首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of fusion of respiratory syncytial virus (RSV) with HEp-2 cells were studied by the R18 fluorescence dequenching assay of membrane fusion. A gradual increase in fluorescence intensity indicative of virion-cell fusion was observed when R18-labeled RSV was incubated with HEp-2 cells. Approximately 35% dequenching of the probe fluorescence was observed in 1 h at 37 degrees C. Fusion showed a temperature dependence, with significant dequenching occurring above 18 degrees C. The dequenching was also dependent on the relative concentration of target membrane. Thus, increasing the concentration of target membrane resulted in increased levels of dequenching. In addition, viral glycoproteins were shown to be involved in this interaction, since dequenching was significantly reduced by pretreatment of labeled virus at 70 degrees C for 5 min or by trypsinization of R18-labeled virions prior to incubation with HEp-2 cells at 37 degrees C. The fusion of RSV with HEp-2 cells was unaffected over a pH range of 5.5 to 8.5, with some increase seen at lower pH values. Treatment of HEp-2 cells with ammonium chloride (20 and 10 mM), a lysosomotropic agent, during early stages of infection did not inhibit syncytium formation or progeny virion production by RSV. At the same concentrations of ammonium chloride, the production of vesicular stomatitis virus was reduced approximately 4 log10 units. These results suggest that fusion of the virus with the cell surface plasma membrane is the principal route of entry.  相似文献   

2.
Fluorescence assays for viral membrane fusion employ lipidic probes whose kinetics of fluorescence dequenching should mimic the actual kinetics of membrane merging. We examined the fusion of influenza virus with CEM cells, erythrocyte ghosts or liposomes by monitoring the fluorescence dequenching of each one of the three probes, octadecylrhodamine B chloride (R18), N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (Rh-PE), or rac-2,3-dioleoylglycerol ester of rhodamine B (DORh-B), inserted into the virus membrane. Experimental conditions were designed to allow a clear distinction between membrane mixing and non-specific probe transfer. Fluorescence dequenching observed with Rh-PE was much slower than with R18, unless a particular experimental procedure was used. Using liposomes as a target membrane, the kinetics and extent of the decrease in resonance energy transfer between N-(7-nitro-2,1,3-benzoxadiazol-4-yl)phosphatidylethanolamine (NBD-PE) and Rh-PE, initially embedded in the liposome membrane, were matched by that of the dequenching of viral R18, but not of viral Rh-PE. DORh-B was found not to be appropriate to follow membrane merging. Our results indicate that on a time scale of several minutes R18 more accurately reflects the kinetics of membrane fusion. Nevertheless, control experiments should be performed to evaluate non-specific probe transfer of R18 molecules, whose contribution to fluorescence dequenching can become significant after long incubation times.  相似文献   

3.
Dengue virus (DENV) is the leading cause of mosquito-borne viral illness and death in humans. Like many viruses, DENV has evolved potent mechanisms that abolish the antiviral response within infected cells. Nevertheless, several in vivo studies have demonstrated a key role of the innate immune response in controlling DENV infection and disease progression. Here, we report that sensing of DENV infected cells by plasmacytoid dendritic cells (pDCs) triggers a robust TLR7-dependent production of IFNα, concomitant with additional antiviral responses, including inflammatory cytokine secretion and pDC maturation. We demonstrate that unlike the efficient cell-free transmission of viral infectivity, pDC activation depends on cell-to-cell contact, a feature observed for various cell types and primary cells infected by DENV, as well as West Nile virus, another member of the Flavivirus genus. We show that the sensing of DENV infected cells by pDCs requires viral envelope protein-dependent secretion and transmission of viral RNA. Consistently with the cell-to-cell sensing-dependent pDC activation, we found that DENV structural components are clustered at the interface between pDCs and infected cells. The actin cytoskeleton is pivotal for both this clustering at the contacts and pDC activation, suggesting that this structural network likely contributes to the transmission of viral components to the pDCs. Due to an evolutionarily conserved suboptimal cleavage of the precursor membrane protein (prM), DENV infected cells release uncleaved prM containing-immature particles, which are deficient for membrane fusion function. We demonstrate that cells releasing immature particles trigger pDC IFN response more potently than cells producing fusion-competent mature virus. Altogether, our results imply that immature particles, as a carrier to endolysosome-localized TLR7 sensor, may contribute to regulate the progression of dengue disease by eliciting a strong innate response.  相似文献   

4.
Dengue virus (DENV) is an enveloped RNA virus that causes the most common arthropod-borne infection worldwide. The mechanism by which DENV infects the host cell remains unclear. In this work, we used live-cell imaging and single-virus tracking to investigate the cell entry, endocytic trafficking, and fusion behavior of DENV. Simultaneous tracking of DENV particles and various endocytic markers revealed that DENV enters cells exclusively via clathrin-mediated endocytosis. The virus particles move along the cell surface in a diffusive manner before being captured by a pre-existing clathrin-coated pit. Upon clathrin-mediated entry, DENV particles are transported to Rab5-positive endosomes, which subsequently mature into late endosomes through acquisition of Rab7 and loss of Rab5. Fusion of the viral membrane with the endosomal membrane was primarily detected in late endosomal compartments.  相似文献   

5.
Fluorescent lipid probes in the study of viral membrane fusion   总被引:1,自引:0,他引:1  
Fluorescent lipid probes are widely used in the observation of viral membrane fusion, providing a sensitive method to study fusion mechanism(s). Due to the wealth of data concerning liposome fusion, a variety of fusion assays has been designed including fluorescent probe redistribution, fluorescence dequenching, fluorescence resonance energy transfer and photosensitized labeling. These methods can be tailored for different virus fusion assays. For instance, virions can be loaded with membrane dye which dequenches at the moment of membrane merger. This allows for continuous observation of fusion and therefore kinetic information can be acquired. In the case of cells expressing viral envelope proteins, dye redistribution studies of lipidic and water-soluble fluorophores yield information about fusion intermediates. Lipid probes can be metabolically incorporated into cell membranes, allowing observation of membrane fusion in vitro with minimal chance of flip flop, non-specific transfer and formation of microcrystals. Fluorescent lipid probes have been incorporated into liposomes and/or reconstituted viral envelopes, which provide a well-defined membrane environment for fusion to occur. Interactions of the viral fusion machinery with the membrane can be observed through the photosensitized labeling of the interacting segments of envelope proteins with a hydrophobic probe. Thus, fluorescent lipid probes provide a broad repertoire of fusion assays and powerful tools to produce precise, quantitative data in real time required for the elucidation of the complex process of viral fusion.  相似文献   

6.
It has been suggested that the hepatitis C virus (HCV) infects host cells through a pH-dependent internalization mechanism, but the steps leading from virus attachment to the fusion of viral and cellular membranes remain uncharacterized. Here we studied the mechanism underlying the HCV fusion process in vitro using liposomes and our recently described HCV pseudoparticles (pp) bearing functional E1E2 envelope glycoproteins. The fusion of HCVpp with liposomes was monitored with fluorescent probes incorporated into either the HCVpp or the liposomes. To validate these assays, pseudoparticles bearing either the hemagglutinin of the influenza virus or the amphotropic glycoprotein of murine leukemia virus were used as models for pH-dependent and pH-independent entry, respectively. The use of assays based either on fusion-induced dequenching of fluorescent probes or on reporter systems, which produce fluorescence when the virus and liposome contents are mixed, allowed us to demonstrate that HCVpp mediated a complete fusion process, leading to the merging of both membrane leaflets and to the mixing of the internal contents of pseudoparticle and liposome. This HCVpp-mediated fusion was dependent on low pH, with a threshold of 6.3 and an optimum at about 5.5. Fusion was temperature-dependent and did not require any protein or receptor at the surface of the target liposomes. Most interestingly, fusion was facilitated by the presence of cholesterol in the target membrane. These findings clearly indicate that HCV infection is mediated by a pH-dependent membrane fusion process. This paves the way for future studies of the mechanisms underlying HCV membrane fusion.  相似文献   

7.
Sendai and influenza virions are able to fuse with mycoplasmata. Virus-Mycoplasma fusion was demonstrated by the use of fluorescently labeled intact virions and fluorescence dequenching, as well as by electron microscopy. A high degree of fusion was observed upon incubation of both virions with Mycoplasma gallisepticum or Mycoplasma capricolum. Significantly less virus-cell fusion was observed with Acholeplasma laidlawii, whose membrane contains relatively low amounts of cholesterol. The requirement of cholesterol for allowing virus-Mycoplasma fusion was also demonstrated by showing that a low degree of fusion was obtained with M. capricolum, whose cholesterol content was decreased by modifying its growth medium. Fluorescence dequenching was not observed by incubating unfusogenic virions with mycoplasmata. Sendai virions were rendered nonfusogenic by treatment with trypsin, phenylmethylsulfonyl fluoride, or dithiothreitol, whereas influenza virions were made nonfusogenic by treatment with glutaraldehyde, ammonium hydroxide, high temperatures, or incubation at low pH. Practically no fusion was observed using influenza virions bearing uncleaved hemagglutinin. Trypsinization of influenza virions bearing uncleaved hemagglutinin greatly stimulated their ability to fuse with Mycoplasma cells. Similarly to intact virus particles, also reconstituted virus envelopes, bearing the two viral glycoproteins, fused with M. capricolum. However, membrane vesicles, bearing only the viral binding (HN) or fusion (F) glycoproteins, failed to fuse with mycoplasmata. Fusion between animal enveloped virions and prokaryotic cells was thus demonstrated.  相似文献   

8.
O Nussbaum  A Loyter 《FEBS letters》1987,221(1):61-67
Incubation of fluorescently labeled influenza virus particles with living cultured cells such as lymphoma S-49 cells or hepatoma tissue culture cells resulted in a relatively high degree of fluorescence dequenching. Increase in the degree of fluorescence (35-40% fluorescence dequenching) was observed following incubation at pH 5.0 as well as at pH 7.4. On the other hand, incubation of fluorescently labeled influenza virions with erythrocyte ghosts resulted in fluorescence dequenching only upon incubation at pH 5.0. Only a low degree of fluorescence dequenching was observed upon incubation with inactivated unfusogenic influenza or with hemagglutinino-influenza virions. The results of the present work clearly suggest that the fluorescence dequenching observed at pH 5.0 resulted from fusion with the cells' plasma membranes, while that at pH 7.4 was with the membranes of endocytic vacuoles following endocytosis of the virus particles. Our results show that only the fluorescence dequenching observed at pH 7.4--but not that obtained at pH 5.0--was inhibited by lysosomotropic agents such as methylamine and ammonium chloride, or inhibitors of endocytosis such as EDTA and NaN3.  相似文献   

9.
Fluorescently labeled (bearing N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine (N-NBD-PE)) reconstituted Sendai virus envelopes (RSVE) were used to study fusion between the viral envelopes and cultured living cells such as lymphoma, Friend erythroleukemia cells (FELC) and L cells. Incubation of fusogenic viruses with the above cell lines resulted in a relatively high degree (40-45%) of fluorescence dequenching. On the other hand, incubation of unfusogenic (trypsin or phenylmethylsulfonylfluoride (PMSF)-treated) RSVE with these cells led to very little (6-9%) fluorescence dequenching. The degree of fluorescence dequenching was linearly correlated to the surface density of the virus-inserted N-NBD-PE molecules. Fluorescence photobleaching recovery experiments showed that fusion of fluorescent RSVE with FELC resulted in an infinite dilution of the fluorescent molecules in the recipient cell membranes. The fluorescent probe 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (N-NBD-Cl) was covalently attached to envelopes of intact Sendai virions without significantly impairing their biological activity. Incubation of fluorescently labeled, intact Sendai virions with cultured cells resulted in about 20% fluorescence dequenching. The present data clearly indicate that fluorescently labeled Sendai virions can be used for a quantitative estimation of the degree of virus-membrane fusion.  相似文献   

10.
Sendai virus particles are able to fuse with Pronase-neuraminidase-treated human erythrocyte membranes as well as with vesicles obtained from chromaffin granules of bovine medulla. Fusion is inferred either from electron microscopic studies or from the observation that incubation of fluorescently labeled (bearing octadecyl Rhodamine B chloride) virions, with right-side-out erythrocyte vesicles (ROV) or with chromaffin granule membrane vesicles (CGMV), resulted in fluorescence dequenching. Fusion of Sendai virions with virus receptor depleted ROV was observed only under hypotonic conditions. Fusion with virus receptor depleted ROV required the presence of the two viral envelope glycoproteins, namely, the HN and F polypeptides. A 3-fold increase in the degree of fluorescence dequenching (virus-membrane fusion) was also obtained upon incubation of Sendai virions with CGMV in medium of low osmotic strength. This increase was not observed with inactivated, unfusogenic Sendai virions. The results of the present work demonstrate that, under hypotonic conditions, fusion between Sendai virions and biological membranes does not require the presence of specific receptors. Such fusion is characterized by the same features as fusion with and infection by Sendai virions of living cultured cells.  相似文献   

11.
We have investigated the initial steps in the interaction between infectious salmon anemia virus (ISAV) and cultured cells from Atlantic salmon (SHK-1 cell line). Using radioactively or fluorescently labelled viral particles we have studied the binding and fusion kinetics and the effect of pH on binding, uptake, and fusion of ISAV to SHK-1 cells and liposomes. As pH in the medium was reduced from 7.5 to 4.5, the association of virus to the cells was nearly doubled. The same effect of pH was observed when fusion between ISAV and liposomes was analyzed. In addition, the binding of ISAV to intact SHK-1 cells and to cell membrane proteins blotted onto filters was neuraminidase sensitive. However, the increased binding induced by low pH was not neuraminidase sensitive, probably reflecting activation of a fusion peptide at low pH. By using confocal fluorescence microscopy, the increased fusion of fluorescently labelled ISAV with the plasma membrane due to low pH could be demonstrated. When vacuolar pH in the cells was raised during inoculation with chloroquine or ammonium chloride, both electron and confocal microscopy showed accumulation of ISAV in endosomes and lysosomes. Production of infectious virus could be increased by lowering the extracellular pH during infection. Furthermore, chloroquine present during virus inoculation also caused a reduction in the synthesis of viral proteins in ISAV-infected cells as well as in the production of infective virus. These results indicate that ISAV binds to sialic acid residues on the cell surface and that the fusion between virus and cell membrane takes place in the acid environment of endosomes. This provides further evidence for a high degree of similarity between ISAV and influenza virus and extends the basis for the classification of this virus as a member of the Orthomyxoviridae family.  相似文献   

12.
A method has been developed to follow fusion of individual pseudotyped virus expressing HIV-1 Env to cells by time-resolved fluorescence microscopy. Viral envelopes were labeled with a fluorescent lipid dye (DiD) and virus content was rendered visible by incorporating a Gag-GFP chimera. The Gag-GFP is naturally cleaved to the much smaller NC-GFP fragment in the mature virions. NC-GFP was readily released upon permeabilization of the viral envelope, whereas the capsid was retained. The NC-GFP thus provides a relatively small and mobile aqueous marker to follow viral content transfer. In fusion experiments, virions were bound to cells at low temperature, and fusion was synchronously triggered by a temperature jump. DiD transferred from virions to cells without a significant lag after the temperature jump. Some virions released DiD but retained NC-GFP. Surprisingly, the fraction of lipid mixing events yielding NC-GFP transfer was dependent on the type of target cell: of three infectable cell lines, only one permitted NC-GFP transfer within minutes of raising temperature. NC-GFP release did not correlate with the level of CD4 or coreceptor expression in the target cells. The data indicate that fusion pores formed by HIV-1 Env can remain small for a relatively long time before they enlarge.  相似文献   

13.
The fluorescent probes, N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine and lissamine-rhodamine-B-sulfonylphosphatidylethanolamine, were inserted at the appropriate surface density into membranes of reconstituted Sendai virus envelopes, thus allowing transfer of energy between the fluorescent probes. In addition, only the fluorescent molecule N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine was inserted into the viral envelopes, resulting in self-quenching. Incubation of fluorescent, reconstituted Sendai virus envelopes with human erythrocyte ghosts resulted in either reduction in the efficiency of energy transfer or in fluorescence dequenching. No reduction in the efficiency of energy transfer or fluorescence dequenching was observed when fluorescent, reconstituted Sendai virus envelopes were incubated with glutaraldehyde-fixed or desialized human erythrocyte ghosts. Similarly, no change in the fluorescence value was observed when nonfusogenic, reconstituted Sendai virus envelopes were incubated with human erythrocyte ghosts. These results clearly show that reduction in the efficiency of energy transfer or dequenching is due to virus-membrane fusion and not to lipid-lipid exchange. Incubation of reconstituted Sendai virus envelopes, carrying inserted N-4-nitrobenzo-2-oxa-1,3-diazolephosphatidylethanolamine, with cultured cells also resulted in a significant and measurable dequenching. However, incubation of nonfusogenic, fluorescent reconstituted Sendai virus envelopes with hepatoma tissue culture cells also resulted in fluorescent dequenching, the degree of which was about 50% of that observed with fusogenic, fluorescent reconstituted viral envelopes. It is therefore possible that, in addition to virus-membrane fusion, endocytosis of fluorescent viral envelopes results in fluorescence dequenching as well.  相似文献   

14.
The fusion of influenza virus with cultured cells has been investigated. The virus was labelled with the fluorescent probe octadecyl rhodamine B and fusion was monitored as fluorescence dequenching due to dilution of the probe from the viral into a cellular target membrane. Fusion with the plasma membrane does not occur, unless the extracellular pH is temporarily lowered. At neutral pH fusion occurs only after a lag phase of 10-15 min, the time required for virus internalization, and the reaction is inhibited by NH4Cl, indicating that it takes place in an intracellular acidic compartment, most likely the endosome. This suggests that influenza virus infects cells via the endocytic pathway.  相似文献   

15.
We have studied the kinetics of low-pH-induced fusion between erythrocyte membranes and membranes containing influenza virus hemagglutinin by using assays based on the fluorescence dequenching of the lipophilic dye octadecylrhodamine. Stopped-flow mixing and fast data acquisition have been used to monitor the early stages of influenza virus fusion. We have compared this with the kinetics observed for fusion of an NIH 3T3 cell line, transformed with bovine papillomavirus, which constitutively expresses influenza virus hemagglutinin (GP4f cells). Virus and GP4f cells both display a pH-dependent time lag before the onset of fluorescence dequenching, but of an order of magnitude difference, ca. 2 s versus ca. 20 s. We have adopted two strategies to investigate whether the difference in lag time reflects the surface density of acid-activated hemagglutinin, able to undergo productive conformational change. (i) Hemagglutinin expressed on the cell surface requires proteolytic cleavage with trypsin from an inactive HAO form; we have limited the extent of proteolysis. (ii) We have used infection of CV-1 cells with a recombinant simian virus 40 bearing the influenza virus hemagglutinin gene. The surface expression of hemagglutinin is a function of time postinfection. For low-pH-induced fusion of both types of cell with erythrocytes, the lag time decreases with increasing hemagglutinin densities. Our results do not indicate a cooperative phenomenon at the level of the principal rate-determining step. We also show in the instance of virus fusion, that the magnitude of the delay time is a function of the target membrane transbilayer lipid distribution. We conclude that for a given amount of pH-activated hemagglutinin per unit area of membrane, the kinetics of fusion is determined by nonspecific physical properties of the membranes involved.  相似文献   

16.
The kinetics of poly(ethylene glycol) (PEG)-induced fusion between intact human erythrocytes was continuously monitored by a fluorescence lipid mixing method, utilizing the dequenching of the fluorescence probe, 1-oleoyl-2-[12-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]dodecanoyl ] phosphatidylcholine (C12-NBD-PC). The steady-state fluorescence intensity was detected from the surface of cells in a monolayer on an alcian blue-coated glass coverslip. The relief of fluorescence self-quenching after fusion between C12-NBD-PC labeled and unlabeled intact erythrocytes was measured. The extent of fluorescence dequenching was normalized based on the measured concentration of probes in membranes, the projected partial dequenching due both to dilution by intercellular fusion, and the dilution between the inner and outer leaflets of membranes (flip-flop). There was no significant increase in fluorescence intensity during PEG treatment of 5 min, at 4 degrees C. Intensity increased immediately after the dilution of PEG, and reached saturation in 30 min. The efficiency of fusion increased with the increasing of PEG concentrations. Only 4% enhancement of saturated relative fluorescence intensity was detected in 25 wt% PEG-induced cell fusion; 23% enhancement in 30 wt%; and 66% enhancement in 35 wt%. The transfer of fluorescent probes between membrane bilayer leaflets (flip-flop) was also monitored during the fusion process. Flip-flop was monitored in confluent monolayers as well as in isolated cells. There was no significant spontaneous flip-flop within 30 min of dilution. The relative fluorescence intensity enhancement contributed by the dilution of probes between fused labeled and unlabeled cells (at a 1:1 ratio) was found to account for only 39% of the observed final dequenching, whereas the contribution by flip-flop associated with cell fusion was found to account for 9%, and flip-flop without fusion contributed approximately 18%. A portion of the flip-flop is a consequence of hemolysis. Therefore, fluorescence dequenching measurements of fusion of whole cells must be interpreted with caution.  相似文献   

17.
We have studied fusion between membranes of vesicular stomatitis virus (VSV) and Vero cells using an assay for lipid mixing based on the relief of self-quenching of octadecylrhodamine (R18) fluorescence. We could identify the two pathways of fusion by the kinetics of R18 dequenching, effects of inhibitors, temperature dependence, and dependence on osmotic pressure. Fusion at the plasma membrane began immediately after lowering the pH below 6 and showed an approximately exponential time course, whereas fusion via the endocytic pathway (pH 7.4) became apparent after a time delay of about 2 min. Fusion via the endocytic pathway was attenuated by treating cells with metabolic inhibitors and agents that raise the pH of the endocytic vesicle. A 10-fold excess of unlabeled virus arrested R18VSV entry via the endocytic pathway, whereas R18 dequenching below pH 6 (fusion at the plasma membrane) was not affected by the presence of unlabeled virus. The temperature dependence for fusion at pH 7.4 (in the endosome) was much steeper than that for fusion at pH 5.9 (with the plasma membrane). Fusion via the endocytic pathway was attenuated at hypo-osmotic pressures, whereas fusion at the plasma membrane was not affected by this treatment. The pH profile of Vero-VSV fusion at the plasma membrane, as measured by the dequenching method, paralleled that observed for VSV-induced cell-cell fusion. Fusion was blocked by adding neutralizing antibody to the Vero-VSV complexes. Activation of the fusion process by lowering the pH was reversible, in that the rate of fusion was arrested by raising the pH back to 7.4. The observation that pH-dependent fusion occurred at similar rates with fragments and with intact cells indicates that pH, voltage, or osmotic gradients are not required for viral fusion.  相似文献   

18.
The kinetics of fusion of Sendai virus (Z strain) with the human promyelocytic leukemia cell line HL-60, and the human T lymphocytic leukemia cell line CEM was investigated. Fusion was monitored by fluorescence dequenching of octadecylrhodamine (R-18) incorporated in the viral membrane. For one virus isolate (Z/G), the overall rate of fusion (at 37 degrees C) increased as the pH was lowered, reaching a maximum at about pH 5, the lowest pH tested. For another isolate (Z/SF) the rate and extent of fusion were lower at pH 5 than at neutral pH. Lowering the pH from neutral to 5 after several minutes of incubation of either isolate with HL-60 cells resulted in an enhanced rate of fluorescence dequenching. Nevertheless, experiments utilizing NH4Cl indicated that fusion of the virus with cells was not enhanced by the mildly acidic pH of the endosome lumen. Analysis of the kinetics of fusion by means of a mass action model resulted in good simulation and predictions for the time-course of fusion. For the isolate which showed maximal fusogenic activity at pH 5, the rate constant of fusion (approx. 0.1 s-1) at neutral pH was in the range found previously for virus-liposome fusion, whereas the rate constant of adhesion was close to the upper limit for diffusion-controlled processes (1.4.10(10) M-1 s-1). However, for the other isolate (Z/SF) the rate constant of fusion at neutral pH was very small (less than 0.01 s-1), whereas the rate constant of adhesion was larger (greater than or equal to 2.10(10) M-1 s-1). Lowering the temperature decreased the fusion rate. Experiments involving competition with excess unlabeled virions indicated that not all binding sites for Sendai virus on HL-60 cells are fusion sites. The virus fusion activity towards HL-60 cells at neutral pH was not altered significantly by pre-incubation of the virus at pH 5 or 9, in contrast to earlier observations with liposomes and erythrocyte ghosts, or results based on erythrocyte hemolysis or cell-cell fusion.  相似文献   

19.
Dengue virus (DENV) nonstructural protein-1 (NS1) is a secreted glycoprotein that is absent from viral particles but accumulates in the supernatant and on the plasma membrane of cells during infection. Immune recognition of cell surface NS1 on endothelial cells has been hypothesized as a mechanism for the vascular leakage that occurs during severe DENV infection. However, it has remained unclear how NS1 becomes associated with the plasma membrane, as it contains no membrane-spanning sequence motif. Using flow cytometric and ELISA-based binding assays and mutant cell lines lacking selective glycosaminoglycans, we show that soluble NS1 binds back to the surface of uninfected cells primarily via interactions with heparan sulfate and chondroitin sulfate E. DENV NS1 binds directly to the surface of many types of epithelial and mesenchymal cells yet attaches poorly to most peripheral blood cells. Moreover, DENV NS1 preferentially binds to cultured human microvascular compared to aortic or umbilical cord vein endothelial cells. This binding specificity was confirmed in situ as DENV NS1 bound to lung and liver but not intestine or brain endothelium of mouse tissues. Differential binding of soluble NS1 by tissue endothelium and subsequent recognition by anti-NS1 antibodies could contribute to the selective vascular leakage syndrome that occurs during severe secondary DENV infection.  相似文献   

20.
Interferon stimulated genes (ISGs) target viruses at various stages of their infectious life cycles, including at the earliest stage of viral entry. Here we identify ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2) as a gene upregulated by type I IFN treatment in a STAT1-dependent manner. ADAP2 functions as a GTPase-activating protein (GAP) for Arf6 and binds to phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3) and PI(3,4)P2. We show that overexpression of ADAP2 suppresses dengue virus (DENV) and vesicular stomatitis virus (VSV) infection in an Arf6 GAP activity-dependent manner, while exerting no effect on coxsackievirus B (CVB) or Sendai virus (SeV) replication. We further show that ADAP2 expression induces macropinocytosis and that ADAP2 strongly associates with actin-enriched membrane ruffles and with Rab8a- and LAMP1-, but not EEA1- or Rab7-, positive vesicles. Utilizing two techniques—light-sensitive neutral red (NR)-containing DENV and fluorescence assays for virus internalization—we show that ADAP2 primarily restricts DENV infection at the stage of virion entry and/or intracellular trafficking and that incoming DENV and VSV particles associate with ADAP2 during their entry. Taken together, this study identifies ADAP2 as an ISG that exerts antiviral effects against RNA viruses by altering Arf6-mediated trafficking to disrupt viral entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号