首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The kinetics of the succinate oxidation by cyanide-sensitive and cyanide-insensitive submitochondrial particles of Neurospora crassa cells suggest that both respiratory pathways use the same complex II. This is confirmed by comparing the kinetics of the reductase activities of the isolated succinate-ubiquinone oxidoreductase (complex II) of cyanide-sensitive and cyanide-insensitive cells respectively. No alternative-oxidase activity was found to be associated with the isolated complex II of cyanide-insensitive cells.  相似文献   

3.
The complete amino acid sequence of copper-zinc superoxide dismutase from Neurospora crassa is reported. The subunit consists of 153 amino acids and has a Mr of 15,850. The primary structure was determined by automated and manual sequence analysis of peptides obtained by digestions of the carboxymethylated and aminoethylated enzyme with trypsin and thermolysin. The protein is devoid of tryptophan and methionine and displays a free amino terminus. Comparison of the amino acid sequence with those from human erythrocyte, bovine erythrocyte, horse liver, swordfish liver, and yeast copper-zinc superoxide dismutases reveals a high degree of sequence homology among the six enzymes. Most prominently, the regions containing the amino acid residues participating in the metal-binding and the half-cystine residues forming the intramolecular disulfide bridge are highly conserved. The invariant amino acids Pro 74 and Asp 76 of the four vertebrate and yeast superoxide dismutases were found to be substituted by arginine and alanine, respectively, in the Neurospora enzyme. These radical substitutions occurring in the zinc ligand region, known to form a characteristic loop structure in bovine erythrocyte copper-zinc superoxide dismutase (Tainer, J. A., Getzoff, E. D., Beem, K. M., Richardson, J. S., and Richardson, D. C. (1982) J. Mol. Biol. 160, 181-217), however, do not affect the catalytic properties of the Neurospora enzyme.  相似文献   

4.
Immunoassays for the cytosolic and mitochondrial superoxide dismutases (SOD) of maize were developed and used to study the expression of these proteins in the maize seedling. The genetically distinct proteins, SOD-3 and SOD-4, are preferentially expressed in the scutellum, comprising approximately 1% of the total water-soluble protein of that tissue. SOD-2, SOD-3, and SOD-4 are synthesized in the scutellum during early sporophytic development, probably on cytosolic ribosomes. Two-dimensional gel electrophoresis of crude scutellar extracts indicates that significant changes occur in the protein composition of the maize scutellum following seed imbibition. Using the immunoassays, a maize line exhibiting a significant reduction in cyanide-sensitive SOD protein was identified.  相似文献   

5.
1. A polarographic assay of superoxide (O2--) dismutase (EC 1.15.1.1) activity is described, in which the ability of the enzyme to inhibit O2---dependent sulphite oxidation, initiated by xanthine oxidase activity, is measured. The assay was used in a study of the intracellular distribution of superoxide dismutase in rat liver. Both cyanide-sensitive cupro-zinc dismutase (92% of the total activity) and cyanide-insensitive mangano-dismutase (8%) were measured. 2. Rat liver homogenates contained both particulate (16%y and soluble (84%) dismutase activity. The particulate activity contained both types of dismutase, whereas nearly all the soluble dismutase was a cupro-zinc enzymes. The distribution pattern of mangano-dismutase was similar to that of cytochrome oxidase and glutamate dehydrogenase, indicating that the enzyme was probably present exclusively in the mitochondria. 3. Superoxide dismutase activity in the heavy-mitochondrial (M) fraction was latent and was activated severalfold and largely solubilized by sonication. Treatment of the M fraction with digitonin or a hypo-osmotic suspending medium indicated that most of the cupro-zinc dismutase was located in the mitochondrial intermembrane space, whereas the mangano-enzyme was located in the inner-membrane and matrix space. 4. A small amount of dismutase activity appeared to be present in the nuclei and microsomal fraction, but little or no activity in the lysosomes or peroxisomes. 5. The results are discussed in relation to the intracellular location of known O2---generating enzymes, the possible role of superoxide dismutase activity in intracellular H2O2 formation, and to current views on the physiological function of the enzyme.  相似文献   

6.
A cyanide-insensitive superoxide dismutase was purified from tomato leaves (Lycopersicon esculentum, Mill., var. Venture) to apparent homogeneity. The enzyme had twofold higher specific activity (about 4000 standard units) than ferric superoxide dismutases purified from Brassica campestris [Salin, M. L. and Bridges, S. M. (1980) Arch. Biochem. Biophys. 201, 369-374] and Nuphar luteum [Salin, M.L. and Bridges, S. M. (1982) Plant Physiol. 69, 161-165]. The protein had a relative molecular mass of about 42000 and was composed of two equal subunits noncovalently joined. It was negatively charged (pI = 4.6) and contained about 1.45 mol Fe/mol dimer and negligible amounts of Mn, Cu and Zn. Absorption spectrum and sensitivity to NaN3, H2O2 and temperature are also reminiscent of other ferric superoxide dismutases. Comparison of amino acid composition indicated, however, a closer relationship to the Mn-containing enzymes rather than to other Fe-containing superoxide dismutases. Two possible ways of Fe-containing superoxide dismutase acquisition by vascular plants were suggested.  相似文献   

7.
Nitroprusside appears to inhibit the known types of superoxide dismutases irrespective of their metal prosthetic group and regardless of the source from which the enzymes were isolated. Thus the copper-zinc enzyme from bovine erythrocyte or Neurospora crassa behaved identically as did the manganese enzymes from Escherichia coli or red alga and the iron enzyme from E. coli and a blue-green alga. The inhibition was dose dependent with a Ki = 2.5 X 10(-5) for nitroprusside. Nitroprusside does not bind to the copper moiety of copper-zinc enzyme and seems to compete with O2- for superoxide dismutase. These inhibitions by nitroprusside, which were elicited not only in purified enzymes but also in crude soluble extracts of biological samples, were rapidly reversible. Nitroprusside was found to react with O2- to form a paramagnetic species with three absorption lines of equal width with a separation AN = 15.0 G and a g value of 2.028. The spin adduct appears to be a nitroxide radical and was stable for several minutes.  相似文献   

8.
《Plant science》1986,47(2):135-143
The activity of superoxide dismutase (SOD: E.C. 1.15.1.1) was evaluated on Nicotiana tabacum and Nicotiana glutinosa leaf tissue after Tobacco Mosaic Virus (TMV) infection. Significant increase in extracted SOD appeared to be directly related to the appearance of necrotic and systemic symptoms in hypersensitive (N. glutinosa and N. tabacum cv. Havana 425) and susceptible (N. tabacum cv. Bright BC 60) leaves, respectively. SOD activity did not change significantly during the replication of TMV in the inoculated susceptible leaves up to 4 days after inoculation. Both cyanide-insensitive (2 days after inoculation) and sensitive (3–4 days after inoculation) enzymes increased during the expression of the hypersensitivity. Only cyanide-sensitive enzyme increased in systematically infected leaves. SOD and peroxidase increased simultaneously and the enhancement of peroxidase was higher than that of SOD. The values of peroxidase greatly exceeded that of SOD only in the hypersensitive leaves during local lesion differentiation. In N. tabacum leaves 4 clear SOD bands were separated by polyacrylamide gel electrophoresis: 3 cyanide-sensitive (Cu,Zn enzyme) and 1 cyanide-insensitive, while N. glutinosa had 3 bands: 2 cyanide-sensitive and 1 cyanide-insensitive. The cyanide-insensitive band, both in N. tabacum and N. glutinosa, was sensitive to H2O2 and insensitive to chloroform-ethanol treatment and thus supposed to be Fe enzyme. The infection did not induce change in the electrophoretic pattern of SOD enzymes.In summary, our results indicate that the pathogenic alteration caused by TMV infection both in the compatible and in the incompatible combinations are characterized by an induction of SOD activity, particularly cyanide-sensitive Cu,Zn-SOD. The connection between the induction of SOD and a possible activation of O2 production in the hypersensitive tissue following TMV infection is discussed.  相似文献   

9.
Superoxide dismutases: active sites that save, but a protein that kills   总被引:4,自引:0,他引:4  
Protection from oxidative damage is sufficiently important that biology has evolved three independent enzymes for hastening superoxide dismutation: the Cu- and Zn-containing superoxide dismutases (Cu,Zn-SODs), the SODs that are specific for Fe or Mn or function with either of the two (Fe-SODs, Mn-SODs or Fe/Mn-SODs), and the SODs that use Ni (Ni-SODs). Despite the overwhelming similarities between the active sites of Fe-SOD and Mn-SOD, the mechanisms and redox tuning of these two sites appear to incorporate crucial differences consistent with the differences between Fe3+/2+ and Mn3+/2+. Ni-SOD is revealed by spectroscopy to employ completely different ligation to that of the other SODs while nonetheless incorporating a device also found in Cu,Zn-SOD. Finally, the protein of human Cu,Zn-SOD appears to be an important contributor to the development of amyotrophic lateral sclerosis, possibly because of its propensity for extended beta-sheet formation.  相似文献   

10.
Malate oxidation in plant mitochondria proceeds through the activities of two enzymes: a malate dehydrogenase and a NAD+-dependent malic enzyme. In cauliflower, mitochondria malate oxidation via malate dehydrogenase is rotenone- and cyanide-sensitive. Addition of exogenous NAD+ stimulates the oxidation of malate via malic enzyme and generates an electron flux that is both rotenone- and cyanide-insensitive. The same effects of exogenous NAD+ are also observed with highly cyanide-sensitive mitochondria from white potato tubers or with mitochondria from spinach leaves. Both enzymes are located in the matrix, but some experimental data also suggest that part of malate dehydrogenase activity is also present outside the matrix compartment (adsorbed cytosolic malate dehydrogenase?). It is concluded that malic enzyme and a specific pool of NAD+/NADH are connected to the cyanide-insensitive alternative pathway by a specific rotenone-insensitive NADH dehydrogenase located on the inner face of the inner membrane. Similarly, malate dehydrogenase and another specific pool of NAD+/NADH are connected to the cyanide- (and antimycin-) sensitive pathway by a rotenone-sensitive NADH dehydrogenase located on the inner face of the inner membrane. A general scheme of electron transport in plant mitochondria for the oxidation of malate and NADH can be given, assuming that different pools of ubiquinone act as a branch point between various dehydrogenases, the cyanide-sensitive cytochrome pathway and the cyanide-insensitive alternative pathway.  相似文献   

11.
The most common type of genetic relationship between cytosolic and mitochondrial isoenzymes will probably be found to be divergent evolution from a common ancestral form. This is firmly established for the aspartate aminotransferases and less directly so in other cases. The two isoenzymes of aspartate aminotransferase have evolved at roughly equal rates at the level of total amino acid sequence but certain limited surface regions of the mitochondrial form have been much more highly conserved than corresponding regions in the cytosolic protein; these regions probably play a role in topogenesis of the mitochondrial isoenzyme. It is of interest that nearly all mitochondrial proteins are initially synthesised as precursors of molecular weight greater than the mature forms. In the case of aspartate aminotransferase, and possibly of other such isoenzymes, the N-terminus of the mature protein is nearly coincident with that of the cytosolic isoenzyme. Hence during evolution either the gene for the mitochondrial isoenzyme has gained an extra coding region for this N-terminal extension or, less likely, the structural gene for the cytosolic form has suffered a sizeable terminal deletion. Cytosolic and mitochondrial superoxide dismutases have not shared a common ancestral form as shown by the fact that their primary structures are completely unrelated. On the other hand, the mitochondrial and prokaryotic enzymes are clearly related. There is now, however, evidence to suggest that some prokaryotes possess a copper/zinc enzyme related to the eukaryotic cytosolic form. Hence the possibility arises that primitive prokaryotes possessed both proteins. The copper/zinc superoxide dismutase has been retained in the cytosol of eukaryotic cells and a few bacterial species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The radioisotopic method used to assay acetylglutamate kinase (EC 2.7.2.8) of Neurospora crassa has been shown to detect two distinct enzymatically catalyzed reactions. The enzymes were separated by differential centrifugation into a cytosolic activity and an organellar activity. Both activities required ATP and were thermal-labile. The cytosolic activity was insensitive to inhibition by arginine and formed a stable reaction product in the absence of hydroxylamine. The organellar activity had an absolute requirement for hydroxylamine in order to form a stable reaction product. The product of the cytosolic activity was separated from acetylglutamate hydroxamate (the product of the organellar activity) and was identified as the cyclic amide pyroglutamate by cation exchange chromatography. The organellar activity has been implicated in arginine biosynthesis by the following criteria: it was completely and specifically inhibited by arginine concentrations as low as 200 microM; its level was elevated 2-fold in a mutant strain with derepressed levels of arginine biosynthetic enzymes; and it was absent in an arginine auxotrophic strain (the cytosolic activity was present). The organellar activity co-sedimented with mitochondria during isopycnic gradient centrifugation. The metabolic problems posed by a mitochondrial location of a feedback-sensitive enzyme and the cytosolic location of its effector are discussed.  相似文献   

13.
Leishmania tropica, Trypanosoma brucei, Trypanosoma cruzi, and Crithidia fasciculata have superoxide dismutases which are insensitive to cyanide and sensitive to peroxide and azide, properties characteristic of iron-containing superoxide dismutase. Studies on the superoxide dismutase of C. fasciculata have revealed that: 1) the enzyme is located in the cytosol; 2) isozymes exist; 3) the major superoxide dismutase isozyme (superoxide dismutase 2) has Mr approximately equal to 43,000 and consists of two equal-sized subunits, each of which contains 1.4 atoms of iron. Comparisons of the amino acid content of this crithidial superoxide dismutase with those of superoxide dismutases from other sources suggests that the crithidial enzyme is closely related to bacterial Fe-containing superoxide dismutases, and only distantly related to human Mn- and Cu,Zn-containing superoxide dismutases and to Euglena Fe-containing superoxide dismutase. Attempts are now underway to develop specific inhibitors of the trypanosomatid superoxide dismutase which may be of use in the treatment of leishmaniasis or trypanosomiasis.  相似文献   

14.
1. The distribution and properties of superoxide dismutase were examined in mammalian semen, and the enzyme was used to investigate the role of superoxides in metal-ion-catalysed lipid-peroxidation reactions in spermatozoa. 2. Superoxide dismutase activity was detected in seminal plasma and spermatozoa from all species studied, exceptionally high activity being found in donkey semen. The enzyme is easily solubilized from spermatozoa, as 85-90% of the total activity is released by cold shock, a relatively mild form of cellular damage. 3. Purification and characterization of the enzyme from supernatant fractions prepared from cold-shocked boar spermatozoa showed it to be cyanide-sensitive, to have a mol.wt. of 31 000, a pI of 5.9 and to contain 1.85 g-atoms of copper and 1.91 g-atoms of zinc per mol of protein. However, extensive sonication of spermatozoa released a small amount of a cyanide-insensitive enzyme, presumably a mangano superoxide dismutase, from the mitochondrial matrix. 4. The presence of superoxide dismutase in spermatozoa, either intracellularly or extracellularly, did not inhibit ascorbate/Fe2+-catalysed lipid-peroxidation reactions, suggesting that superoxides are not essential intermediates in this system.  相似文献   

15.
The cyanide-insensitive superoxide dismutase of yeast has been shown to be localized in the mitochondrial matrix. This enzyme has been isolated in good yield from bakers' yeast. Its molecular weight is 96,000. It is a tetramer, being composed of four subunits of equal size. Exposure to sodium dodecyl sulfate at 100 degrees caused dissociation into dimers, while similar treatment but in the presence of 2-mercaptoethanol caused complete dissociation into monomers. This enzyme contains 1 atom of manganese per subunit and its absorption in the visible suggests Mn(III) in the resting enzyme. Ascorbate caused partial bleaching, presumably by reduction to Mn(II). The amino acid composition was determined. This enzyme has activity comparable to that of other previously reported superoxide dismutases and like the chicken mitochondrial and the bacterial enzymes, its rate of reaction with O2 falls as the pH is raised above 7.8. Crystals of high quality were easily prepared.  相似文献   

16.
The inducible cytosolic glycerokinase and mitochondrial glycerol-3-phosphate dehydrogenase have been examined during the glycerol-specific induction in Neurospora crassa. Although both the fully induced levels and the respective rates of synthesis of these two enzymes were less than observed with wild-type cells, there were no major differences in the relative rates of induction of the glycerol-3-phosphate dehydrogenase at either permissive or restrictive temperatures. These results indicate that the processes involved in the assembly of this enzyme into the mitochondrial inner membrane are normal in a mutant lacking the mitochondrial leucyl tRNA synthetase and suggest that the functions of the mitochondrial synthetase may be replaced by those of the cytosolic leucyl tRNA synthetase.  相似文献   

17.
The quinone analog, 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT), has been shown to inhibit cyanide-sensitive and cyanide-insensitive respiration in higher plant mitochondria. The inhibition is dependent upon the concentration of mitochondrial protein. The low concentrations of UHDBT required to inhibit the cyanide-sensitive pathway (microM) and the cyanide-insensitive pathway (nM) indicate that UHDBT is acting as a tight-binding inhibitor of ubiquinol oxidation. Inhibition of both pathways was dependent upon pH. It is shown that UHDBT appears to be a less potent inhibitor of cyanide-sensitive NADH oxidation than of cyanide-sensitive succinate oxidation, and that the pH dependence of inhibition of these two pathways differs. The inhibition of NADH and succinate oxidation by the cyanide-insensitive pathway shows similar pH dependences although at a given pH NADH oxidation is more susceptible to inhibition than succinate oxidation.  相似文献   

18.
The synthesis and subcellular localization of the two superoxide dismutases of Dactylium dendroides were studied in relation to changes in copper and manganese availability. Cultures grew normally at all medium copper concentrations used (10 nM to 1 mM). In the presence of high (10 μM) copper, manganese was poorly absorbed in comparison to the other metals in the medium. However, cells grown at 10 nM copper exhibited a 3.5-fold increase in manganese content, while the concentration of the other metals remained constant. Cultures grown at 10 nM copper or more had 80% Cu/Zn enzyme and 20% mangani enzyme; the former was entirely in the cytosol, and the latter was mitochondrial. Removal of copper from the medium resulted in decreased Cu/Zn superoxide dismutase synthesis with a concomitant increase in the mangani enzyme such that total cellular superoxide dismutase activity remained constant. The mangani enzyme in excess of the 20% was present in the non-mitochondrial fraction. The mitochondria, therefore, show no variability with respect to superoxide dismutase content, whereas the soluble fraction varies from 100 to 13% Cu/Zn superoxide dismutase. Copper-starved cells that were synthesizing predominantly mangani superoxide dismutase could be switched over to mostly Cu/Zn superoxide dismutase synthesis by supplementing the medium with copper during growth. Immunoprecipitation experiments suggest that the decrease in Cu/Zn activity at low copper concentration is a result of decreased synthesis of that protein rather than the production of an inactive apoprotein.  相似文献   

19.
To fully understand the function of the Cu- and Zn-containing superoxide dismutases in normal and disordered cells, it is essential to study protein variants with full metal contents. We describe the use of an Escherichia coli-based expression system for the overproduction of human intracellular wild type CuZn-superoxide dismutase (SOD), the CuZnSOD variant F50E/G51E (monomeric), two amyotrophic lateral sclerosis-related mutant CuZnSOD variants (D90A and G93A), and PseudoEC-SOD, all with high Cu contents. This system is based on coexpression of the SOD variants with the yeast copper chaperone yCCS during growth in a medium supplemented with Cu(2+) and Zn(2+). The recombinant SOD enzymes were all found in the cytosol and represented 30-50% of the total bacterial protein. The enzymes were purified to homogeneity and active enzymes were obtained in high yield. The resulting proteins were characterized through immunochemical reactivity and specific activity analyses, in conjunction with mass-, photo-, and atomic absorption-spectroscopy.  相似文献   

20.
Cu,Zn-superoxide dismutase (SOD1) is an abundant, largely cytosolic enzyme that scavenges superoxide anions. The biological role of SOD1 is somewhat controversial because superoxide is thought to arise largely from the mitochondria where a second SOD (manganese SOD) already resides. Using bakers' yeast as a model, we demonstrate that Cu,Zn-SOD1 helps protect mitochondria from oxidative damage, as sod1Delta mutants show elevated protein carbonyls in this organelle. In accordance with this connection to mitochondria, a fraction of active SOD1 localizes within the intermembrane space (IMS) of mitochondria together with its copper chaperone, CCS. Neither CCS nor SOD1 contains typical N-terminal presequences for mitochondrial uptake; however, the mitochondrial accumulation of SOD1 is strongly influenced by CCS. When CCS synthesis is repressed, mitochondrial SOD1 is of low abundance, and conversely IMS SOD1 is very high when CCS is largely mitochondrial. The mitochondrial form of SOD1 is indeed protective against oxidative damage because yeast cells enriched for IMS SOD1 exhibit prolonged survival in the stationary phase, an established marker of mitochondrial oxidative stress. Cu,Zn-SOD1 in the mitochondria appears important for reactive oxygen physiology and may have critical implications for SOD1 mutations linked to the fatal neurodegenerative disorder, amyotrophic lateral sclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号