首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human insulin-like growth factor II (IGF-II) was produced in an Escherichia coli ompT strain as a 22.5-kDa fusion protein. IGF-II was fused to the carboxy-terminal of a synthetic 15-kDa IgG-binding protein, originating from staphylococcal protein A, via a unique methionine linker. During fermentation, the fusion protein was exported to the growth medium at levels exceeding 900 mg/liter and subsequently affinity purified on IgG Sepharose followed by ion exchange on S Sepharose. After chemical cleavage with CNBr, yielding an authentic IGF-II molecule, the recombinant IGF-II was purified to homogeneity by a two step procedure involving ion-exchange and reverse-phase HPLC. A substantial fraction of the secreted protein was found to be biologically active, eliminating the need for complex refolding procedures. The yield of highly purified and biologically active IGF-II was 5-7 mg/liter of fermenter broth. The IGF-II produced by this method displayed biochemical, immunological, receptor binding, and biological activity properties equal to those of native IGF-II isolated from human serum.  相似文献   

2.
Human insulin-like growth factor I, IGF-I, was produced in Escherichia coli fused to a synthetic IgG-binding peptide The fusion protein is secreted into the medium during fermentation and was initially purified on an IgG-Sepharose column. After hydroxylamine cleavage, IGF-I was purified to homogeneity. During purification, impurities in the form of modified variants of IGF-I were detected and characterized. The closely related impurities were identified to be a misfolded form of IGF-I, having mismatched disulphide bonds, a form with the single methionine residue in IGF-I oxidized to methionine sulphoxide and a variant in which the methionine residue was substituted by a norleucine residue during protein synthesis. A form proteolytically cleaved between two arginine residue was also detected. These impurities were separated from the major component, native IGF-I, by using reverse-phase h.p.l.c. The modified molecules as well as native IGF-I were characterized both as intact molecules and as fragments, after pepsin digestion, using the techniques of plasma desorption m.s., N-terminal sequencing and amino acid analysis. The oxidized form was 90%, and the norleucine analogue was 70%, as potent as native IGF-I in a biological radioreceptor assay, and the form having mismatched disulphides lacked receptor affinity.  相似文献   

3.
Fed-batch cultures were carried out to overproduce human insulin-like growth factor I (IGF-I) in Escherichia coli. The effects of carbon sources (glucose or glycerol) and induction time on cell growth and IGF-I production were investigated in more detail. Glycerol was a better carbon source than glucose for IGF-I production in fed-batch culture. Induction at the mid-exponential phase with glycerol as a carbon source in the pH-stat fed-batch culture was optimal for IGF-I production. Under this condition, 2.8 g L−1 of fusion IGF-I was produced as inclusion bodies. We have also developed downstream processing for preparative scale purification of IGF-I from the fusion protein produced by the fed-batch culture using glycerol as a carbon source. After the fusion protein expressed was solubilized in 8 M urea and cleaved with hydroxylamine, the released IGF-I was purified by cation exchange chromatography, refolding and preparative scale reverse phase HPLC (rp-HPLC) to give recombinant IGF-I of >98% purity. The biological activities of the purified IGF-I were measured and found to be identical to those of commercial IGF-I. Journal of Industrial Microbiology & Biotechnology (2000) 24, 94–99. Received 13 January 1999/ Accepted in revised form 02 October 1999  相似文献   

4.
This work describes the partition of a Schistosoma mansoni tegumental antigen produced by a recombinant Escherichia coli strain using an aqueous two-phase system composed of polyethylene glycol (PEG) and potassium phosphate. The effects of the polymer molecular weight, tie line length and pH on antigen partitioning were investigated. The detection of the antigen in both phases were determined by ELISA. The system composed of PEG 3550 (19.7% w/w) and potassium phosphate (17.7% w/w) led to a yield of 59% and an antigen purification factor of 3 in the PEG-rich phase. It was observed that the antigen partition in ATPS was strongly affected by the pH value and tie line length. In addition, it was possible in a single step, to remove the cell debris, that precipitated at the interface of the system.  相似文献   

5.
A gene encoding mature human insulin-like growth factor II (IGF-II) was constructed from the modified IGF-II cDNA sequence and two double-stranded synthetic oligodeoxynucleotide linkers. It was fused to a truncated lacZ gene such that IGF-II was expressed as part of C-terminus of beta-galactosidase. This fused lacZ'-IGF-II gene was under the control of tac promoter and we overproduced the beta-galactosidase-IGF-II fusion protein in the Escherichia coli. The fusion protein formed inclusion bodies inside the cells. The fusion protein was purified from the isolated inclusion bodies and IGF-II protein was obtained from their fusion protein by CNBr cleavage. The released IGF-II was confirmed by its molecular weight as determined by SDS-PAGE and by its ability to bind anti-IGF antibody.  相似文献   

6.
Recombinant human insulin-like growth factor II (IGF-II), produced as a soluble extracellular fusion protein, was shown to be proteolytically degraded in Escherichia coli. In contrast, the fusion protein secreted from Staphylococcus aureus was stable and the full length product could be recovered by affinity chromatography. After site specific cleavage of the fusion protein, soluble IGF-II with biological activity was obtained without refolding procedures. These results demonstrate that a eukaryotic protein unstable in E. coli can be stabilized by expression in a Gram positive host. The full-length fusion protein from S. aureus was used to characterize the protease responsible for the degradation in E. coli. Biochemical and genetic analysis suggests a specific degradation by the outer membrane protease (OmpT).  相似文献   

7.
Escherichia coli BL21 strains were found to excrete a large amount of outer membrane protein F (OmpF) into culture medium during high-cell-density cultivation. From this interesting phenomenon, a novel and efficient OmpF fusion system was developed for the excretion of recombinant proteins by E. coli. The ompF gene of E. coli BL21(DE3) was first knocked out by using the red operon of bacteriophage lambda to construct E. coli MBEL-BL101. For the excretion of human beta-endorphin as a model protein, the beta-endorphin gene was fused to the C terminus of the E. coli ompF gene by using a linker containing the Factor Xa recognition site. To develop a fed-batch culture condition that allows efficient production of OmpF-beta-endorphin fusion protein, three different feeding strategies, an exponential feeding strategy and two pH-stat strategies with defined and complex nutrient feeding solutions, were examined. Among these, the pH-stat feeding strategy with the complex nutrient feeding solution resulted in the highest productivity (0.33 g of protein per liter per h). Under this condition, up to 5.6 g of OmpF-beta-endorphin fusion protein per liter was excreted into culture medium. The fusion protein was purified by anion-exchange chromatography and cleaved by Factor Xa to yield beta-endorphin, which was finally purified by reverse-phase chromatography. From 2.7 liters of culture supernatant, 545.4 mg of beta-endorphin was obtained.  相似文献   

8.
9.
Strategies for the expression of precursors of eukaryotic secreted proteins as part of fused proteins in Escherichia coli have been explored. A fusion protein with beta-galactosidase at the N-terminal end and honeybee prepromelittin at the C-terminal end (beta-gal-pM) was expressed in low amounts as a cleaved polypeptide, from which the promelittin portion had been removed. Inclusion in the induction culture of 10 mM MgCl2 or 8.3% (v/v) ethanol, inhibitors of signal peptidase, gave rise to the full-length beta-gal-pM fusion protein. The results suggest that a soluble recombinant fusion protein with a signal peptide in an internal location 660 residues from the N-terminus is recognized by the E. coli translocation apparatus in the inner membrane and by leader peptidase. High-level production (about 45% of total cellular proteins) of prepromelittin was achieved when it was part of a fusion protein at the C-terminus of a truncated insoluble polypeptide from bacteriophage gene 10. This fusion protein separated into inclusion bodies in an aggregated form. In contrast, attempts to express prepromelittin by itself or at the N-terminal end of a fusion with mouse dihydrofolate reductase (pM-DHFR) proved unsuccessful.  相似文献   

10.
A protein II (P.II) gene from Neisseria gonorrhoeae was cloned in Escherichia coli and characterized by DNA sequence analysis. As with other reported P.II sequences, this gene contains an ATG initiation codon which is out of frame with respect to the remainder of the P.II amino acid sequence. A translational fusion was constructed in E. coli which linked the P.II sequence to the signal peptide of beta-lactamase. This P.II fusion differs from the gonococcal protein only in the first seven residues at the N terminus. In E. coli, the P.II fusion product exhibits properties analogous to those of P.II in N. gonorrhoeae. The P.II fusion product is a major component of the E. coli outer membrane and it is exposed on the cell surface. The P.II fusion protein also exhibits the heat-modifiable phenotype of gonococcal P.II.  相似文献   

11.
A whole broth extraction using an aqueous two-phase system (ATPS) composed by 5% (w/w) PEG 3350 and 15% (w/w) phosphate was used for the scale-up extraction and isolation of a recombinant Fusarium solani pisi cutinase, an extracellular mutant enzyme expressed in Saccharomyces cerevisiae, containing a fusion peptide (WP)4. The experiments were carried out at three different scales (10 ml, 1 l and 30 l). Mixing time and stirrer speed were evaluated at lab scale (1 l) with two different system compositions. Stirrer speed between 400 and 800 rpm and mixing time between 2 and 5 min led to the highest recoveries of cutinase. In all cases, inclusive of pilot scale (30 l), the equilibrium was reached after a few minutes. The performance of ATPS was reproducible within the scale range of 0.010–30 l and provided a standard deviation of the yield lower than 8%, leading to (i) a partition coefficient over 50, (ii) a yield over 95% and (iii) a concentration factor over 5. The fusion of the peptide (WP)4 to the cutinase protein enabled a 400 increase of the partition coefficient relative to the wild-type strain.  相似文献   

12.
Genetic engineering was integrated with the production and purification of Fusarium solani pisi cutinases, in order to obtain the highest amount of enzyme activity units, after purification. An aqueous two-phase system (ATPS) of polyethylene glycol 3350, dipotassium phosphate and whole broth was used for the extraction of three extracellular cutinases expressed in Saccharomyces cerevisiae. The production/extraction process was evaluated regarding cutinases secretion in the medium, partition behaviour and extraction yields in the ATPS. The proteins studied were cutinase wild type and two fusion proteins of cutinase with the tryptophane-proline (WP) fusion tags, namely (WP)(2) and (WP)(4). The (WP)(4) fusion protein enabled a 300-fold increase of the cutinase partition coefficient when comparing to the wild type. However, the secretion of the fusion proteins was lower than of the wild type cutinase secretion. A batch extraction strategy was compared with a continuous extraction in a perforated rotating disc contactor (PRDC). The batch and continuous systems were loaded with as much as 60% (w/w) whole cultivation broth. The continuous extraction strategy provided a 2.5 higher separation capacity than the batch extraction strategy. Considering the integrated process, the cutinase-(WP)(2) proved to lead to the highest product activity, enabling five and six times more product activity than the wild type and the (WP)(4) fusion proteins, respectively.  相似文献   

13.
Tyrosine hydroxylase is the rate-limiting step in the synthesis of dopamine and is tightly regulated. Previous studies have shown it to be covalently modified and potently inhibited by 3,4-dihydroxyphenylacetaldehyde (DOPAL), an endogenous neurotoxin via dopamine catabolism which is relevant to Parkinson's disease. In order to elucidate the mechanism of enzyme inhibition, a source of pure, active tyrosine hydroxylase was necessary. The cloning and novel purification of human recombinant TH from Escherichia coli is described here. This procedure led to the recovery of ~23 mg of pure, active and stable enzyme exhibiting a specific activity of ~17 nmol/min/mg. The enzyme produced with this procedure can be used to delineate the tyrosine hydroxylase inhibition by DOPAL and its relationship to Parkinson's disease. This procedure improves upon previous methods because the fusion protein gives rise to high expression and convenient affinity-capture, and the cleaved and highly purified hTH makes the product useful for a wider variety of applications.  相似文献   

14.
The cDNA of human poly(ADP-ribose) polymerase (pADPRP), encoding the entire protein, was subcloned into the Escherichia coli expression plasmid pYUb. In this expression system, the carboxyl terminus of ubiquitin is fused to the amino terminus of a target protein, in this case pADPRP, stabilizing the accumulation of the cloned gene product. Following induction of the transformed cells, the sonicated extract contained a unique protein immunoreactive with both pADPRP and ubiquitin antibodies and corresponding to the predicted mobility of the fusion protein in SDS-PAGE. Fusion of ubiquitin to pADPRP increased the yield of pADPRP approximately 10-fold compared to that of the unfused enzyme. The resulting recombinant fusion protein had catalytic properties which were nearly identical to those of native pADPRP obtained from mammalian tissues. These properties included specific activity, Km for NAD, response to DNA strand breaks, response to Mg2+, inhibition by 3-aminobenzamide, and activity in activity gel analysis. An initial analysis by deletion mutagenesis of pADPRP's functional domains revealed that deletions in the NAD binding domain eliminated all activity; however, partial polymerase activity resulted from deletion in the DNA binding or automodification domains. The activities were not enhanced by breaks in DNA. We further report a colony filter screening procedure designed to identify functional polymerase molecules which will facilitate structure/function studies of the polymerase.  相似文献   

15.
16.
We have applied the technique of protein release by chemical permeabilization to recover a foreign protein in active form from the periplasm of a recombinant strain of Escherichia coli. The two agents used in our chemical permeabilization scheme, guanidine hydrochloride and Triton X-100, have different modes of action, allowing selectivity in protein release based on intracellular location under different treatment conditions. Specifically, treatment of E. coli C600-1 cells by guanidine alone resulted in 40-fold purification of recombinant beta-lactamase, which is periplasmically expressed in this host. Achieving such high purification in the cell disruption stage could alleviate some of the problems associated with recovery of intracellular products, such as low expression or the need to solubilize cytoplasmic inclusion bodies. Recovery of periplasmic proteins by chemical permeabilization is simpler than by osmotic shock and is less expensive than using enzymatic digestion.  相似文献   

17.
18.
Muscle cell culture experiments were conducted to determine the relative regulatory effects of insulin-like growth factors (IGF) on protein turnover. The effects of recombinant (rc) human IGF-I, ovine somatomedin (oSm/oIGF-I), and insulin on rates of protein labeling and degradation in L6 myotube cultures were evaluated. Myotube cultures were treated with growth factors following a 4-h serum-free incubation period. Protein labeling was measured by determining the rate of [3H] leucine incorporation into cell protein. Protein degradation was measured by a pulse-chase procedure using [3H] leucine. The apparent half maximal stimulation of protein labeling (12%, 8%, 7%) occurred at approximately .1 nM rcIGF-I, 1 nM oSm/oIGF-I and 15 nM insulin, respectively. The apparent half maximal inhibition of proteolysis (18%, 15% and 11%) occurred at .4 nM rcIGF-I, .6 nM oSm/oIGF-I and 4 nM insulin, respectively. The magnitude of the response for protein labeling and degradation was greatest for rcIGF-I. The results provide additional evidence that IGFs play a primary role in regulating protein turnover in muscle.  相似文献   

19.
Alpha-L-fucosidase (FUC) is a glycosidase involved in the degradation of fucose-containing glycoconjugates. A cDNA representing the complete sequence of human FUC was inserted into the prokaryotic expression vector pGEX-2T. High levels of the glutathione S-transferase (GST) fusion protein were detected in Escherichia coli cells after induction with isopropyl thio-beta-D-galactopyranoside. The GST-FUC protein was mostly found as inclusion bodies and attempts to optimise its expression as a soluble form were unsuccessful. Nevertheless, the recombinant protein was purified by affinity chromatography on glutathione-sepharose and its fucosidase activity was characterised. After thrombin cleavage of the GST tag, the FUC precursor protein was purified by electro-elution.  相似文献   

20.
We developed an efficient production system of the soluble extracellular domain of the human erythropoietin receptor (sEPO-R) and characterized the binding of erythropoietin (EPO) with the purified recombinant protein. The sEPO-R, fused to the maltose binding protein (MBP), was expressed as a soluble protein in the periplasm of Escherichia coli (E. coli) and did not accumulate in inclusion bodies. After lysis of the bacteria by an osmotic shock, the fusion protein was purified by affinity chromatography on amylose followed by size exclusion chromatography (SEC). Specific binding of 125I-labelled EPO to the sEPO-R was demonstrated by competitive and saturation binding assays. A single affinity class (Kd = 0.25 nM) of the binding site was evident by Scatchard analysis. This value is similar to the Kd observed between EPO and the EPO-R of high affinity present on human erythroid progenitors. The complex has a molecular size corresponding to a 1:1 complex of EPO and the fusion protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号