首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under normal metabolic conditions glucose is an important energy source for the mammalian brain. Positron Emission Tomography studies of the central nervous system have demonstrated that tricyclic antidepressant medications alter cerebral metabolic function. The mode by which these drugs perturb metabolism is unknown. In the present study the interactions of tricyclic antidepressants with the GLUT1 glucose transport protein is examined. Amitriptyline, nortriptyline, desipramine, and imipramine all inhibit the influx of 3-O-methyl glucose into resealed erythrocytes. This inhibition is observed with drug concentrations in the millimolar range. All four antidepressants also noncompetitively displace cytochalasin B binding to GLUT1. The K(I) for this displacement ranges from 0.56 to 1.43 millimolar. This value is in a range greater than that associated with clinical doses and this effect may not be directly applicable to side effects observed with normal use. The observed interaction of these drugs with GLUT1 may reflect an affinity for other glucose-transport or glucose-binding proteins, and may possibly contribute to tricyclic antidepressant toxicity.  相似文献   

2.
A tandemly arranged multigene family encoding putative hexose transporters in Trypanosoma brucei has been characterized. It is composed of two 80% homologous groups of genes called THT1 (six copies) and THT2 (five copies). When Xenopus oocytes are microinjected with in vitro-transcribed RNA from a THT1 gene, they express a glucose transporter with properties similar to those of the trypanosome bloodstream-form protein(s). This THT1-encoded transport system for glucose differs from the human erythrocyte-type glucose transporter by its moderate sensitivity to cytochalasin B and its capacity to transport D-fructose. These properties suggest that the trypanosomal transporter may be a good target for antitrypanosomal drugs. mRNA analysis revealed that expression of these genes was life cycle stage dependent. Bloodstream forms express 40-fold more THT1 than THT2. In contrast, procyclic trypanosomes express no detectable THT1 but demonstrate glucose-dependent expression of THT2.  相似文献   

3.
The effect of pH on the secretion of the gp 80 glycoprotein complex and lysozyme from MDCK cells was examined by treatment of the cells with either NH4Cl, chloroquine or monensin. In untreated cells gp 80 is sorted with approximately 75% efficiency into the apical pathway. Lysozyme is secreted in a nonpolar fashion at both cell surfaces. Treatment of the cells with the drugs had nearly identical effects on the transport kinetics and on the ratio of the proteins released at the two plasma membrane domains. At increasing drug concentrations, the transport of both proteins to the apical and the basolateral cell surface was equally retarded. Furthermore, we observed a dose-dependent decrease in the amount of gp 80 and lysozyme released at the basolateral cell surface, which was accompanied by a nearly equivalent increase in the secretion of the two proteins at the apical plasma membrane domain. A twofold rise in the apical to basolateral ratio was already found at drug concentrations which only marginally affected the kinetics of transport. These results show that an increase in intravesicular pH not only redirects secretory proteins sorted into the basolateral pathway (Caplan et al. Nature, 329, 632 (1987] but also secretory proteins devoid of sorting information for that pathway, presumably by modulating the vesicular traffic to the basolateral cell surface.  相似文献   

4.
Cyclosporin A, the major immunosuppressive drug in transplantation, and the more potent therapeutic drug candidate, FK506, have led to the discovery of two superfamilies of immunosuppressant binding proteins, the cyclophilins and the FK binding proteins. These proteins, enzymes with high kcat values for isomerization of X-Pro bonds in peptides and protein substrates, are distributed in all cell compartments where protein folding normally occurs. It is likely that they play major roles in the protein folding and protein trafficking in the cell. It is also likely that they have been suborned in T cells by the immunosuppressant drugs that are potent pseudosubstrate ligands that selectively block the signal transduction cascade. The discovery of the inhibition of protein phosphatase 2B (calcineurin) by the drug-immunophilin complex (CsA-CyP or FK506-FKBP) provides evidence for a specific downstream target of the drug-immunophilin complexes and may prompt a search for endogenous ligands of cyclophilin and FKBP that may effect signal transduction regulation. The molecular insights gained over a short time in this area have been remarkable; they promise to elucidate the steps in T cell activation and delineate new targets for immunosuppressive therapy.  相似文献   

5.
Dynamic interactions between intracellular networks regulate cellular homeostasis and responses to perturbations. Targeted therapy is aimed at perturbing oncogene addiction pathways in cancer, however, development of acquired resistance to these drugs is a significant clinical problem. A network‐based computational analysis of global gene expression data from matched sensitive and acquired drug‐resistant cells to lapatinib, an EGFR/ErbB2 inhibitor, revealed an increased expression of the glucose deprivation response network, including glucagon signaling, glucose uptake, gluconeogenesis and unfolded protein response in the resistant cells. Importantly, the glucose deprivation response markers correlated significantly with high clinical relapse rates in ErbB2‐positive breast cancer patients. Further, forcing drug‐sensitive cells into glucose deprivation rendered them more resistant to lapatinib. Using a chemical genomics bioinformatics mining of the CMAP database, we identified drugs that specifically target the glucose deprivation response networks to overcome the resistant phenotype and reduced survival of resistant cells. This study implicates the chronic activation of cellular compensatory networks in response to targeted therapy and suggests novel combinations targeting signaling and metabolic networks in tumors with acquired resistance.  相似文献   

6.
We have investigated the cellular mechanisms that participate in reducing insulin sensitivity in response to increased oxidant stress in skeletal muscle. Measurement of glucose transport and glycogen synthesis in L6 myotubes showed that insulin stimulated both processes, by 2- and 5-fold, respectively. Acute (30 min) exposure of muscle cells to hydrogen peroxide (H(2)O(2)) blocked the hormonal activation of both these processes. Immunoblot analyses of cell lysates prepared after an acute oxidant challenge using phospho-specific antibodies against c-Jun N-terminal kinase (JNK), p38, protein kinase B (PKB), and p42 and p44 mitogen-activated protein (MAP) kinases established that H(2)O(2) induced a dose-dependent activation of all five protein kinases. In vitro kinase analyses revealed that 1 mM H(2)O(2) stimulated the activity of JNK by approximately 8-fold, MAPKAP-K2 (the downstream target of p38 MAP kinase) by approximately 12-fold and that of PKB by up to 34-fold. PKB activation was associated with a concomitant inactivation of glycogen synthase kinase-3. Stimulation of the p38 pathway, but not that of JNK, was blocked by SB 202190 or SB203580, while that of p42/p44 MAP kinases and PKB was inhibited by PD 98059 and wortmannin respectively. However, of the kinases assayed, only p38 MAP kinase was activated at H(2)O(2) concentrations (50 microM) that caused an inhibition of insulin-stimulated glucose transport and glycogen synthesis. Strikingly, inhibiting the activation of p38 MAP kinase using either SB 202190 or SB 203580 prevented the loss in insulin-stimulated glucose transport, but not that of glycogen synthesis, by oxidative stress. Our data indicate that activation of the p38 MAP kinase pathway plays a central role in the oxidant-induced inhibition of insulin-regulated glucose transport, and unveils an important biochemical link between the classical stress-activated and insulin signaling pathways in skeletal muscle.  相似文献   

7.
Apoptosis and cancer chemotherapy   总被引:4,自引:0,他引:4  
Apoptosis is a fundamental mechanism of cell death that can be engaged by a range of cellular insults. One of the major modes of action of chemotherapeutic drugs may be via the activation of apoptosis. Understanding how the cell death program is engaged following an insult, and hence why it fails to be engaged in certain settings, offers a novel approach to overcoming the clinical problem of drug resistance. The tumour suppressor gene p53 and its downstream effector genes p21, mdm-2, and gadd45 seem to be important in the cellular response to genotoxic drug induced damage. Considerable evidence has accrued about the effect of mutations of this pathway on drug sensitivity and this is discussed. The expanding Bcl-2 family of proteins also play an important role in the cell death program. Evidence suggests that these proteins may function as integrators of damage signals, and may be the final decision point as to whether a cell lives or dies. These proteins may thus represent a logical target for new approaches to overcoming drug resistance.  相似文献   

8.
Yang JN  Wang C  Guo C  Peng XX  Li H 《Molecular bioSystems》2011,7(11):3087-3093
Escherichia coli growth is a complicated process involved in many factors including the utilization of glucose. It has been reported that E. coli cell growth rate is closely related with glucose concentrations in the cell culture medium. However, the protein regulation networks in response to glucose concentration changes are largely unknown. In the present study, a sub-proteomic methodology has been utilized to characterize alterations of E. coli OM proteins in response to 0.02, 0.2 and 2% concentrations of glucose. In comparison with E. coli cells treated with 0.2% glucose concentration, downregulation of FhuE, FepA, CirA, TolC and OmpX and upregulation of LamB, FadL, OmpF, OmpT and Dps were detected in the E. coli cells treated with 0.02% glucose, and a decrease of TolC, LamB, OmpF, OmpT, OmpX, Dps and elevation of FhuE, FepA, CirA, YncD, FadL and MipA were found in 2% glucose. TolC, LamB and OmpT showed more important roles than other altered OM proteins. Furthermore, the interaction among these altered OM proteins was investigated, and protein interaction networks were characterized. In the networks, all proteins were interacted and regulated by others. TolC, LamB and Dps were the top three proteins that regulated more proteins than others, whereas CirA and OmpT were the top two proteins that were regulated by others. The protein networks could be modified correspondingly with the changes of glucose concentrations. The modifications included the addition of new OM proteins or the change of regulation direction. These findings suggest the important roles of the bacterial OM protein network in E. coli's responses to glucose concentration changes and other environment stresses.  相似文献   

9.
Glucose transport is a highly regulated process and is dependent on a variety of signaling events. Glycogen synthase kinase-3 (GSK-3) has been implicated in various aspects of the regulation of glucose transport, but the mechanisms by which GSK-3 activity affects glucose uptake have not been well defined. We report that basal glycogen synthase kinase-3 (GSK-3) activity regulates glucose transport in several cell types. Chronic inhibition of basal GSK-3 activity (8-24 h) in several cell types, including vascular smooth muscle cells, resulted in an approximately twofold increase in glucose uptake due to a similar increase in protein expression of the facilitative glucose transporter 1 (GLUT1). Conversely, expression of a constitutively active form of GSK-3beta resulted in at least a twofold decrease in GLUT1 expression and glucose uptake. Since GSK-3 can inhibit mammalian target of rapamycin (mTOR) signaling via phosphorylation of the tuberous sclerosis complex subunit 2 (TSC2) tumor suppressor, we investigated whether chronic GSK-3 effects on glucose uptake and GLUT1 expression depended on TSC2 phosphorylation and TSC inhibition of mTOR. We found that absence of functional TSC2 resulted in a 1.5-to 3-fold increase in glucose uptake and GLUT1 expression in multiple cell types. These increases in glucose uptake and GLUT1 levels were prevented by inhibition of mTOR with rapamycin. GSK-3 inhibition had no effect on glucose uptake or GLUT1 expression in TSC2 mutant cells, indicating that GSK-3 effects on GLUT1 and glucose uptake were mediated by a TSC2/mTOR-dependent pathway. The effect of GSK-3 inhibition on GLUT1 expression and glucose uptake was restored in TSC2 mutant cells by transfection of a wild-type TSC2 vector, but not by a TSC2 construct with mutated GSK-3 phosphorylation sites. Thus, TSC2 and rapamycin-sensitive mTOR function downstream of GSK-3 to modulate effects of GSK-3 on glucose uptake and GLUT1 expression. GSK-3 therefore suppresses glucose uptake via TSC2 and mTOR and may serve to match energy substrate utilization to cellular growth.  相似文献   

10.
11.
Cytochalasin B was used as a tool to study the inter-relationships between cell movement, the reinitiated DNA synthesis and the enhanced transport of specific small molecules stimulated by serum in quiescent 3T3 cells. Cytochalasin at concentrations of less than 1 mug/ml inhibits serum-stimulated movement within the monolayer and migration into a wound. Even at ten times this concentration there is little effect on the increase in DNA in the culture, indicating that movement away from neighboring cells is not required for the initiation of DNA synthesis. While DNA synthesis is not inhibited by concentrations of cytochalasin up to 10 mug/ml, the increased thymidine transport which is associated with the onset of the S phase of the cell cycle is inhibited and DNA synthesis cannot be measured by the labelling of nuclei with radioactive thymidine. Cytochalasin has a differential effect on the early transport changes produced by serum addition. Glucose transport is inhibited by low concentrations of the drug (less than 1 mug/ml) while the enhanced uptake of phosphate and uridine is unaffected by a 10-fold increase in concentration. Although the doses of cytochalasin required for 50% inhibition of hexose uptake and of cell movement are the same, no causal relationship between sugar transport and locomotion can be demonstrated. Cytochalasin affects membrane functions in at least two different ways. The drug inhibits the uptake of glucose directly but affects only the S-phase associated increase in thymidine transport.  相似文献   

12.
It is well-accepted that protein quality control (occurring either after protein synthesis or after cell damage) is mainly ensured by HSP, but the mechanism by which HSP decides whether the protein will be degraded or not is poorly understood. Within this framework, it has been hypothesized that O-GlcNAc, a cytosolic and nuclear-specific glycosylation whose functions remain unclear, could take a part in the protection of proteins against degradation by modifying both the proteins themselves and the proteasome. Because the synthesis of O-GlcNAc is tightly correlated to glucose metabolism and Hsp70 was endowed with GlcNAc-binding property, we studied the relationship between GlcNAc-binding activity of both Hsp70 and Hsc70 (the nucleocytoplasmic forms of HSP70 family) and glucose availability and utilization. We thus demonstrated that low glucose concentration, inhibition of glucose utilization with 2DG, or inhibition of glucose transport with CytB led to an increase of Hsp70 and Hsc70 lectin activities. Interestingly, the response of Hsp70 and Hsc70 lectin activities toward variations of glucose concentration appeared different: Hsp70 lost its lectin activity when glucose concentration was >5 mM (i.e., physiological glucose concentration) in contrast to Hsc70 that exhibited a maximal lectin activity for glucose concentration approximately 5 mM and at high glucose concentrations. This work also demonstrates that HSP70 does not regulate its GlcNAc-binding properties through its own O-GlcNAc glycosylation.  相似文献   

13.
The regulation of the glucose transport system by catecholamines and insulin has been studied in isolated rat cardiomyocytes. In the basal state, 1-isoproterenol exhibited a biphasic concentration-dependent regulation of 3-O-methylglucose transport. At low concentrations (less than 10 nM), isoproterenol induced a maximal inhibition of 65-70% of the basal rates, while at higher concentrations (greater than 10 nM) a 25-70% stimulation of transport was observed. In the presence of adenosine deaminase, the inhibition of isoproterenol at low doses was attenuated. No effect of adenosine deaminase was observed on the stimulation of transport at high doses of isoproterenol. The inhibitory effect of isoproterenol returned when N6-phenylisopropyladenosine (a non-metabolizable analog of adenosine) was included along with adenosine deaminase. Dibutyryl cAMP and forskolin both inhibited basal transport rates. In the presence of maximally stimulating concentrations of insulin, cardiomyocyte 3-O-methylglucose transport was generally elevated 200-300% above basal levels. In the presence of isoproterenol, insulin stimulation was inhibited at both high and low concentrations of catecholamine, with maximum inhibition occurring at the lowest concentrations tested. When cells were incubated with both adenosine deaminase and isoproterenol, the inhibition of the insulin response was greater at all concentrations of catecholamine and was almost completely blocked at isoproterenol concentrations of 10 nM or less. Dibutyryl cAMP inhibited the insulin response to within 10% of basal transport levels, while forskolin completely inhibited all transport activity in the presence of insulin. These results suggest that catecholamines regulate basal and insulin-stimulated glucose transport via both cAMP-dependent and cAMP-independent mechanisms and that this regulation is modulated in the presence of extracellular adenosine.  相似文献   

14.
Diabetic plasma contains elevated levels of glucose and various low-molecular-weight carbonyl compounds derived from the metabolism of glucose and related materials. These compounds react with protein side chains (Arg, Lys, Cys, and His) to give glycated materials and advanced glycation end products. In this study, we have examined the effect of glucose and carbonyl compounds (methylglyoxal, glyoxal, glycolaldehyde, and hydroxyacetone), and glycation products arising from reaction of these materials with model proteins, on the activity of three key cellular enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutathione reductase, and lactate dehydrogenase, both in isolation and in cell lysates. In contrast to glucose (1M, both fresh and aged for 8 weeks), which had no effect, marked inhibition of all three enzymes was observed with methylglyoxal and glyoxal. GAPDH was also inhibited by glycolaldehyde and hydroxyacetone. Incubation of these enzymes with proteins that had been preglycated with methylglyoxal, but not glucose, also resulted in significant time- and concentration-dependent inhibition with both isolated enzymes and cell lysates. This inhibition was not metal ion, oxygen, superoxide dismutase, or catalase dependent, suggesting that inhibition is not radical mediated. These effects are suggested to be due to direct adduction of the free- or protein-bound carbonyls with the target enzyme. Such an interpretation is supported by the detection of the loss of thiol groups on GAPDH and the detection of cross-linked materials on protein gels. Though direct comparison of the extent of inhibition induced by free versus protein-bound carbonyls was not possible, the significantly higher concentrations of the latter materials over the former in diabetic plasma and cells lead us to suggest that alterations in the activity of key cellular enzymes induced by glycated proteins may play a significant role in the development of diabetic complications.  相似文献   

15.
Phenylarsine oxide (PAO) has been shown to exert a biphasic effect on glucose transport in 3T3-L1 adipocytes. At 10 microM, PAO activates transport threefold, but at higher concentrations an inhibition of transport is observed. In this paper we report a procedure for the subcellular fractionation of these cells which we use to examine the distribution of glucose transporters following PAO challenge. Quantitative immunoblotting showed that the glucose transporter content of the plasma membrane fraction increased with increasing PAO concentrations; a parallel increase in another insulin-responsive protein, the transferrin receptor, also occurred. However, cell-surface labeling procedures for the glucose transporter and transferrin receptor showed that PAO actually decreased the cell-surface concentrations of these proteins; the basis of this discrepancy may be that in the presence of PAO, intracellular vesicles containing these proteins associate with the plasma membrane, but do not fuse with it. The possibility that PAO modulated transport by direct interaction with the glucose transporter was investigated by examining the effects of PAO on transport in both erythrocytes and a reconstituted system of purified erythrocyte transporter in lipid vesicles. PAO was without effect on the rate of transport in these systems. The hypothesis that the stimulatory effect of PAO on transport might be due to the activation of the insulin receptor kinase activity was examined by assessing the phosphotyrosine content of the receptor and other proteins using anti-phosphotyrosine antibodies. PAO alone caused no detectable increase in receptor phosphotyrosine content. However, the combination of PAO and insulin led to the tyrosine phosphorylation of two proteins of Mr 68,000 and 57,000 which were not detected in cells treated with either PAO or insulin, and an increased phosphotyrosine content of proteins of Mr 95,000 and 165,000 when compared to cells treated with insulin alone.  相似文献   

16.
Some properties of the axonal transport of proteins and glycoproteins along the optic pathway of chick embryos and newly hatched chicks were studied by labelling retinal ganglion cells with 3H-proline or 3H-fucose. A study of the effects of colchicine (COL) and vinblastine (VLB) on embryonic axonal transport was also carried out. Marked changes in the efficiency of axonal transport were found throughout development. In particular, the fraction of retinal ganglion cell proteins which is rapidly exported toward tectal terminals increases during embryonic life but steadily decreases after hatching. Glycoprotein transport behaves similarly except that its efficiency is relatively higher at stages when critical events of synaptic maturation in the tectum are reported to occur. Embryonic axonal transport is blocked by COL and VLB at very low intravitreal concentrations. Retinal protein synthesis and the morphology of ganglion cells are profoundly altered by the drugs: in general, COL and VLB effects were much more marked in embryonic than in mature neurons. An analysis of the time course of rapid transport along embryonic optic axons was carried out by reducing the efflux of labelled proteins from the eye by giving VLB intravitreally 2 h after the pulse. It revealed some peculiar features in the retino-tectal migration of glycoproteins and confirmed their progressive accumulation within terminals as previously described by radioautography. These results suggest that axonal transport of proteins during embryonic life undergoes changes in parallel with synaptic maturation. It may thus be considered as one of the factors controlling the genesis of neuronal networks.  相似文献   

17.
18.
Bairy S  Wong CF 《Proteins》2011,79(8):2491-2504
We used three models of the epidermal growth factor receptor (EGFR) signaling pathway mimicking three different cell lines to study the effects of kinetics of drug binding on influencing molecular signaling in the pathways. With no incubation of drugs before the external cue epidermal growth factor (EGF) was applied, we found that fast kinetics of binding to protein kinases was advantageous in suppressing the production of the Extracellular signal-regulated kinase (ERK) that triggers cell proliferation, with some exceptions. Incubation of a drug with a protein kinase target for an hour before a pathway was initiated with an external cue made kinetics less significant, so did high concentration of drugs. In addition, we found that applying a drug to a protein kinase mostly affected downstream signaling although upstream events were also affected in a few cases. In examining whether applying two drugs to two protein kinase targets in the pathways could produce synergistic effects, we found positive, negative, or no effects, depending on the protein kinases targeted and the pathway model considered.  相似文献   

19.
3T3-L1 adipocytes develop insulin-resistant glucose transport upon preincubation with high (25 mM) glucose, provided that insulin (0.6 nM) is included, Akt activation is impaired, and high glucose and insulin act synergistically. Considerable evidence suggests that increased glucose flux via the hexosamine biosynthesis pathway enhances the O-GlcNAc modification (O-GlcNAcylation) of some critical protein(s) that may contribute to insulin resistance. However, whether enhanced protein O-GlcNAcylation is necessary for the development of insulin resistance is unknown. We used two strategies to test this hypothesis. The first strategy was the overexpression of O-GlcNAcase, which removes O-GlcNAc from Ser/Thr of proteins. Cells were infected with O-GlcNAcase-expressing adenovirus (or empty virus) 5 days before they were submitted to protocols that elicit (or not) insulin resistance. O-GlcNAcase was highly expressed and functional as assessed by Western blot, O-GlcNAcase assay, and marked reduction of O-GlcNAcylated proteins. The activity was mainly cytosolic. The second strategy was the expression of O-GlcNAc transferase (OGT) being markedly reduced by transfection of OGT siRNA, resulting in an approximately 90% decrease of nuclear and cytosolic OGT protein expression and similar reduction in O-GlcNAcylated proteins. Nontargeting siRNA had no effect. Preincubation in high glucose with low-dose insulin decreased the acute insulin response of glucose transport by at least 50% and impaired Akt activation. None of these parameters were affected by overexpression of O-GlcNAcase or by OGT knockout. Excess O-GlcNAcylation is one of many factors that can cause insulin resistance. It does not seem to be required for the development of glucose/insulin-induced insulin resistance of glucose transport and Akt activation in 3T3-L1 adipocytes.  相似文献   

20.
Aberrant epidermal growth factor receptor (EGFR, ErbB1) signaling is implicated in cell transformation, motility, and invasion in a variety of cell types, and EGFR is the target of several anticancer drugs. However, the kinetics of EGFR signaling and the individual contributions of site-specific phosphorylation events remain largely unknown. A peptide-based, multiplex immunoassay approach was developed to simultaneously measure both total and phosphorylated protein in a single sample. The approach involves the proteolytic digestion of proteins prior to the isolation and quantitation of site-specific phosphorylation events within an individual protein. Quantitation of phosphorylated and total proteins, in picomolar to nanomolar concentrations, were interpolated from standard curves generated with synthetic peptides that correspond to the peptide targets used in the immunoassays. In this study, a bead-based, nine-plex immunoassay measuring total and phosphorylated protein was constructed to measure temporal, site-specific phosphorylation of key members of the EGFR pathway (ErbB1 receptor, MEK1, MEK2, ERK1, and ERK2) in A431 cells stimulated with epidermal growth factor. The effect of MEK inhibition on this pathway was determined using a known MEK kinase inhibitor, SL327. The results reported herein are the first quantitative measurements of site-specific phosphorylation events and total proteins in a single sample, at the same time representing a new paradigm for standardized protein and phosphorylation analysis using multiplexed, peptide-based, sandwich immunoassays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号