoca was investigated. Four E-cinnamate-class compounds, E-4-hydroxycinnamic acid (1), caffeic acid (2), ferulic acid (3) and E-2,4-dihydroxycinnamic acid (4), all of which were accepted as substrates, all of which were accepted as substrates of 4-HCD, enable K. oxytoca cells to induce the decarboxylase at a 2.0 mM concentration, while five non-substrate compounds of the E-cinnamate class so far tested were completely inactive. However, 6-hydroxy-2-naphthoic acid (11) and 7-hydroxycoumarin 3-carboxylic acid (14), both of which are non-cinnamate-class analogs of the substrate, acted as strong 4-HCD inducers, even at a 0.5 mM concentration. The 4-HCD-inducing activities of compounds 11 and 14 at 0.5 mM were 10-12-fold higher than that of substrate 1. Compound 11 maintained its 4-HCD-inducing activity toward cultured cells through the late-log and stationary phases, unlike 1 that induced 4-HCD only in the early log phase. SDS-PAGE electrophoresis of protein mixtures from the cultured cells exposed to any 4-HCD inducer indicated that the 21.5 kDa protein was always present.  相似文献   

20.
The 4-hydroxycinnamate decarboxylase (4-HCD)-inducing activity of several substrate analogs toward Klebsiella oxytoca was investigated. Four E-cinnamateclass compounds, E-4-hydroxycinnamic acid (1), caffeic acid (2), ferulic acid (3) and E-2,4-dihydroxycinnamic acid (4), all of which were accepted as substrates, all of which were accepted as substrates of 4-HCD, enable K. oxytoca cells to induce the decarboxylase at a 2.0 mM concentration, while five non-substrate compounds of the E-cinnamate class so far tested were completely in-active. However, 6-hydroxy-2-naphthoic acid (11) and 7-hydroxycoumarin 3-carboxylic acid (14), both of which are non-cinnamate-class analogs of the substrate, acted as strong 4-HCD inducers, even at a 0.5 mM concentration. The 4-HCD-inducing activities of compounds 11 and 14 at 0.5 mM were 10-12-fold higher than that of substrate 1. Compound 11 maintained its 4-HCD-inducing activity toward cultured cells through the late-log and stationary phases, unlike 1 that induced 4-HCD only in the early log phase. SDS-PAGE electrophoresis of protein mixtures from the cultured cells exposed to any 4-HCD inducer indicated that the 21.5 kDa protein was always present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号