首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding stability of the different nucleotide-dependent and -independent interactions between elongation factor 2 (EF-2) and 80S ribosomes, as well as 60S subunits, was studied and correlated to the kinetics of the EF-2- and ribosome-dependent hydrolysis of GTP. Empty reconstituted 80S ribosomes were found to contain two subpopulations of ribosomes, with approximately 80% capable of binding EF-2.GuoPP[CH2]P with high affinity (Kd less than 10(-9) M) and the rest only capable of binding the factor-nucleotide complex with low affinity (Kd = 3.7 x 10(-7) M). The activity of the EF-2- and 80S-ribosome dependent GTPase did not respond linearly to increasing factor concentrations. At low EF-2/ribosome ratios the number of GTP molecules hydrolyzed/factor molecule was considerably lower than at higher ratios. The low response coincided with the formation of the high-affinity complex. At increasing EF-2/ribosome ratios, the ribosomes capable of forming the high-affinity complex was saturated with EF-2, thus allowing formation of the low-affinity ribosome.EF-2 complex. Simultaneously, the GTPase activity/factor molecule increased, indicating that the low-affinity complex was responsible for activating the GTP hydrolysis. The large ribosomal subunits constituted a homogeneous population that interacted with EF-2 in a low-affinity (Kd = 1.3 x 10(-6) M) GTPase active complex, suggesting that the ribosomal domain responsible for activating the GTPase was located on the 60S subunit. Ricin treatment converted the 80S particles to the type of conformation only capable of interacting with EF-2 in a low-affinity complex. The structural alteration was accompanied by a dramatic increase in the EF-2-dependent GTPase activity. Surprisingly, ricin had no effect on the factor-catalyzed GTP hydrolysis in the presence of 60S subunits alone.  相似文献   

2.
The accessibility of three amino acids of EF-2, located within highly conserved regions near the N- and C-terminal extremities of the molecule (the E region and the ADPR region, respectively) to modifying enzymes has been compared within nucleotide-complexed EF-2 and ribosomal complexes that mimic the pre- and posttranslocational ones: the high-affinity complex (EF-2)-nonhydrolysable GTP analog GuoPP[CH2]P ribosome and the low-affinity (EF-2)-GDP-ribosome complex, EF-2 and ribosomes being from rat liver. We studied the reactivity of two highly conserved residues diphthamide-715 and Arg-66, to diphtheria-toxin-dependent ADP-ribosylation and trypsin attack, and of a threonine that probably lies between residues 51 and 60, to phosphorylation by a Ca2+/calmodulin-dependent protein kinase. Diphthamide 715 and this threonine residue were unreactive within the high-affinity complex but seemed fully reactive in the low-affinity complex. Arg-66 was resistant to trypsin in both complexes. The possible involvement of the E and ADPR regions of EF-2 in the interaction with ribosome in the two complexes is discussed.  相似文献   

3.
Ribosomal complexes containing elongation factor 2 (EF-2) were formed by incubation of 80 S ribosomes in the presence of EF-2 and the non-hydrolysable GTP analogue GuoPP[CH2]P. The factor was covalently coupled to the ribosomal proteins located at the factor binding site, by treatment with bifunctional reagents. After isolation of the covalent EF-2.ribosomal protein complexes, the proteins were labelled with 125I and the introduced covalent links cleaved. The ribosomal proteins were identified by electrophoresis in two independent two-dimensional gel systems, followed by autoradiography. After cross-linking with bis(hydroxysuccinimidyl) tartrate (4 A between the reactive groups), protein S3/S3a, S7 and S11 were found as the major ribosomal proteins covalently linked to EF-2. The longer reagent, dimethyl 3,8-diaza-4,7-dioxo-5,6-dihydroxydecanbisimidate (11 A between the reactive groups), covalently coupled proteins S7, S11, L5, L13, L21, L23, L26, L27a and L32 to EF-2. After cross-linking with dimethyl suberimidate (9 A between the reactive groups) proteins S3/3a, S7, S11, L5, L8, L13, L21, L23, L26, L27a, L31 and L32 were identified as belonging to the EF-2-binding site. The results indicate that the ribosomal domain interacting with EF-2 is located on both the small and the large ribosomal subunit close to the subunit interface.  相似文献   

4.
Complexes containing rat liver 80S ribosomes treated with puromycin and high concentrations of KCl, elongation factor 2 (EF-2) from pig liver, and guanosine 5'-[beta, gamma-methylene]triphosphate were prepared. Neighboring proteins in the complexes were cross-linked with the bifunctional reagent 2-iminothiolane. Proteins were extracted and then separated into 22 fractions by chromatography on carboxymethylcellulose of which seven fractions were used for further analyses. Each protein fraction was subjected to diagonal polyacrylamide/sodium dodecyl sulfate gel electrophoresis. Nine cross-linked protein pairs between EF-2 and ribosomal proteins were shifted from the line formed with monomeric proteins. The spots of ribosomal proteins cross-linked to EF-2 were cut out from the gel plate and labelled with 125I. The labelled protein was extracted from the gel and identified by three kinds of two-dimensional gel electrophoresis, followed by autoradiography. The following proteins of both large and small subunits were identified: L9, L12, L23, LA33 (acidic protein of Mr 33000), P2, S6 and S23/S24, and L3 and L4 in lower yields. The results are discussed in relation to the topographies of ribosomal proteins in large and small subunits. Furthermore we found new neighboring protein pairs in large subunits, LA33-L11 and LA33-L12.  相似文献   

5.
The biological activity of elongation factor 2 (EF-2) following NAD+ - and diphtheria-toxin-dependent ADP-ribosylation was studied (i) in translation experiments using the reticulocyte lysate system and (ii) in ribosomal binding experiments using either reconstituted empty rat liver ribosomes or programmed reticulocyte polysomes. Treatment of the lysates with toxin and NAD+ at a NAD+/ribosome ratio of 4 resulted in a 90% inhibition of the amino acid incorporation rate. The inhibition was overcome by the addition of native EF-2. At this level of inhibition more than 90% of the EF-2 present in the lysates was ADP-ribosylated and the total ribosome association of EF-2 was reduced by approx. 50%. All of the remaining unmodified factor molecules were associated with the ribosomes, whereas only about 3% of the ribosylated factor was ribosome-associated. The nucleotide requirement for the binding of EF-2 to empty reconstituted rat liver ribosomes and programmed reticulocyte polysomes was studied together with the stability of the resulting EF-2 X ribosome complexes using purified 125I-labelled rat liver EF-2. With both types of ribosomes, the complex formation was strictly nucleotide-dependent. Stable, high-affinity complexes were formed in the presence of the non-hydrolysable GTP analogue guanosine 5'-(beta, gamma-methylene)triphosphate (GuoPP[CH2]P). In contrast to the reconstituted ribosomes, GTP stimulated the formation of high-affinity complexes in the presence of polysomes, albeit at a lower efficiency than GuoPP[CH2]P. The formation of high-affinity complexes was restricted to polysomes in the pretranslocation phase of the elongation cycle. Low-affinity post-translocation complexes, demonstrable after fixation, were formed in the presence of GTP, GuoPP[CH2]P and GDP. In polysomes, these complexes involved a different population of particles than did the high-affinity complexes. In the binding experiments using reconstituted or programmed ribosomes, the pretranslocation binding of EF-2 observed in the presence of GuoPP[CH2]P was reduced by approx. 50% after ADP-ribosylation, whereas the post-translocation binding in the presence of GDP was unaltered. The data indicate that the inhibition of translocation caused by diphtheria toxin and NAD+ is mediated through a reduced affinity of the ADP-ribosylated EF-2 for binding to ribosomes in the pretranslocation state.  相似文献   

6.
The L8 protein complex consisting of L7/L12 and L10 in Escherichia coli ribosomes is assembled on the conserved region of 23 S rRNA termed the GTPase-associated domain. We replaced the L8 complex in E. coli 50 S subunits with the rat counterpart P protein complex consisting of P1, P2, and P0. The L8 complex was removed from the ribosome with 50% ethanol, 10 mM MgCl(2), 0.5 M NH(4)Cl, at 30 degrees C, and the rat P complex bound to the core particle. Binding of the P complex to the core was prevented by addition of RNA fragment covering the GTPase-associated domain of E. coli 23 S rRNA to which rat P complex bound strongly, suggesting a direct role of the RNA domain in this incorporation. The resultant hybrid ribosomes showed eukaryotic translocase elongation factor (EF)-2-dependent, but not prokaryotic EF-G-dependent, GTPase activity comparable with rat 80 S ribosomes. The EF-2-dependent activity was dependent upon the P complex binding and was inhibited by the antibiotic thiostrepton, a ligand for a portion of the GTPase-associated domain of prokaryotic ribosomes. This hybrid system clearly shows significance of binding of the P complex to the GTPase-associated RNA domain for interaction of EF-2 with the ribosome. The results also suggest that E. coli 23 S rRNA participates in the eukaryotic translocase-dependent GTPase activity in the hybrid system.  相似文献   

7.
Complexes containing rat liver 80 S ribosomes, poly(uridylic acid), phenylalanyl-tRNA, elongation factor 1 alpha, and guanylyl(beta, gamma-methylene)-diphosphonate were prepared. Neighboring proteins in the complexes were cross-linked with the bifunctional reagent 2-iminothiolane. Proteins were extracted and then separated into 26 fractions by chromatography on carboxymethylcellulose. Each protein fraction was subjected to diagonal polyacrylamide-sodium dodecyl sulfate gel electrophoresis. Four cross-linked pairs containing elongation factor 1 alpha were on the vertical line below the diagonal. The ribosomal protein spot of each pair was cut out from the gel plate and labeled with 125I. The labeled proteins were extracted from the gel and identified by two-dimensional gel electrophoresis, followed by autoradiography. The following proteins of both 60 S and 40 S subunits were identified: L12, L23, L39, S23/S24, and S26, three proteins of which had been found to be cross-linked also to elongation factor 2 (Uchiumi, T., Kikuchi, M., Terao, K., Iwasaki, K., and Ogata, K. (1986) Eur. J. Biochem. 156, 37-44). These results afford direct evidence that both elongation factors interact with partially overlapping sites on rat liver ribosomes.  相似文献   

8.
Incubation of 80S ribosomes with a substoichiometric amount of [alpha-32P]GTP and with eEF-2 resulted in the specific labeling of one ribosomal protein which migrated very close to the position of the acidic phosphoprotein P2 from the 60S subunit in two-dimensional isofocusing-SDS gel electrophoresis. Localization of protein P2 in this electrophoretic system was ascertained by correlation with its position in the standard two-dimensional acidic-SDS gel electrophoresis after its specific phosphorylation by casein kinase II. Labeling of the ribosomal protein was dependent on the presence of eEF-2, and could be attributed to [alpha-32P]GDP binding from the results of chase experiments and HPLC identification, this binding being very likely responsible for the slight shift in the electrophoretical position of the protein. Incubation of ribosomes with tRNA(Phe) in the absence of mRNA induced the release of the bound GDP.  相似文献   

9.
Ribosomal proteins from cysts and nauplii of Artemia salina were analyzed by three kinds of two-dimensional polyacrylamide gel electrophoresis. The basic-acidic and basic-SDS gel systems were used to compare the basic ribosomal proteins, and some changes were observed between the cysts and nauplii in proteins S6, S14, and L24. The phosphorylation of protein S6 was increased in the nauplii. Basic proteins S14 and L24 in the cysts changed and none of the corresponding proteins in the nauplii were detected at the same positions on two-dimensional gels as in the cysts. The acidic-SDS gel system was used to compare the acidic proteins in ribosomes and it was revealed that an acidic protein, AX (Mr = 24,000), in the cysts was not present in the ribosomes from the nauplii. The ribosomal activities as to the formation of an 80S initiation complex with globin mRNA and poly(U)-directed polyphenylalanine synthesis were compared. There was no significant difference between the cyst and nauplius ribosomes.  相似文献   

10.
The structure of the guanosine nucleotide binding site of EF-2 was studied by affinity labelling with the GTP analogue, oxidized GTP (oGTP), and by amino acid sequencing of polypeptides generated after partial degradation with trypsin and N-chlorosuccinimide. Native EF-2 contains two exposed trypsin-sensitive cleavage sites. One site is at Arg66 with a second site at Lys571/Lys572. oGTP was covalently bound to the factor between Arg66 and Lys571. After further cleavage of this fragment with the tryptophan-specific cleavage reagent N-chlorosuccinimide, oGTP was found associated with a polypeptide fragment originating from a cleavage at Trp261 and Trp343. The covalent oGTP . EF-2 complex was capable of forming a high-affinity complex with ribosomes, indicating that oGTP, in this respect, induced a conformation in EF-2 indistinguishable from that produced by GTP. Although GTP could be substituted by non-covalently linked oGTP in the factor and ribosome-dependent GTPase reaction, the factor was unable to utilize the covalently bound oGTP as a substrate. This indicates that the conformational flexibility in EF-2 required for the ribosomal activation of the GTPase was inhibited by the covalent attachment of the nucleotide to the factor. EF-2 cleaved at Arg66 were unable to form the high-affinity complex with ribosomes while retaining the ability to form the low-affinity complex and to hydrolyse GTP. The second cleavage at Lys571/Lys572 was accompanied by a total loss of both the low-affinity binding and the GTPase activity.  相似文献   

11.
2',3'-O-(4-[N-(2-chloroethyl)-N-methylamino]) benzylidene derivative of AUGU6 was used for identification of the proteins in the region of the mRNA-binding centre of E. coli ribosomes. This derivative alkylated ribosomes (preferentially 30S ribosomal) with high efficiency within the 70S initiation complex. In both 30S and 50S ribosomal subunits proteins and rRNA were modified. Specificity of the alkylation of ribosomal proteins and rRNA with the reagent was proved by the inhibitory action of AUGU6. Using the method of two-dimensional electrophoresis in polyacrylamide gel the proteins S4, S12, S13, S14, S15, S18, S19 and S20/L26 which are labelled by the analog of mRNA were identified.  相似文献   

12.
Rat liver 60S ribosomal subunits were treated with dimethylmaleic anhydride, a reagent for protein amino groups, at a 1/15,000 mol/mol ratio. This caused the dissociation of specific proteins, which were separated from the 56S residual core particles by centrifugation and identified by two-dimensional gel electrophoresis. The core particles lacking 30% of the total proteins retained most of the initial activity measured by the puromycin reaction but only small percentages of activities measured by polyphenylalanine synthesis, elongation-factor-2(EF-2)-dependent GTP hydrolysis and EF-2-mediated GDP binding. Upon reconstitution, the complementary amount of split proteins was incorporated into ribosomal particles, which had almost the same catalytic activities and biophysical properties (density, sedimentation coefficient and capability to reassociate to 40S subunits) as the original subunits.  相似文献   

13.
O Nyg?rd  H Nika 《The EMBO journal》1982,1(3):357-362
Protein constituents at the subunit interface of rat liver ribosomes were analysed by cross-linking with the bifunctional reagent, diepoxybutane (distance between reactive groups 4 A). Isolated 40S and 60S subunits were labelled with 125I and recombined with unlabelled complementary subunits. The two kinds of selectively labelled 80S ribosomes were treated with diepoxybutane at low concentration. Radioactive ribosomal proteins covalently attached to the rRNA of the unlabelled complementary subparticles were isolated by repeated gradient centrifugation. The RNA-bound, labelled proteins were identified by two-dimensional gel electrophoresis. The experiments showed that proteins S2, S3, S4, S6, S7, S13, and S14 in the small subunit of rat liver ribosomes are located at the ribosomal interface in close proximity to 28S rRNA. Similarly, proteins L3, L6, L7, and L8 were found at the the interface of the large ribosomal subunit in the close vicinity of 18S rRNA.  相似文献   

14.
Summary The rRNA genes (rDNA) in Drosophila melanogaster are found in two clusters, one on the X and one on the Y chromosome. We have compared the ribosomal protein composition of wild-type Oregon-R flies containing both X-linked and Y-linked rDNA with that of flies containing only the Y-linked rDNA by two-dimensional polyacrylamide gel electrophoresis. Four basic proteins (1, 2/3, L4, and L7) normally present in wild-type flies were either electrophoretically not detectable (1, 2/3, and L4) or marginally detectable (L7) in flies with only Y-linked rDNA. No additional proteins were observed in these flies. However, immunodiffusion assays using specific antibodies raised against purified protein L4 confirmed that L4 was present but in relatively lower amounts in these Y-linked rDNA flies. An investigation was carried out to determine whether these electrophoretically undetectable proteins were more readily lost during ribosome preparation and hence were not readily detectable in the 80S particles by gel electrophoresis or whether they had been modified. Thus the proteins in the post-ribosomal cell supernatant and the high salt sucrose gradient were analyzed by two-dimensional gel electrophoresis and immunochemical assays with antibodies raised against protein L4 and total 80S ribosomal proteins. The experimental evidence indicates that there is a small amount of protein L4 and probably proteins 1, 2/3, and L7 in flies with only Y-linked rDNA but significantly less of these proteins than in wild-type flies.  相似文献   

15.
Rat liver 80 S ribosomes were cross-linked with 2-iminothiolane. Proteins extracted from the cross-linked 80 S ribosomes were separated into 25 fractions by chromatography on carboxy methylcellulose. Each protein fraction was analyzed by diagonal polyacrylamide-sodium dodecyl sulfate gel electrophoresis. Eight pairs characteristic of 80 S ribosomes were detected which did not appear when isolated 40 S and 60 S subunits were cross-linked, and the cross-linked proteins were analyzed in similar manners. The cross-linked components were radioiodinated and then analyzed by two-dimensional gel electrophoresis, followed by autoradiography. Eight kinds of cross-links between 60 S subunit proteins and 40 S subunit proteins were identified as follows: SA30 (acidic protein with Mr 30,000)-LA33 (acidic protein with Mr 33,000), S2-LA33, S2-L11, S3a-L11, S4-L5, S25-L5, S4-L24 and S6-L24.  相似文献   

16.
Prostaglandin E2 (PGE2) specifically bound to 100,000 X g pellet prepared from bovine adrenal medulla, and [3H]PGE2-bound proteins were solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid. The dissociation of bound [3H]PGE2 from the proteins was enhanced by GTP. [3H]PGE2-specifically bound proteins were adsorbed onto a wheat germ agglutinin column and GTP treatment decreased the amount of [3H]PGE2 retained on the column. When [3H]PGE2-bound proteins were cross-linked in the membrane by dithiobis(succinimidyl propionate) and solubilized, bound [3H]PGE2 was no longer dissociated by GTP treatment, suggesting that cross-linking produced a stable and high-affinity complex of PGE receptor with a GTP-binding protein. Covalent cross-linking of the complex was attested by adsorption of dithiobis(succinimidyl propionate)-treated [3H]PGE2-bound proteins to GTP-Sepharose, and co-elution of [35S]guanosine 5'-O-(3-thiotriphosphate) binding activity and immunoreactivities of alpha o and beta subunits of a GTP-binding protein. The cross-linked [3H]PGE2-bound complex was eluted as an apparently single radioactive peak at the position of Mr = 200,000 by gel filtration. These results have demonstrated that PGE receptor is a glycoprotein with an approximate Mr of 110,000, assuming that the Mr of the GTP-binding protein is 90,000. PGE2 neither activated nor inhibited adenylate cyclase activity, and pertussis toxin (islet-activating protein) did not affect PGE2 binding and its GTP sensitivity. These results suggest that the PGE receptor may be functionally associated with a pertussis toxin-insensitive GTP-binding protein and is not coupled to the adenylate cyclase system in bovine adrenal medulla.  相似文献   

17.
Antibodies prepared in rabbits against Escherichia coli ribosomal proteins L7/L12 are reported to be immunologically cross-reactive with some ribosomal proteins on the 60 S subunit of eukaryote ribosomes (Wool & Stöffler, 1974; Stöffler et al., 1974). We have confirmed these reports and extended this finding to a detailed study of the functional properties of eukaryote ribosomes which are affected by these cross-reacting antibodies. We report here the partial reactions in protein synthesis that are inhibited by the anti-L7/L12 IgG (immunoglobulin G) preparations using a chicken liver system. The following reactions were inhibited: EF-1 (elongation factor 1) dependent binding of aminoacyl-tRNA to ribosomes and GTP hydrolysis; EF-2 dependent binding of nucleotide to ribosomes and GTP hydrolysis; binding of [14C]ADP-ribosyl · EF-2 to ribosomes. This last reaction is more sensitive to the antibody inhibition than the corresponding nucleotide binding reaction. We show that the inhibitions were not simply non-specific precipitation of ribosomes by IgG, in that monovalent Fabs were also inhibitory, and peptidyl transferase activity was not inhibited. The functions inhibited with the IgG preparations in the chicken liver system are analogous to those inhibited in the homologous E. coli system. Thus the cross-reacting protein is functionally as well as immunologically conserved.  相似文献   

18.
Separation of cytoplasmic ribosomal proteins of Microsporum canis   总被引:1,自引:0,他引:1  
The cytoplasmic ribosomal proteins of Microsporum canis were characterised in basic-acidic and basic-SDS two-dimensional polyacrylamide gel electrophoresis systems. The small subunit contained 28 proteins and the large subunit 38 proteins. The molecular weights of these proteins were in the range of 32,500 to 7600 and 48,000 to 11,000 in the small and large subunits, respectively. The 80S ribosomes showed 65 and 66 protein spots in basic-acidic and basic-SDS gel systems, respectively.  相似文献   

19.
Human tonsillar 80-S ribosomes were 17% and 43% inactivated by 1 mM N-ethylmaleimide after 12 min at 30 or 37 degrees C, respectively. The ribosomes were unaffected by the reagent during the same period of time at 0 or 20 degrees C. 4, 12, 27 and 59 sulfhydryl groups per 80-S ribosomes were found labeled by 1 mM N-ethyl[14C] maleimide after 12 min at 0, 20, 30 or 37 degrees C, respectively. The analysis of radioactively labeled proteins by two-dimensional gel electrophoresis revealed the following: after 3 min at 37 degrees C only two 40-S proteins, S3 and S7, displayed a significant amount of label. After 12 min at 37 degrees C, there was a several-fold increase in the extent of radioactivity found in each of these proteins and, additionally, S1, S2, S4, S5, S15, S22 and S31 were also found among labeled 40-S proteins. S3 appeared to be the most N-ethylmaleimide-reactive 40S protein. After 3 min at 37 degrees C, L10, L17, L20 (and/or S20), L26, L32 and L33, and after 12 min at 37 degrees C, additionally L1, L2, L7, L9, L11, L15, L16, L18, and L25 were labeled among 60-S proteins. l17 and 32 were the most N-ethylmaleimide-reactive proteins under these conditions. After 12 min at 37 degrees C, approx. 26% and 39% of the radioactivity incorporated into the 80 S or 60 S ribosomal protein, respectively, was found in these two proteins. After 12 min at 0 degrees C, S3, L17, L32 and L33 were the only labeled proteins.  相似文献   

20.
Proteomic studies have addressed the composition of plant chloroplast ribosomes and 70S ribosomes from the unicellular organism Chlamydomonas reinhardtii But comprehensive characterization of cytoplasmic 80S ribosomes from higher plants has been lacking. We have used two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) to analyse the cytoplasmic 80S ribosomes from the model flowering plant Arabidopsis thaliana. Of the 80 ribosomal protein families predicted to comprise the cytoplasmic 80S ribosome, we have confirmed the presence of 61; specifically, 27 (84%) of the small 40S subunit and 34 (71%) of the large 60S subunit. Nearly half (45%) of the ribosomal proteins identified are represented by two or more distinct spots in the 2-DE gel indicating that these proteins are either post-translationally modified or present as different isoforms. Consistently, MS-based protein identification revealed that at least one-third (34%) of the identified ribosomal protein families showed expression of two or more family members. In addition, we have identified a number of non-ribosomal proteins that co-migrate with the plant 80S ribosomes during gradient centrifugation suggesting their possible association with the 80S ribosomes. Among them, RACK1 has recently been proposed to be a ribosome-associated protein that promotes efficient translation in yeast. The study, thus provides the basis for further investigation into the function of the other identified non-ribosomal proteins as well as the biological meaning of the various ribosomal protein isoforms.Patrick Giavalisco, Daniel Wilson are contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号