首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We have previously shown that L-Asp-151 in alphaA-crystallin from the human lens is converted to the biologically uncommon D-isomer. This process was not simple racemization, but stereoinversion, accompanied by isomerization to form the beta-Asp residue, such that L-beta-Asp, D-alpha-Asp and D-beta-Asp were formed. The present study shows that Asp-58 of human alphaA-crystallin is also converted to the D-isomer to a high degree to form the same isomers with age. The D/L ratio of beta-Asp-58 in aged normal lens increased to more than 3.0, showing stereoinversion by the 60 year range, then decreased to 1.0 in the 80 year range, while the isomerization of Asp-58 increased in the 80 year range. We also measured inversion and isomerization of the same residue from cataractous and normal human lenses of the 60 year range. The D/L ratio of Asp-58 from cataractous lenses was significantly lower than that from normal lenses, while the isomerization at Asp-58 in cataractous alphaA-crystallin was significantly higher than that of normal alphaA-crystallin. These results indicate that isomerization to the beta isomer of Asp-58 in cataractous alphaA-crystallin increased more than inversion to the D-isomer, suggesting that there are changes in the native structure of alphaA-crystallin in the human cataractous lens.  相似文献   

2.
Although proteins are generally composed entirely of l-amino acids, we have previously shown that Asp-151 in alphaA-crystallin from aged human lens is converted to the biologically uncommon d-isomer to a high degree. The formation of d-isomer was not simple racemization, but stereoinvertion. The reaction was also accompanied with isomerization to form beta-Asp (isoaspartate) residue simultaneously; therefore, four isomers of Asp-151, normal l-alpha-Asp and biologically uncommon l-beta-Asp, d-alpha-Asp, and d-beta-Asp, are formed in alphaA-crystallins. In the present study, we measured the ratio of the four isomers of Asp-151 in alphaA-crystallins obtained from total lens proteins of human lenses of newborn and 30-, 60-, and 80-year-olds. The isomers increased with age, and the total amount of three isomers was more than that of normal l-alpha-Asp in the alphaA-crystallin of the human lenses of the 80-year-olds. These drastic changes started at birth, with about 45% of normal l-alpha-Asp lost by 30 years. These modifications of the Asp residue likely affect the three-dimensional packing array of the lens proteins.  相似文献   

3.
Asp58 and Asp151 in human lens alphaA-crystallin invert and isomerize to d-beta-aspartyl residues with age. Here, we report that the racemization rate constants (k) of Asp58 and Asp151 residues in human recombinant alphaA-crystallin at 37 degrees C are 3.72 +/- 0.8 x 10(-4) and 10.7 +/- 0.7 x 10(-4)/day, respectively. The activation energy of racemization of Asp58 and Asp151 in the protein was 27.0 +/- 0.5 kcal/mol and 21.0 +/- 0.5 kcal/mol, respectively. The time required for the D/L ratio of Asp58 and Asp151 to approximate to 1.0 (D/L ratio of Asp = 0.99) at 37 degrees C was estimated as 20.9 +/- 3.7 and 6.80 +/- 0.4 years, respectively. Thus, Asp151 is more susceptible to racemization than Asp58, consistent with data from short model peptides. However, the racemization rates of both Asp58 and Asp151 residues in the protein were twice as rapid as in model peptides. These results indicate that the racemization of Asp residues in alphaA-crystallin may be influenced not only by the primary structure but also by the higher order structure around Asp residues in the protein.  相似文献   

4.
We have previously shown that biologically uncommon d-beta-aspartic acids (Asp) were localized with very high contents at Asp-151 and Asp-58 of alpha A-crystallin from aged human lenses. The amounts increased with age, and we have proposed the mechanism of this reaction. In the present study, in order to elucidate the possible relationship between the formation of d-beta-aspartic acids in alpha A-crystallin and cataract formation, we measured the d/l ratio of beta-Asp-151 of alpha A-crystallin from both cataractous and age-matched normal human lenses. alpha A-crystallin from total proteins of cataractous and age-matched normal lenses was prepared, followed by tryptic digestion and quantification of d/l ratios for tryptic fragments containing the alpha- and beta-aspartate forms of Asp-151 residues. The results demonstrate that the d/l ratio of beta-Asp-151 of alpha A-crystallin from normal lenses is not statistically significant from that of alpha A-crystallin from cataractous lenses, suggesting that formation of this biologically uncommon amino acid may not play a role in human cataractogenesis.  相似文献   

5.
Fujii N  Kawaguchi T  Sasaki H  Fujii N 《Biochemistry》2011,50(40):8628-8635
The lens proteins are composed of α-, β-, and γ-crystallins that interact with each other to maintain the transparency and refractive power of the lens. Because the lens crystallins are long-lived proteins, they undergo various post-translational modifications including racemization, isomerization, deamidation, oxidation, glycation, and truncation. In βB2-crystallin, which is the most abundant β-crystallin, the deamidation of asparagine and glutamine residues has been reported. Here, we found that the aspartyl (Asp) residue at position 4 of βB2-crystallin in the lenses of elderly human individuals undergoes a significant degree of inversion and isomerization to the biologically uncommon residue D-β-Asp. Surprisingly, the D/L ratio of β-Asp at position 4 in βB2-crystallin from elderly donors (67-77 year old) was 0.88-3.21. A D/L ratio of amino acids greater than 1.0 is defined as an inversion of configuration from the L- to D-form, rather than a racemization. These extremely high D/L ratios are equivalent to those of Asp-58 and Asp-151 (D/L ratio: 3.1 for Asp-58 and 5.7 for Asp-151) in αA-crystallin from elderly donors (~80 year old) as reported previously. Initially, we identified specific Asp residues in the β-crystallin family of proteins that undergo a high degree of inversion. These results show that the isomerization and inversion of Asp residues occurs both in the α- and β-crystallins of the lens. Inversion of these Asp residues directly affects the higher order structure of the protein. Hence, this modification may change crystallin-crystallin interactions and disrupt the function of crystallins in the lens.  相似文献   

6.
Summary Chemical modifications suggested that acidic amino acids such as aspartic and glutamic acids are involved in the active sites ofBacillus cereus sphingomyelinase. Among aspartic acid residues in the conserved regions of this enzyme, Asp-126, Asp-156, Asp-233 and Asp-295 were converted to glycine by site-directed mutagenesis. According to prediction on structural similarity to pancreatic DNase I, His-151 and His-296 were also converted to alanine. The Asp and His mutants, D126G, D156G, D233G, D295G, H151A and H296A, were produced inBacillus brevis 47, a protein-hyperproducing strain. The catalytic activities of D295G, H151A and H296A were completely abolished, and sphingomyelin-hydrolyzing activity of D126G or D156G was reduced by more than 50%. The activity of D126G towardp-NPPC was comparable to that of the wild-type, while D156G catalyzed the hydrolysis of HNP andp-NPPC more efficiently than the wild-type. Hemolytic activities of the mutants were parallel to their sphingomyelin-hydrolyzing activities.  相似文献   

7.
Recent studies have suggested that the isomerization/racemization of aspartate residues in proteins increases in aged tissues. One such residue is Asp151 in lens‐specific αA‐crystallin. Although many isomerization/racemization sites have been reported in various proteins, the factors that lead to those modifications in proteins in vivo remain obscure. Therefore, an in vitro system is needed to assess the mechanisms of modifications of Asp under various conditions. Deamidation of Asn to Asp in proteins occurs more rapidly than isomerization/racemization of Asp, although the reaction passes through the same intermediate in both pathways. Here, therefore, we replaced Asp151 in human lens αA‐crystallin with Asn by using site‐directed mutagenesis. The recombinant protein was expressed in Escherichia coli and used to investigate the deamidation/isomerization/racemization of Asn151 after incubation at 50°C for various durations and under different pH. After incubation, the mutant αA‐crystallin was subjected to enzymatic digestion followed by liquid chromatography–MS/MS to evaluate the ratio of modifications in Asn151‐containing peptides. The Asp151Asn αA‐crystallin mutant showed rapid deamidation to Asp with the formation of specific Asp isomers. In particular, deamidation increased greatly under basic conditions. By contrast, subunit–subunit interactions between αA‐crystallin and αB‐crystallin had little effect on the modification of Asn151. Our findings suggest that the Asp151Asn αA‐crystallin mutant represents a good in vitro model protein to assess deamidation, isomerization, and the racemization intermediates. Furthermore, our in vitro results show a different trend from in vivo data, implying the presence of specific factors that induce racemization from L‐Asp to D‐Asp residues in vivo.  相似文献   

8.
Evidence for the involvement of Ser-203, His-447, and Glu-334 in the catalytic triad of human acetylcholinesterase was provided by substitution of these amino acids by alanine residues. Of 20 amino acid positions mutated so far in human acetylcholinesterase (AChE), these three were unique in abolishing detectable enzymatic activity (less than 0.0003 of wild type), yet allowing proper production, folding, and secretion. This is the first biochemical evidence for the involvement of a glutamate in a hydrolase triad (Schrag, J.D., Li, Y., Wu, M., and Cygler, M. (1991) Nature 351, 761-764), supporting the x-ray crystal structure data of the Torpedo californica acetylcholinesterase (Sussman, J.L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L. and Silman, I. (1991) Science 253, 872-879). Attempts to convert the AChE triad into a Cys-His-Glu or Ser-His-Asp configuration by site-directed mutagenesis did not yield effective AChE activity. Another type of substitution, that of Asp-74 by Gly or Asn, generated an active enzyme with increased resistance to succinylcholine and dibucaine; thus mimicking in an AChE molecule the phenotype of the atypical butyrylcholinesterase natural variant (D70G mutation). Mutations of other carboxylic residues Glu-84, Asp-95, Asp-333, and Asp-349, all conserved among cholinesterases, did not result in detectable alteration in the recombinant AChE, although polypeptide productivity of the D95N mutant was considerably lower. In contrast, complete absence of secreted human AChE polypeptide was observed when Asp-175 or Asp-404 were substituted by Asn. These two aspartates are conserved in the entire cholinesterase/thyroglobulin family and appear to play a role in generating and/or maintaining the folded state of the polypeptide. The x-ray structure of the Torpedo acetylcholinesterase supports this assumption by revealing the participation of these residues in salt bridges between neighboring secondary structure elements.  相似文献   

9.
Leptin is a pleiotropic hormone acting both centrally and peripherally. It participates in a variety of biological processes, including energy metabolism, reproduction, and modulation of the immune response. So far, structural elements affecting leptin binding to its receptor remain unknown. We employed random mutagenesis of leptin, followed by selection of high affinity mutants by yeast surface display and discovered that replacing residue Asp-23 with a non-negatively charged amino acid leads to dramatically enhanced affinity of leptin for its soluble receptor. Rational mutagenesis of Asp-23 revealed the D23L substitution to be most effective. Coupling the Asp-23 mutation with alanine mutagenesis of three amino acids (L39A/D40A/F41A) previously reported to convert leptin into antagonist resulted in potent antagonistic activity. These novel superactive mouse and human leptin antagonists (D23L/L39A/D40A/F41A), termed SMLA and SHLA, respectively, exhibited over 60-fold increased binding to leptin receptor and 14-fold higher antagonistic activity in vitro relative to the L39A/D40A/F41A mutants. To prolong and enhance in vivo activity, SMLA and SHLA were monopegylated mainly at the N terminus. Administration of the pegylated SMLA to mice resulted in a remarkably rapid, significant, and reversible 27-fold more potent increase in body weight (as compared with pegylated mouse leptin antagonist), because of increased food consumption. Thus, recognition and mutagenesis of Asp-23 enabled construction of novel compounds that induce potent and reversible central and peripheral leptin deficiency. In addition to enhancing our understanding of leptin interactions with its receptor, these antagonists enable in vivo study of the role of leptin in metabolic and immune processes and hold potential for future therapeutic use in disease pathologies involving leptin.  相似文献   

10.
Choi G  Ha NC  Kim SW  Kim DH  Park S  Oh BH  Choi KY 《Biochemistry》2000,39(5):903-909
Delta 5-3-ketosteroid isomerase (KSI) catalyzes the allylic isomerization of Delta 5-3-ketosteroids at a rate approaching the diffusion limit by an intramolecular transfer of a proton. Despite the extensive studies on the catalytic mechanism, it still remains controversial whether the catalytic residue Asp-99 donates a hydrogen bond to the steroid or to Tyr-14. To clarify the role of Asp-99 in the catalysis, two single mutants of D99E and D99L and three double mutants of Y14F/D99E, Y14F/D99N, and Y14F/D99L have been prepared by site-directed mutagenesis. The D99E mutant whose side chain at position 99 is longer by an additional methylene group exhibits nearly the same kcat as the wild-type while the D99L mutant exhibits ca. 125-fold lower kcat than that of the wild-type. The mutations made at positions 14 and 99 exert synergistic or partially additive effect on kcat in the double mutants, which is inconsistent with the mechanism based on the hydrogen-bonded catalytic dyad, Asp-99 COOH...Tyr-14 OH...C3-O of the steroid. The crystal structure of D99E/D38N complexed with equilenin, an intermediate analogue, at 1.9 A resolution reveals that the distance between Tyr-14 O eta and Glu-99 O epsilon is ca. 4.2 A, which is beyond the range for a hydrogen bond, and that the distance between Glu-99 O epsilon and C3-O of the steroid is maintained to be ca. 2.4 A, short enough for a hydrogen bond to be formed. Taken together, these results strongly support the idea that Asp-99 contributes to the catalysis by donating a hydrogen bond directly to the intermediate.  相似文献   

11.
Beta-oxidation of acyl-CoAs in mammalian peroxisomes can occur via either multifunctional enzyme type 1 (MFE-1) or type 2 (MFE-2), both of which catalyze the hydration of trans-2-enoyl-CoA and the dehydrogenation of 3-hydroxyacyl-CoA, but with opposite chiral specificity. Amino acid sequence alignment of the 2-enoyl-CoA hydratase 2 domain in human MFE-2 with other MFE-2s reveals conserved protic residues: Tyr-347, Glu-366, Asp-370, His-406, Glu-408, Tyr-410, Asp-490, Tyr-505, Asp-510, His-515, Asp-517, and His-532. To investigate their potential roles in catalysis, each residue was replaced by alanine in site-directed mutagenesis, and the resulting constructs were tested for complementation in a yeast. After additional screening, the wild type and noncomplementing E366A and D510A variants were expressed and characterized. The purified proteins have similar secondary structural elements, with the same subunit composition. The E366A variant had a k(cat)/K(m) value 100 times lower than that of the wild type MFE-2 at pH 5, whereas the D510A variant was inactive. Asp-510 was imbedded in a novel hydratase 2 motif found in the hydratase 2 proteins. The data show that the hydratase 2 reaction catalyzed by MFE-2 requires two protic residues, Glu-366 and Asp-510, suggesting that their catalytic role may be equivalent to that of the two catalytic residues of hydratase 1.  相似文献   

12.
To elucidate the mechanism of alphaA-crystallin chaperone function, a detailed thermodynamic analysis of its binding to destabilized, site-directed mutants of T4 lysozyme was carried out. The selected mutants form a ladder of stabilities spanning the 5-10 kcal/mol range of free energy of unfolding. The crystal structures of the majority of the mutants have been previously determined and found to be similar to that of the wild type with no evidence of static local unfolding. Complex formation between alphaA-crystallin and T4 lysozyme was observed directly via the changes in the electron paramagnetic resonance lineshape of a nitroxide introduced at a non-destabilizing, solvent exposed site in T4 lysozyme. AlphaA-crystallin differentially interacts with the mutants, binding the more destabilized ones to a larger extent despite the similar structure of their native states. Our results suggest that the states recognized by alphaA-crystallin are non-native excited states distinct from the unfolded state. Stable complexes are formed when the free energy of binding to alphaA-crystallin is on the order of the free energy associated with the transition from the excited state to the native state. Biphasic binding isotherms reveal two modes of interactions with distinct affinities and stoichiometries. Highly destabilized mutants preferentially bind to the high capacity mode, suggesting conformational preference in the use of each mode. Furthermore, binding can be enhanced by increased temperature and pH, which may be reflecting conformational changes in alphaA-crystallin oligomeric structure.  相似文献   

13.
Metallo-beta-lactamase L1 from Stenotrophomonas maltophilia is a dinuclear Zn(II) enzyme that contains a metal-binding aspartic acid in a position to potentially play an important role in catalysis. The presence of this metal-binding aspartic acid appears to be common to most dinuclear, metal-containing, hydrolytic enzymes; particularly those with a beta-lactamase fold. In an effort to probe the catalytic and metal-binding role of Asp-120 in L1, three site-directed mutants (D120C, D120N, and D120S) were prepared and characterized using metal analyses, circular dichroism spectroscopy, and presteady-state and steady-state kinetics. The D120C, D120N, and D120S mutants were shown to bind 1.6 +/- 0.2, 1.8 +/- 0.2, and 1.1 +/- 0.2 mol of Zn(II) per monomer, respectively. The mutants exhibited 10- to 1000-fold drops in kcat values as compared with wild-type L1, and a general trend of activity, wild-type > D120N > D120C and D120S, was observed for all substrates tested. Solvent isotope and pH dependence studies indicate one or more protons in flight, with pKa values outside the range of pH 5-10 (except D120N), during a rate-limiting step for all the enzymes. These data demonstrate that Asp-120 is crucial for L1 to bind its full complement of Zn(II) and subsequently for proper substrate binding to the enzyme. This work also confirms that Asp-120 plays a significant role in catalysis, presumably via hydrogen bonding with water, assisting in formation of the bridging hydroxide/water, and a rate-limiting proton transfer in the hydrolysis reaction.  相似文献   

14.
Nuclear inclusion a (NIa) protease of tobacco vein mottling virus is responsible for the processing of the viral polyprotein into functional proteins. In order to identify the active-site residues of the TVMV NIa protease, the putative active-site residues, His-46, Asp-81 and Cys-151, were mutated individually to generate H46R, H46A, D81E, D81N, C151S, and C151A, and their mutational effects on the proteolytic activities were examined. Proteolytic activity was completely abolished by the mutations of H46R, H46A, D81N, and C151A, suggesting that the three residues are crucial for catalysis. The mutation of D81E decreased kcat marginally by about 4.7-fold and increased Km by about 8-fold, suggesting that the aspartic acid at position 81 is important for substrate binding but can be substituted by glutamate without any significant decrease in catalysis. The replacement of Cys-151 by Ser to mimic the catalytic triad of chymotrypsin-like serine protease resulted in the drastic decrease in kcat by about 1,260-fold. This result might be due to the difference of the active-site geometry between the NIa protease and chymotrypsin. The protease exhibited a bell-shaped pH-dependent profile with a maximum activity approximately at pH 8.3 and with the abrupt changes at the respective pKm values of approximately 6.6 and 9.2, implying the involvement of a histidine residue in catalysis. Taken together, these results demonstrate that the three residues, His-46, Asp-81, and Cys-151, play a crucial role in catalysis of the TVMV NIa protease.  相似文献   

15.
The NIa proteinase from pepper vein banding virus (PVBV) is a sequence-specific proteinase required for processing of viral polyprotein in the cytoplasm. It accumulates in the nucleus of the infected plant cell and forms inclusion bodies. The function of this protein in the nucleus is not clear. The purified recombinant NIa proteinase was active, and the mutation of the catalytic residues His-46, Asp-81, and Cys-151 resulted in complete loss of activity. Most interesting, the PVBV NIa proteinase exhibited previously unidentified activity, namely nonspecific double-stranded DNA degradation. This DNase activity of the NIa proteinase showed an absolute requirement for Mg(2+). Site-specific mutational analysis showed that of the three catalytic residues, Asp-81 was the crucial residue for DNase activity. Mutation of His-46 and Cys-151 had no effect on the DNase activity, whereas mutant D81N was partially active, and D81G was completely inactive. Based on kinetic analysis and molecular modeling, a metal ion-dependent catalysis similar to that observed in other nonspecific DNases is proposed. Similar results were obtained with glutathione S-transferase-fused PVBV NIa proteinase and tobacco etch virus NIa proteinase, confirming that the DNase function is an intrinsic property of potyviral NIa proteinase. The NIa protein present in the infected plant nuclear extract also showed the proteinase and the DNase activities, suggesting that the PVBV NIa protein that accumulates in the nucleus late in the infection cycle might serve to degrade the host DNA. Thus the dual function of the NIa proteinase could play an important role in the life cycle of the virus.  相似文献   

16.
The purpose of the study was to compare the effects of deamidation alone, truncation alone, or both truncation and deamidation on structural and functional properties of human lens alphaA-crystallin. Specifically, the study investigated whether deamidation of one or two sites in alphaA-crystallin (i.e., alphaA-N101D, alphaA-N123D, alphaA-N101/123D) and/or truncation of the N-terminal domain (residues 1-63) or C-terminal extension (residues 140-173) affected the structural and functional properties relative to wild-type (WT) alphaA. Human WT-alphaA and human deamidated alphaA (alphaA-N101D, alphaA-N123D, alphaA-N101/123D) were used as templates to generate the following eight N-terminal domain (residues 1-63) deleted or C-terminal extension (residues 140-173) deleted alphaA mutants and deamidated plus N-terminal domain or C-terminal extension deleted mutants: (i) alphaA-NT (NT, N-terminal domain deleted), (ii) alphaA-N101D-NT, (iii) alphaA-N123D-NT, (iv) alphaA-N101/123D-NT, (v) alphaA-CT (CT, C-terminal extension deleted), (vi) alphaA-N101D-CT, (vii) alphaA-N123D-CT, and (viii) alphaA-N101/123D-CT. All of the proteins were purified and their structural and functional (chaperone activity) properties determined. The desired deletions in the alphaA-crystallin mutants were confirmed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometric analysis. Relative to WT-alphaA homomers, the mutant proteins exhibited major structural and functional changes. The maximum decrease in chaperone activity in homomers occurred on deamidation of N123 residue, but it was substantially restored after N- or C-terminal truncations in this mutant protein. Far-UV circular dichroism (CD) spectral analyses generally showed an increase in the beta-contents in alphaA mutants with deletions of N-terminal domain or C-terminal extension and also with deamidation plus above N- or C-terminal deletions. Intrinsic tryptophan (Trp) and total fluorescence spectral studies suggested altered microenvironments in the alphaA mutant proteins. Similarly, the ANS (8-anilino-1-naphthalenesulfate) binding showed generally increased fluorescence with blue shift on deletion of the N-terminal domain in the deamidated mutant proteins, but opposite effects were observed on deletion of the C-terminal extension. Molecular mass, polydispersity of homomers, and the rate of subunit exchange with WT-alphaB-crystallin increased on deletion of the C-terminal extension in the deamidated alphaA mutants, but on N-terminal domain deletion these values showed variable results based on the deamidation site. In summary, the data suggested that the deamidation alone showed greater effect on chaperone activity than the deletion of N-terminal domain or C-terminal extension of alphaA-crystallin. The N123 residue of alphaA-crystallin plays a crucial role in maintaining its chaperone function. However, both the N-terminal domain and C-terminal extension are also important for the chaperone activity of alphaA-crystallin because the activity was partially or fully recovered following either deletion in the alphaA-N123D mutant. The results of subunit exchange rates among alphaA mutants and WT-alphaB suggested that such exchange is an important determinant in maintenance of chaperone activity following deamidation and/or deletion of the N-terminal domain or C-terminal extension in alphaA-crystallin.  相似文献   

17.
Alpha-crystallins comprise 35% of soluble proteins in the ocular lens and possess chaperone-like functions. Furthermore, the alphaA subunit (alphaA-crystallin) of alpha crystallin is thought to be "lens-specific" as only very low levels of expression were detected in a few non-lenticular tissues. Here we report that human alphaA-crystallin is expressed in human livers and is regulated by farnesoid X-activated receptor (FXR) in response to FXR agonists. AlphaA-crystallin was identified in a microarray screen as one of the most highly induced genes after treatment of HepG2 cells with the synthetic FXR ligand GW4064. Northern blot and quantitative real-time PCR analyses confirmed that alphaA-crystallin expression was induced in HepG2-derived cell lines and human primary hepatocytes and hepatic stellate cells in response to either natural or synthetic FXR ligands. Transient transfection studies and electrophoretic mobility shift assays revealed a functional FXR response element located in intron 1 of the human alphaA-crystallin gene. Importantly, immunohistochemical staining of human liver sections showed increased alphaA-crystallin expression in cholangiocytes and hepatocytes. As a member of the small heat shock protein family possessing chaperone-like activity, alphaA-crystallin may be involved in protection of hepatocytes from the toxic effects of high concentrations of bile acids, as would occur in disease states such as cholestasis.  相似文献   

18.
We have cloned and sequenced the gene that encodes archaerhodopsin, a light-driven H+ pump in Halobacterium sp. aus-1 (Mukohata, Y., Sugiyama, Y., Ihara, K., and Yoshida, M. (1988) Biochem. Biophys. Res. Commun. 151, 1339-1345). The nucleotide sequence of this gene contained an open reading frame which corresponded to a protein of 260 amino acids with a molecular mass of 27,851 daltons, including a precursor sequence of 6 amino acids at the amino terminus and 2 amino acids at the carboxyl terminus. The deduced amino acid sequence of archaerhodopsin exhibited 59 and 32% homology to the sequences of bacteriorhodopsin and halorhodopsin, respectively, from Halobacterium halobium. Three charged residues (Asp-121, Asp-218, and Lys-222) are conserved in the transmembrane segments among the three retinal proteins. Residues Asp-91 and Asp-102 which, it has been suggested, may be essential for the pumping of protons (Mogi, T., Stern, L. J., Marti, T., Chao, B. H., and Khorana, H. G. (1988) Proc. Natl. Acad. Sci. U. S. A. 85,4148-4152) are conserved between archaerhodopsin and bacteriorhodopsin.  相似文献   

19.
Site-specific racemization in aging alpha A-crystallin   总被引:1,自引:0,他引:1  
Of all aspartyl residues in bovine alpha A-crystallin, only Asp-151 exhibits pronounced racemization. Asp-151 is also one of the sites where peptide bond cleavage occurs in in vivo aging alpha A-crystallin. This aspartyl residue is followed by an alanyl residue and resides in a flexible carboxyl terminal extension of alpha-crystallin. Both in vivo and in vitro racemization studies indicate that the pronounced and site-specific racemization of Asp-151 proceeds via formation of a succinimide intermediate. The in vivo racemization of aspartyl residues in alpha A-crystallin is discussed with regard to the proposed tertiary structure of alpha-crystallin.  相似文献   

20.
α-Crystallin, comprising 40–50 subunits of αA- and αB-subunits, is a long-lived major soluble chaperone protein in lens. During aging, α-crystallin forms aggregates of high molecular weight (HMW) protein and eventually becomes water-insoluble (WI). Isomerization of Asp in α-crystallin has been proposed as a trigger of protein aggregation, ultimately leading to cataract formation. Here, we have investigated the relationship between protein aggregation and Asp isomerization of αA-crystallin by a series of analyses of the soluble α-crystallin, HMW and WI fractions from human lens samples of different ages (10–76 years). Analytical ultracentrifugation showed that the HMW fraction had a peak sedimentation coefficient of 40 S and a wide distribution of values (10–450 S) for lens of all ages, whereas the α-crystallin had a much smaller peak sedimentation coefficient (10–20 S) and was less heterogeneous, regardless of lens age. Measurement of the ratio of isomers (Lα-, Lβ-, Dα-, Dβ-) at Asp58, Asp91/92 and Asp151 in αA-crystallin by liquid chromatography–mass spectrometry showed that the proportion of isomers at all three sites increased in order of aggregation level (α-crystallin < HMW < WI fractions). Among the abnormal isomers of Asp58 and Asp151, Dβ-isomers were predominant with a very few exceptions. Notably, the chaperone activity of HMW protein was minimal for lens of all ages, whereas that of α-crystallin decreased with increasing lens age. Thus, abnormal aggregation caused by Asp isomerization might contribute to the loss of chaperone activity of α-crystallin in aged human lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号