首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of us remembers sitting in a high school biology class in 1977 being taught about scrapie, a naturally occurring disorder of sheep. The teacher had no particular interest in agriculture, but was pointing out some peculiar characteristics of this disease as a biological curiosity on a wet Friday afternoon. The prion disorders captured the imagination of a range of biologists (including that teacher) well before the epidemic of bovine spongiform encephalopathy (BSE) and the appearance of a new variant of the human prion disease, Creutzfeldt Jakob disease (CJD), in the UK, because of their extraordinary biology and the unique properties of the infectious agent. We review the results of studies leading to a convergence of evidence that the causative infectious agent, the `prion', is devoid of nucleic acid and is composed of an abnormal isoform of a host-encoded protein, the prion protein (PrP). Received: 2 March 1998 / Accepted: 2 March 1998  相似文献   

2.
The phenotype of human prion diseases is influenced by the prion protein (PrP) genotype as determined by the methionine (M)/valine (V) polymorphism at codon 129, the scrapie PrP (PrPSc) type and the etiology. To gain further insight into the mechanisms of phenotype determination, we compared two-dimensional immunoblot profiles of detergent insoluble and proteinase K-resistant PrP species in a type of sporadic Creutzfeldt-Jakob disease (sCJDMM2), variant CJD (vCJD) and sporadic fatal insomnia (sFI). Full-length and truncated PrP forms present in the insoluble fractions were also separately analyzed. These three diseases were selected because they have the same M/M PrP genotype at codon 129 and the same type 2 PrPSc, but different etiologies, also sCJDMM2 and sFI are sporadic, whereas vCJD is acquired by infection. We observed minor differences in the PrP detergent-insoluble fractions between sCJDMM2 and vCJD, although both differ in the corresponding fractions from sFI. We detected more substantial heterogeneity between sCJDMM2 and vCJD in the two-dimensional blots of the proteinase K-resistant PrP fraction suggesting that different PrP species are selected for conversion to proteinase K-resistant PrP in sCJDMM2 and vCJD. These differences are mostly, but not exclusively, due to variations in the type of the N-linked glycans. We also show that the over-representation of the highly glycosylated forms distinctive of the proteinase K-resistant PrPSc of vCJD in one-dimensional blots is due to differences in both the amount and the natures of the glycans. Overall, these findings underline the complexity of phenotypic determination in human prion diseases.  相似文献   

3.
Prion diseases are transmissible neurodegenerative diseases caused by a conformational isoform of the prion protein (PrP), a host-encoded cell surface sialoglycoprotein. Recent evidence suggests a cytosolic fraction of PrP (cyPrP) functions either as an initiating factor or toxic element of prion disease. When expressed in cultured cells, cyPrP acquires properties of the infectious conformation of PrP (PrP(Sc)), including insolubility, protease resistance, aggregation, and toxicity. Transgenic mice (2D1 and 1D4 lines) that coexpress cyPrP and PrP(C) exhibit focal cerebellar atrophy, scratching behavior, and gait abnormalities suggestive of prion disease, although they lack protease-resistant PrP. To determine if the coexpression of PrP(C) is necessary or inhibitory to the phenotype of these mice, we crossed Tg1D4(Prnp(+/+)) mice with PrP-ablated mice (TgPrnp(o/o)) to generate Tg1D4(Prnp(o/o)) mice and followed the development of disease and pathological phenotype. We found no difference in the onset of symptoms or the clinical or pathological phenotype of disease between Tg1D4(Prnp(+/+)) and Tg1D4(Prnp(o/o)) mice, suggesting that cyPrP and PrP(C) function independently in the disease state. Additionally, Tg1D4(Prnp(o/o)) mice were resistant to challenge with mouse-adapted scrapie (RML), suggesting cyPrP is inaccessible to PrP(Sc). We conclude that disease phenotype and cellular toxicity associated with the expression of cyPrP are independent of PrP(C) and the generation of typical prion disease.  相似文献   

4.
Familial prion disorders are believed to result from spontaneous conversion of mutant prion protein (PrPM) to the pathogenic isoform (PrPSc). While most familial cases are heterozygous and thus express the normal (PrPC) and mutant alleles of PrP, the role of PrPC in the pathogenic process is unclear. Plaques from affected cases reveal a heterogeneous picture; in some cases only PrPM is detected, whereas in others both PrPC and PrPM are transformed to PrPSc. To understand if the coaggregation of PrPC is governed by PrP mutations or is a consequence of the cellular compartment of PrPM aggregation, we coexpressed PrPM and PrPC in neuroblastoma cells, the latter tagged with green fluorescent protein (PrPC-GFP) for differentiation. Two PrPM forms (PrP231T, PrP217R/231T) that aggregate spontaneously in the endoplasmic reticulum (ER) were generated for this analysis. We report that PrPC-GFP aggregates when coexpressed with PrP231T or PrP217R/231T, regardless of sequence homology between the interacting forms. Furthermore, intracellular aggregates of PrP231T induce the accumulation of a C-terminal fragment of PrP, most likely derived from a potentially neurotoxic transmembrane form of PrP (CtmPrP) in the ER. These findings have implications for prion pathogenesis in familial prion disorders, especially in cases where transport of PrPM from the ER is blocked by the cellular quality control.  相似文献   

5.
The cellular prion protein (PrP(c)) forms complexes with plasminogen. Here, we show that the PrP(c) in this complex is cleaved to yield fragments of PrP(c). The cleavage is accelerated by plasmin but does not appear to be dependent on it.  相似文献   

6.
Prion diseases are infectious neurodegenerative fatal disorders. There are currently no treatments or cures. Considerable evidence suggests that the infectious agent is an abnormally folded protein that promotes or seeds its normal cellular isoform to fold into the infectious form. However, the precise mechanism and factors involved in this conversion remain unknown. A major stumbling block to further investigation has been the inability to seed the formation of new infectious material in vitro. Now, however, infectious material has been generated in a cell-free system. Although this system uses cell lysate rather than pure proteins, it nevertheless opens the door to the elucidation of targets of intervention and the development of useful diagnostic and therapeutic approaches.  相似文献   

7.
Normal cellular and abnormal disease-associated forms of prion protein (PrP) contain a C-terminal glycophosphatidyl-inositol (GPI) membrane anchor. The importance of the GPI membrane anchor in prion diseases is unclear but there are data to suggest that it both is and is not required for abnormal prion protein formation and prion infection. Utilizing an in vitro model of prion infection we have recently demonstrated that, while the GPI anchor is not essential for the formation of abnormal prion protein in a cell, it is necessary for the establishment of persistent prion infection. In combination with previously published data, our results suggest that GPI anchored PrP is important in the amplification and spread of prion infectivity from cell to cell.Key words: prion, GPI anchor, PrP, prion spread, scrapieIn transmissible spongiform encephalopathies (TSE or prion diseases) such as sheep scrapie, bovine spongiform encephalopathy and human Creutzfeldt-Jakob disease, normally soluble and protease-sensitive prion protein (PrP-sen or PrPC) is converted to an abnormal, insoluble and protease-resistant form termed PrP-res or PrPSc. PrP-res/PrPSc is believed to be the main component of the prion, the infectious agent of the TSE/prion diseases. Its precursor, PrP-sen, is anchored to the cell surface at the C-terminus by a co-translationally added glycophosphatidyl-inositol (GPI) membrane anchor which can be cleaved by the enzyme phosphatidyl-inositol specific phospholipase (PIPLC). The GPI anchor is also present in PrP-res, but is inaccessible to PIPLC digestion suggesting that conformational changes in PrP associated with PrP-res formation have blocked the PIPLC cleavage site.1 Although the GPI anchor is present in both PrP-sen and PrP-res, its precise role in TSE diseases remains unclear primarily because there are data to suggest that it both is and is not necessary for PrP-res formation and prion infection.In tissue culture cells infected with mouse scrapie, PrP-res formation occurs at the cell surface and/or along the endocytic pathway24 and may be dependent upon the membrane environment of PrP-sen. For example, localization via the GPI anchor to caveolae-like domains favors PrP-res formation5 while substitution of the GPI anchor addition site with carboxy termini favoring transmembrane anchored PrP-sen inhibits formation of PrP-res.5,6 Other studies have shown that localization of both PrP-sen and PrP-res to lipid rafts, cholesterol and sphingolipid rich membrane microdomains where GPI anchored proteins can be located, is important in PrP-res formation.69However, there are also data which suggest that such localization is not necessarily essential for PrP-res formation. Anchorless PrP-sen isolated from cells by immunoprecipitation or wild-type PrP-sen purified by immunoaffinity column followed by cation exchange chromatography are efficiently converted into PrP-res in cell-free systems.10,11 Furthermore, recombinant PrP-sen derived from E. coli, which has no membrane anchor or glycosylation, can be induced to form protease-resistant PrP in vitro when reacted with prion-infected brain homogenates.1214 Finally, in at least one instance, protease-resistant recombinant PrP-res generated in the absence of infected brain homogenate was reported to cause disease when inoculated into transgenic mice.15The data concerning the role of the PrP-sen GPI anchor in susceptibility to TSE infection are similarly contradictory. Transgenic mice expressing anchorless mouse PrP-sen are susceptible to infection with mouse scrapie and accumulate both PrP-res and prion infectivity.16 Thus, the GPI anchor is clearly not needed for PrP-res formation or productive TSE infection in vivo. However, we recently published data demonstrating that, in vitro, anchored PrP-sen is in fact required to persistently infect cells.17 Given that anchorless PrP-sen is not present on the cell surface but is released into the cell medium, we speculated that the differences between the in vitro and in vivo data were related to the location of PrP-res formation. In the mice expressing anchorless PrP-sen, environments conducive to PrP-res formation are present in certain areas of the complex extracellular milieu of the brain where anchorless, secreted PrP-sen can accumulate and come into contact with PrP-res from the infectious inoculum. Since similar environments are missing in vitro, any PrP-res formation in cells expressing anchorless PrP-sen must be cell-associated. While this explanation addresses how extracellular PrP-res could be generated in an unusual transgenic mouse model of TSE infection, it does not really help to define how the GPI anchor is involved in normal prion infection of a cell.As with other infectious organisms such as viruses, TSE infection can be roughly divided into three steps: uptake, replication and spread. Over the last several years, data derived from new techniques as well as new cell lines susceptible to prion infection have increased our knowledge of some of the basic events that occur during each of these steps. In order to try to tease out the role of the GPI anchor in normal TSE pathogenesis, it is therefore useful to consider the process of TSE infection of a cell and how the GPI anchor might be involved in each stage.In a conventional viral infection, binding and uptake of the virus is essential to establish infection. Studying PrP-res uptake has been complicated by the lack of an antibody that can specifically distinguish PrP-res from PrP-sen in live cells and by the difficulty of detecting the input PrP-res from the PrP-res made de novo by the cell. Recently, however, several groups have been able to study PrP-res uptake using input PrP-res that was either fluorescently labeled1820 or tagged with the epitope to the monoclonal antibody 3F4,21 or cell lines that express little or no PrP-sen.19,2123 The data show that PrP-res uptake is independent of scrapie strain or cell type but is influenced by the PrP-res microenvironment as well as PrP-res aggregate size.21 Importantly, these studies demonstrated that PrP-sen expression was not required.19,2123 Given these data, it is clear that GPI anchored PrP-sen is not involved in the initial uptake of PrP-res into the cell.The next stage of prion infection involves replication of infectivity which is typically assayed by following cellular PrP-res formation. Once again, however, the issue of how to distinguish PrP-res in the inoculum from newly formed PrP-res in the cells has made it difficult to study the early stages of prion replication. To overcome this difficulty, we developed a murine tissue culture system that utilizes cells expressing mouse PrP-sen tagged with the epitope to the 3F4 antibody (Mo3F4 PrP-sen).24 Wild-type mouse PrP does not have this epitope. As a result, following exposure to an infected mouse brain homogenate, de novo PrP-res formation can be followed by assaying for 3F4 positive PrP-res. Our studies showed that there were two stages of PrP-res formation: (1) an initial acute burst within the first 96 hours post-infection that was cell-type and scrapie strain independent and, (2) persistent PrP-res formation (i.e., formation of PrP-res over multiple cell passages) that was dependent on cell-type and scrapie strain and associated with long-term infection.24 Acute PrP-res formation did not necessarily lead to persistent PrP-res formation suggesting that other cell-specific factors or processes are needed for PrP-res formation to persist.24When cells expressing Mo3F4 PrP-sen without the GPI anchor (Mo3F4 GPI-PrP-sen) were exposed to mouse scrapie infected brain homogenates, GPI negative, 3F4 positive PrP-res (Mo3F4 GPI-PrP-res) was detected within 96 hours indicating that acute PrP-res formation had occurred.17 Thus, despite the fact that Mo3F4 GPI-PrP-sen is not expressed on the cell surface16 (Fig. 1A), it was still available for conversion to PrP-res. These results are consistent with data from cell-free systems and demonstrate that, at least acutely, membrane anchored PrP is not necessary for PrP-res formation in a cell.Open in a separate windowFigure 1Persistent infection of cells in vitro requires the expression of GPI-anchored cell surface PrP-sen. PrP knockout cells (CF10)21 were transduced with 3F4 epitope tagged mouse PrP-sen (Mo3F4), 3F4 epitope tagged mouse PrP-sen without the GPI anchor (Mo3F4 GPI-), or Mo3F4 GPI-PrP-sen plus wild-type, GPI anchored mouse PrP-sen (MoPrP). The cells were then exposed to the mouse scrapie strain 22L and passaged. (A) The presence of 3F4 epitope tagged, cell surface mouse PrP-sen was assayed by FACS analysis of fixed, non-permeabilized cells. CF10 cells expressing the following mouse PrP-sen molecules were assayed: Mo3F4 (solid line); Mo3F4 GPI (dashed line); Mo3F4 GPI + MoPrP (dotted and dashed line); Mo3F4 GPI + MoPrP infected with 22L scrapie (dotted line). Only cells expressing Mo3F4 PrP-sen were positive for cell surface, 3F4 epitope tagged PrP. (B) Persistent infection was analyzed by inoculating the cells intracranially into transgenic mice overexpressing MoPrP (Tga20 mice). Only cells expressing anchored mouse PrP-sen were susceptible to scrapie infection. Cells expressing anchorless mouse PrP-sen did not contain detectable infectivity in either the cells or the cellular supernatant (data not shown). Data in (B) are adapted from McNally 2009.17In terms of persistent PrP-res formation, however, our data suggest that the GPI anchor is important. Despite an initial burst of PrP-res formation within the first 96 hours post-infection, Mo3F4 GPI-PrP-res was not observed following passage of the cells nor did the cells become infected. This effect was not due either to resistance of the cells to scrapie infection or to an inability of the scrapie strain used to infect cells. When the same cells expressed anchored Mo3F4 PrP-sen and were exposed to the same mouse scrapie strain, both acute and persistent PrP-res formation were detected and the cells were persistently infected with scrapie (Fig. 1B).17 Taken together, these data demonstrate that cells expressing anchorless PrP-sen do not support persistent PrP-res formation. Furthermore, the data strongly suggest that GPI-anchored PrP-sen is required during the transition from acute to persistent scrapie infection. In support of this hypothesis, the resistance of cells expressing Mo3F4 GPI-PrP-sen to persistent prion infection could be overcome if wild-type GPI anchored PrP-sen was co-expressed in the same cell. When both forms of PrP-sen were expressed, anchored and anchorless forms of PrP-res were made and the cells became persistently infected (Fig. 1B).17 Thus, the data suggest that GPI anchored PrP is necessary to establish prion infection within a cell.How could GPI membrane anchored PrP be involved in the establishment and maintenance of persistent prion infection? Several studies have suggested that the GPI anchor is needed to localize PrP-sen to specific membrane environments where PrP-res formation is favored.58 However, if this localization was essential for PrP-res formation, GPI-PrP-sen would presumably never form PrP-res. Lacking the GPI anchor, it would not be in the correct membrane environment to support conversion. As a result, neither acute nor persistent prion infection could occur. This is obviously not the case. Transgenic mice expressing only anchorless PrP-sen generate PrP-res and can be infected with scrapie even though (1) flotation gradients showed that anchorless PrP-sen was not in the same membrane environment as anchored PrP-sen and, (2) flow cytometry analysis demonstrated that anchorless PrP-sen was not present on the cell surface.16 Thus, the GPI anchor is not needed to target PrP-sen to a conversion friendly membrane environment.Consistent with the idea that the GPI anchor is not essential for PrP-res formation, in our studies anchorless PrP-sen could form PrP-res in cells acutely infected with scrapie despite the fact that it is processed differently than anchored PrP-sen, is not present on the cell surface (Fig. 1A), and is secreted.17 Persistent formation of anchorless PrP-res only occurred when both anchored and anchorless forms of PrP were expressed in the same cell.17 For this to happen both types of PrP must share a cellular compartment where PrP-res formation occurs, presumably either on the cell surface or in a specific location along the endocytic pathway2,3 such as the endosomal recycling compartment.4 Analysis of infected and uninfected cells co-expressing Mo3F4 GPI-PrP-sen and wild-type PrP-sen demonstrated that Mo3F4 GPI-PrP-sen was not present on the cell surface (Fig. 1A). Thus, it is unlikely that GPI-PrP-res formation is occurring on the cell surface. We speculate that the anchored form of PrP-res encounters anchorless PrP-sen along either a secretory or endocytic pathway, allowing for the formation of anchorless PrP-res. Regardless of the precise location, the in vitro and in vivo data strongly suggest that the role of the anchor in persistent prion infection is not simply to localize PrP-sen to an environment compatible with PrP-res formation.However, the data are consistent with the idea that GPI anchored PrP is absolutely essential for the establishment of persistent infection in vitro. This is likely related to the spread of infectivity within a culture that is necessary for maintaining a persistent infection over time. Evidence suggests that PrP-res can be transferred between cells in a variety of ways including mother-daughter cell division,25 cell-to-cell contact26,27 and exosomes.28 Tunneling nanotubes have also been hypothesized to be involved in intercellular prion spread19 and recent data suggest that spread can occur via these structures.20 Any of these processes could involve the cell-to-cell transfer of PrP-res in membrane containing particles as has been observed in cell-free7 and cell-based systems.29 If cell-to-cell contact were required, for example via simple physical proximity or perhaps tunneling nanotubes,19,20 then the conversion of cell surface PrP-sen on the naïve cell by cell surface PrP-res on the infected cell would transfer infection to the naïve cell. In this instance, GPI membrane anchored, cell surface PrP-sen would be essential as it would allow for PrP-res formation on the cell surface. If spread is via cell division, then GPI-anchored, cell surface PrP-sen would be important for its role as a precursor to PrP-res formation.2 In this instance, cell surface PrP-sen would be an essential intermediate in the continuous formation of PrP-res necessary for the accumulation and amplification of PrP-res within the cell. It would also help to cycle PrP between the cell surface and intracellular compartments where PrP-res can be formed.4 In either case, GPI-anchored PrP-sen would facilitate the accumulation of intracellular PrP-res to high enough levels to maintain both persistent infection in the mother cell and enable the transfer of organelles containing sufficient PrP-res to initiate infection in the daughter cell. Thus, we would suggest that efficient spread of infectivity requires not just the passive transfer of PrP-res from cell-to-cell but the concurrent initiation of conversion and amplification of PrP-res via cell surface, GPI anchored PrP-sen.In vivo, several lines of evidence suggest that the spread of scrapie infectivity also requires de novo PrP-res formation in the recipient cell and not simply transfer of PrP-res from one cell to another. For example, when neurografts from PrP expressing mice were placed in the brains of PrP knockout mice and the mice were challenged intracranially with scrapie, the graft showed scrapie pathology, but the surrounding tissue did not.30 Furthermore, PrP-res from the graft migrated to the host tissue demonstrating that simple transfer of PrP-res was not sufficient and that PrP-sen expression was required for the spread of scrapie pathology.30 In fact, these mice did not develop scrapie pathology following peripheral infection even when peripheral lymphoid tissues were reconstituted with PrP-sen expressing cells.31 Even though PrP-sen expressing cells were present in both the brain and spleen, in order for infectivity to spread from the lymphoreticular system to the central nervous system PrP-sen expression was also required in an intermediate tissue such as peripheral nerve.31,32 Given that PrP-res uptake and trafficking do not require PrP-sen, the most obvious explanation for the requirement of PrP-sen in contiguous tissues is that de novo PrP-res formation in naïve cells is necessary for (1) infectivity to move from cell to cell within a tissue and, (2) infectivity to move from tissue to tissue.Another study demonstrated that peripheral expression of heterologous mouse PrP significantly increased the incubation time and actually prevented clinical disease in the majority of transgenic mice expressing hamster PrP in neurons of the brain.33 Once again, if simple transfer and uptake of PrP-res were sufficient for spread, the presence of heterologous PrP molecules should not interfere because cellular uptake of PrP-res is independent of PrP-sen expression.19,2123 Clinical disease in these mice was likely prevented by the heterologous PrP molecule interfering with conversion of PrP-sen to PrP-res suggesting that prevention of de novo PrP-res formation inhibits spread of PrP-res and infectivity. These in vivo data, when combined with our recent in vitro data,17 provide evidence to support the importance of cell surface, and by extension GPI-anchored, PrP in the spread of prion infection.Our data demonstrate that the GPI anchor plays a role in the establishment of persistent scrapie infection in vitro. In our tissue culture system,21 as well as others where spread of infectivity by cell to cell contact appears to be limited,25,34 the role of GPI anchored PrP-sen would be to amplify PrP-res to enable the efficient transfer of infectivity from mother to daughter cell. In cell systems where spread of prion infectivity may require cell to cell contact,26,27 we propose that the role of GPI anchored PrP-sen is to facilitate the spread of prion infection via a chain of conversion from cell-to-cell, a “domino” type spread of infection that has been previously hypothesized.35,36In vivo, such a mechanism might explain why neuroinvasion does not necessarily require axonal transport32,37,38 and can occur independently of the axonal neurofilament machinery.39 It would likely vary with cell type27 and be most important in areas where infectivity is transferred from the periphery to the nervous system as well as in areas where cell division may be limited. It is also possible, if the location of PrP-res formation differs for different scrapie strains,40 that the relative importance of a domino-like spread of infectivity in vivo would vary with the scrapie strain.Of course, spread of infectivity via a “wave” of GPI anchored, PrP mediated conversion would not preclude the spread of infectivity by other intracellular means such as axonal transport (reviewed in ref. 41). Furthermore, spread of infectivity may still also occur extracellularly such as in the unique case of mice which express anchorless PrP-sen,16 where our in vitro data would suggest that the cells themselves are not infected. In such a case, spread would require neither GPI anchored PrP-sen nor amplification of PrP-res in cells but would likely occur via other means such as blood41 or interstitial fluid flow.42  相似文献   

8.
9.
《朊病毒》2013,7(3):134-138
In transmissible spongiform encephalopathies (TSE or prion diseases) such as sheep scrapie, bovine spongiform encephalopathy and human Creutzfeldt-Jakob disease, normally soluble and protease-sensitive prion protein (PrP-sen or PrPC) is converted to an abnormal, insoluble and protease-resistant form termed PrP-res or PrPSc. PrP-res/PrPSc is believed to be the main component of the prion, the infectious agent of the TSE/prion diseases. Its precursor, PrP-sen, is anchored to the cell surface at the C-terminus by a co-translationally added glycophosphatidyl-inositol (GPI) membrane anchor which can be cleaved by the enzyme phosphatidyl-inositol specific phospholipase (PIPLC). The GPI anchor is also present in PrP-res, but is inaccessible to PIPLC digestion suggesting that conformational changes in PrP associated with PrP-res formation have blocked the PIPLC cleavage site. Although the GPI anchor is present in both PrP-sen and PrP-res, its precise role in TSE diseases remains unclear primarily because there are data to suggest that it both is and is not necessary for PrP-res formation and prion infection.  相似文献   

10.
The main hypothesis for prion diseases proposes that the cellular protein (PrP(C)) can be altered into a misfolded, beta-sheet-rich isoform (PrP(Sc)), which in most cases undergoes aggregation. In an organism infected with PrP(Sc), PrP(C) is converted into the beta-sheet form, generating more PrP(Sc). We find that sequence-specific DNA binding to recombinant murine prion protein (mPrP-(23-231)) converts it from an alpha-helical conformation (cellular isoform) into a soluble, beta-sheet isoform similar to that found in the fibrillar state. The recombinant murine prion protein and prion domains bind with high affinity to DNA sequences. Several double-stranded DNA sequences in molar excess above 2:1 (pH 4.0) or 0.5:1 (pH 5.0) completely inhibit aggregation of prion peptides, as measured by light scattering, fluorescence, and circular dichroism spectroscopy. However, at a high concentration, fibers (or peptide aggregates) can rescue the peptide bound to the DNA, converting it to the aggregating form. Our results indicate that a macromolecular complex of prion-DNA may act as an intermediate for the formation of the growing fiber. We propose that host nucleic acid may modulate the delicate balance between the cellular and the misfolded conformations by reducing the protein mobility and by making the protein-protein interactions more likely. In our model, the infectious material would act as a seed to rescue the protein bound to nucleic acid. Accordingly, DNA would act on the one hand as a guardian of the Sc conformation, preventing its propagation, but on the other hand may catalyze Sc conversion and aggregation if a threshold level is exceeded.  相似文献   

11.
Prion protein (PrP) prevents Bax-mediated cell death by inhibiting the initial Bax conformational change that converts cytosolic Bax into a pro-apoptotic protein. PrP is mostly a glycophosphatidylinositol-anchored cell surface protein but it is also retrotranslocated into cytosolic PrP (CyPrP) or can become a type 1 or type 2 transmembrane protein. To determine the form and subcellular location of the PrP that has anti-Bax function, we co-expressed various Syrian hamster PrP (SHaPrP) mutants that favour specific PrP topologies and subcellular localization with N-terminally green fluorescent protein tagged pro-apoptotic Bax (EGFP-Bax) in MCF-7 cells and primary human neurons. Mutants that generate both CyPrP and secreted PrP ((Sec)PrP) or only CyPrP have anti-Bax activity. Mutants that produce (Ctm)PrP or (Ntm)PrP lose the anti-Bax activity, despite their ability to also make (Sec)PrP. Transmembrane-generating mutants do not produce CyPrP and both normal and cognate mutant forms of CyPrP rescue against the loss of anti-Bax activity. (Sec)PrP-generating constructs also produce non-membrane attached (Sec)PrP. However, this form of PrP has minimal anti-Bax activity. We conclude that CyPrP is the predominant form of PrP with anti-Bax function. These results imply that the retrotranslocation of PrP encompasses a survival function and is not merely a pathway for the proteasomal degradation of misfolded protein.  相似文献   

12.
《朊病毒》2013,7(3):172-178
The soluble cellular prion protein (PrPC) is best known for its association with prion disease (PrD) through its conversion to a pathogenic insoluble isoform (PrPSc). However, its deleterious effects independent of PrPSc have recently been observed not only in PrD but also in Alzheimer disease (AD), two diseases which mainly affect cognition. At the same time, PrPC itself seems to have broad physiologic functions including involvement in cognitive processes. The PrPC that is believed to be soluble and monomeric has so far been the only PrP conformer observed in the uninfected brain. In 2006, we identified an insoluble PrPC conformer (termed iPrPC) in uninfected human and animal brains. Remarkably, the PrPSc-like iPrPC shares the immunoreactivity behavior and fragmentation with a newly-identified PrPSc species in a novel human PrD termed variably protease-sensitive prionopathy. Moreover, iPrPC has been observed as the major PrP species that interacts with amyloid β (Aβ) in AD. This article highlights evidence of PrP involvement in two putatively beneficial and deleterious PrP-implicated pathways in cognition, and hypothesizes first, that beneficial and deleterious effects of PrPC are attributable to the chameleon-like conformation of the protein and second, that the iPrPC conformer is associated with PrD and AD.  相似文献   

13.
A considerable body of data supports the model that the infectious agent (called a prion) which causes the transmissible spongiform encephalopathies is a replicating polypeptide devoid of nucleic acid. Prions are believed to propagate by changing the conformation of the normal cellular prion protein (PrPc) into an infectious isoform without altering the primary sequence. Proteins equivalent to the mature form of the wild-type mouse prion protein (residues 23-231) or with a mutation equivalent to that associated with Gerstmann-Straüssler-Scheinker disease (proline to leucine at codon 102 in human; 101 in mouse) were expressed in E. coli. The mutation did not alter the relative proteinase K susceptibility properties of the mouse prion proteins. The wild-type and mutant proteins were analyzed by circular dichroism under different pH and temperature conditions. The mutation was associated with a decrease in alpha-helical content, while the beta-sheet content of the two proteins was unchanged. This suggests the mutation, while altering the secondary structure of PrP, is not sufficient to induce proteinase K resistance and could therefore represent an intermediate isoform along the pathway toward prion formation.  相似文献   

14.
Two prion strains with identical incubation periods in mice exhibited distinct incubation periods and different neuropathological profiles upon serial transmission to transgenic mice expressing chimeric Syrian hamster/mouse (MH2M) prion protein (PrP) genes [Tg(MH2M) mice] and subsequent transmission to Syrian hamsters. After transmission to Syrian hamsters, the Me7 strain was indistinguishable from the previously established Syrian hamster strain Sc237, despite having been derived from an independent ancestral source. This apparent convergence suggests that prion diversity may be limited. The Me7 mouse strain could also be transmitted directly to Syrian hamsters, but when derived in this way, its properties were distinct from those of Me7 passaged through Tg(MH2M) mice. The Me7 strain did not appear permanently altered in either case, since the original incubation period could be restored by effectively reversing the series of passages. Prion diversity enciphered in the conformation of the scrapie isoform of PrP (PrP(Sc)) (G. C. Telling et al., Science 274:2079-2082, 1996) seems to be limited by the sequence of the PrP substrates serially converted into PrP(Sc), while prions are propagated through interactions between the cellular and scrapie isoforms of PrP.  相似文献   

15.
The soluble cellular prion protein (PrPC) is best known for its association with prion disease (PrD) through its conversion to a pathogenic insoluble isoform (PrPSc). However, its deleterious effects independent of PrPSc have recently been observed not only in PrD but also in Alzheimer disease (AD), two diseases which mainly affect cognition. At the same time, PrPC itself seems to have broad physiologic functions including involvement in cognitive processes. The PrPC that is believed to be soluble and monomeric has so far been the only PrP conformer observed in the uninfected brain. In 2006, we identified an insoluble PrPC conformer (termed iPrPC) in uninfected human and animal brains. Remarkably, the PrPSc-like iPrPC shares the immunoreactivity behavior and fragmentation with a newly-identified PrPSc species in a novel human PrD termed variably protease-sensitive prionopathy. Moreover, iPrPC has been observed as the major PrP species that interacts with amyloid β (Aβ) in AD. This article highlights evidence of PrP involvement in two putatively beneficial and deleterious PrP-implicated pathways in cognition and hypothesizes first, that beneficial and deleterious effects of PrPC are attributable to the chameleon-like conformation of the protein and second, that the iPrPC conformer is associated with PrD and AD.Key words: prion protein, prion disease, cognition, cognitive deficit, insoluble prion protein, Alzheimer disease, variably protease-sensitive prionopathy, dementia, memory  相似文献   

16.
Experimental obstacles have impeded our ability to study prion transmission within and, more particularly, between species. Here, we used cervid prion protein expressed in brain extracts of transgenic mice, referred to as Tg(CerPrP), as a substrate for in vitro generation of chronic wasting disease (CWD) prions by protein misfolding cyclic amplification (PMCA). Characterization of this infectivity in Tg(CerPrP) mice demonstrated that serial PMCA resulted in the high fidelity amplification of CWD prions with apparently unaltered properties. Using similar methods to amplify mouse RML prions and characterize the resulting novel cervid prions, we show that serial PMCA abrogated a transmission barrier that required several hundred days of adaptation and subsequent stabilization in Tg(CerPrP) mice. While both approaches produced cervid prions with characteristics distinct from CWD, the subtly different properties of the resulting individual prion isolates indicated that adaptation of mouse RML prions generated multiple strains following inter-species transmission. Our studies demonstrate that combined transgenic mouse and PMCA approaches not only expedite intra- and inter-species prion transmission, but also provide a facile means of generating and characterizing novel prion strains.  相似文献   

17.
18.
Recent advances have elucidated the detailed glycosylation of the prion protein and highlighted the size of the sugars, which shield large areas of the protein and confer some conformational stability on the normal cellular form. The reliability of SDS-PAGE banding patterns of different "glycoforms" as a diagnostics tool has been discussed. The possibility exists that the glycans may play a role in the location of the prion protein on the neuronal cell surface. Alternative topologies and tethering of the prion glycoprotein on the cell membrane affect glycan site occupancy and may play a role in disease pathogenesis.  相似文献   

19.
Transmissible spongiform encephalopathies are diseases of animals and humans that are also termed prion diseases. These diseases are linked together because a normal brain glycoprotein termed the prion protein is converted to a readily detectable protease-resistant isoform. There is now strong evidence to suggest that apart from this difference in resistance a major difference between the isoforms is that the normal prion protein binds copper and has an anti-oxidant function. Brains from Creutzfeldt-Jakob disease patients and brains from mice with experimental mouse scrapie have been shown to have changes in the levels of both copper and manganese. There is growing evidence that links prion diseases to disturbances of metal metabolism.  相似文献   

20.
Prions and prion proteins   总被引:7,自引:0,他引:7  
N Stahl  S B Prusiner 《FASEB journal》1991,5(13):2799-2807
Neurodegenerative diseases of animals and humans including scrapie, bovine spongiform encephalopathy, and Creutzfeldt-Jakob disease are caused by unusual infectious pathogens called prions. There is no evidence for a nucleic acid in the prion, but diverse experimental results indicate that a host-derived protein called PrPSc is a component of the infectious particle. Experiments with scrapie-infected cultured cells show that PrPSc is derived from a normal cellular protein called PrPC through an unknown posttranslational process. We have analyzed the amino acid sequence and posttranslational modifications of PrPSc and its proteolytically truncated core PrP 27-30 to identify potential candidate modifications that could distinguish PrPSc from PrPC. The amino acid sequence of PrP 27-30 corresponds to that predicted from the gene and cDNA. Mass spectrometry of peptides derived from PrPSc has revealed numerous modifications including two N-linked carbohydrate moieties, removal of an amino-terminal signal sequence, and alternative COOH termini. Most molecules contain a glycosylinositol phospholipid (GPI) attached at Ser-231 that results in removal of 23 amino acids from the COOH terminus, whereas 15% of the protein molecules are truncated to end at Gly-228. The structure of the GPI from PrPSc has been analyzed and found to be novel, including the presence of sialic acid. Other experiments suggest that the N-linked oligosaccharides are not necessary for PrPSc formation. Although detailed comparison of PrPSc with PrPC is required, there is no obvious way in which any of the modifications might confer upon PrPSc its unusual physical properties and allow it to act as a component of the prion. If no chemical difference is found between PrPC and PrPSc, then the two isoforms of the prion protein may differ only in their conformations or by the presence of bound cellular components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号