首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pedretti A  Bocci E  Maggi R  Vistoli G 《Steroids》2008,73(7):708-719
Recent biochemical and clinical evidences unveiled that DHCR24 enzyme (3-beta-hydoxysterol-Delta(24)-reductase, also named seladin-1), which catalyzes the last step of the cholesterol biosynthesis, is implicated in relevant neuroprotective processes by modulating the level of cholesterol in membrane. The present study was undertaken with a view to model the DHCR24 enzyme and its catalytic site, analyzing the substrate recognition at an atomic level. A homology model of the enzyme was obtained based on plant Cytokinin Dehydrogenase, and its active site was found to bind the desmosterol plus a set of post-squalenic intermediates of the cholesterol biosynthesis in a binding mode conducive to catalysis, even if the docking results suggested that the enzyme has a clear preference for the last intermediates of such biosynthetic pathway. Since DHCR24 possesses a putative transmembrane segment, the enzyme was, then, inserted in a suitable membrane model and the membrane-anchored structure in complex with desmosterol and cholesterol underwent 10ns MD simulations. Such simulations evidenced a clearly different behavior between substrate and product since the product only completely leaves the catalytic cavity whereas desmosterol firmly conserves its pivotal interactions during all simulation time. This is one of the first reports documenting the enzymatic product egress using simple MD simulations in which all atoms are free to move.  相似文献   

2.
CCR2b, a chemokine receptor for MCP-1, -2, -3, -4, plays an important role in a variety of diseases involving infection, inflammation, and/or injury, as well as being a coreceptor for HIV-1 infection. Two models of human CCR2b (hCCR2b) were generated by homology modeling and 1 ns restrained molecular dynamics (MD) simulation. In one only C113-C190 forms a disulfide bond (SS model); in another the potential C32-C277 disulfide bond was formed (2SS model). Analysis of the structures and averaged displacements of Calpha atoms of the N-terminal residues shows that the main differences between the SS and 2SS models lie in a region D25YDYGAPCHKFD36; in the extracellular part of the 2SS model the accessible surfaces of N12, F23, Y26, Y28 and F35 are obviously raised and a more stable H-bond net is formed. The potential energy of the 2SS-water assembly finally fluctuated around -43,020 kJ x mol(-1), which is about 302 kJ x mol(-1) lower than that of the SS-water assembly. All these results suggest that the 2SS model is more favorable. The CCR2b genes of 17 primates were sequenced and four CCR2b models for primates Ateles paniscus (A. pan), Hylobates leucogyneus(H. leu), Papio cynocephalus (P. cyn) and Trachypithecus francoist ( T. fra) were generated based on the 2SS model. A comparison of hCCR2b with primate CCR2b also supports the importance of the region D25YDYGAPCHKFD36. Electrostatic potential maps of human and primate CCR2b all display the dipolar characteristics of CCR2b with the negative pole located in the extracellular part and a strong positive pole in the cytoplasmic part. Based on the CCR2b model, we suggest that the main functional residues fall in the D25YDYGAPCHKFD36 region, and the negative electrostatic feature is a non-specific, but necessary, factor for ligands or gp120/CD4 binding.  相似文献   

3.
4.
The crystallographic structure of bovine prothrombin fragment 1 bound with calcium ions was used to construct the corresponding human prothrombin structure (hf1/Ca). The model structure was refined by molecular dynamics to estimate the average solution structure. Accommodation of long-range ionic forces was essential to reach a stable solution structure. The gamma-carboxyglutamic acid (Gla) domain and the kringle domain of hf1/Ca independently equilibrated. Likewise, the hydrogen bond network and the calcium ion coordinations were well preserved. A discussion of the phospholipid binding of the vitamin K-dependent coagulation proteins in the context of the structure and mutational data of the Gla domain is presented.  相似文献   

5.
Chemokine receptor 5 (CCR5) is an integral membrane protein that is utilized during human immunodeficiency virus type-1 entry into host cells. CCR5 is a G-protein coupled receptor that contains seven transmembrane (TM) helices. However, the crystal structure of CCR5 has not been reported. A homology model of CCR5 was developed based on the recently reported CXCR4 structure as template. Automated docking of the most potent (14), medium potent (37), and least potent (25) CCR5 antagonists was performed using the CCR5 model. To characterize the mechanism responsible for the interactions between ligands (14, 25, and 37) and CCR5, membrane molecular dynamic (MD) simulations were performed. The position and orientation of ligands (14, 25, and 37) were found to be changed after MD simulations, which demonstrated the ability of this technique to identify binding modes. Furthermore, at the end of simulation, it was found that residues identified by docking were changed and some new residues were introduced in the proximity of ligands. Our results are in line with the majority of previous mutational reports. These results show that hydrophobicity is the determining factor of CCR5 antagonism. In addition, salt bridging and hydrogen bond contacts between ligands (14, 25, and 37) and CCR5 are also crucial for inhibitory activity. The residues newly identified by MD simulation are Ser160, Phe166, Ser180, His181, and Trp190, and so far no site-directed mutagenesis studies have been reported. To determine the contributions made by these residues, additional mutational studies are suggested. We propose a general binding mode for these derivatives based on the MD simulation results of higher (14), medium (37), and lower (25) potent inhibitors. Interestingly, we found some trend for these inhibitors such as, salt bridge interaction between basic nitrogen of ligand and acidic Glu283 seemed necessary for inhibitory activity. Also, two aromatic pockets (pocket I – TM1-3 and pocket II – TM3-6) were linked by the central polar region in TM7, and the simulated inhibitors show important interactions with the Trp86, Tyr89, Tyr108, Phe112, Ile198, Tyr251, Leu255, and Gln280 and Glu283 residues. These results shed light on the usage of MD simulation to identify more stable, optimal binding modes of the inhibitors.  相似文献   

6.
In order to develop promising cyclin dependent kinase 1 inhibitors, homology modeling, docking and molecular dynamic simulation techniques were applied to get insight into the functional and structural properties of cyclin dependent kinase 1 (CDK1). Since there is no reported CDK1 crystal structural data, the three dimensional structure of CDK1 was constructed based on homology modeling. An extensive dynamic simulation was also performed on a Flavopiridol-CDK1 complex for probing the binding pattern of Flavopiridol in the active site of CDK1. The binding modes of other inhibitors to CDK1 were also proposed by molecular docking. The structural requirement for developing more potent CDK1 inhibitors was obtained by the above-mentioned molecular simulations and pharmacophore modeling.  相似文献   

7.
Galanin receptor type 2 (GALR2) is a class A G-protein-coupled receptor (GPCR), and it has been reported that orthosteric ligands and positive allosteric modulators (PAMs) of GALR2 could potentially be used to treat epilepsy. So far, the X-ray structure of this receptor has not been resolved, and knowledge of the 3D structure of GALR2 may prove informative in attempts to design novel ligands and to explore the mechanism for the allosteric modulation of this receptor. In this study, homology modeling was used to obtain several GALR2 models using known templates. ProSA-web Z-scores and Ramachandran plots as well as pre-screening against a test dataset of known compounds were all utilized to select the best model of GALR2. Molecular dockings of galanin (a peptide) and a nonpeptide ligand were carried out to choose the (GALR2 model)–galanin complex that showed the closest agreement with the corresponding experimental data. Finally, a 50-ns MD simulation was performed to study the interactions between the GALR2 model and the synthetic and endogenous ligands. The results from docking and MD simulation showed that, besides the reported residues, Tyr1604.60, Ile1053.32, Ala2747.35, and Tyr163ECL2 also appear to play important roles in the binding of galanin. The potential allosteric binding pockets in the GALR2 model were then investigated via MD simulation. The results indicated that the mechanism for the allosteric modulation caused by PAMs is the binding of the PAM at pocket III, which is formed by galanin, ECL2, TM2, TM3, and ECL1; this results in the disruption of the Na+-binding site and/or the Na+ ion pathway, leading to GALR2 agonism.  相似文献   

8.
Multi drug resistance capacity for Mycobacterium tuberculosis (MDR-Mtb) demands the profound need for developing new anti-tuberculosis drugs. The present work is on Mtb-MurC ligase, which is an enzyme involved in biosynthesis of peptidoglycan, a component of Mtb cell wall. In this paper the 3-D structure of Mtb-MurC has been constructed using the templates 1GQQ and 1P31. Structural refinement and energy minimization of the predicted Mtb-MurC ligase model has been carried out by molecular dynamics. The streochemical check failures in the energy minimized model have been evaluated through Procheck, Whatif ProSA, and Verify 3D. Further torsion angles for the side chains of amino acid residues of the developed model were determined using Predictor. Docking analysis of Mtb-MurC model with ligands and natural substrates enabled us to identify specific residues viz. Gly125, Lys126, Arg331, and Arg332, within the Mtb-MurC binding pocket to play an important role in ligand and substrate binding affinity and selectivity. The availability of Mtb-MurC ligase built model, together with insights gained from docking analysis will promote the rational design of potent and selective Mtb-MurC ligase inhibitors as antituberculosis therapeutics.  相似文献   

9.
Homology modeling, molecular docking, and molecular dynamics simulation have been performed to determine human 15-hydroxyprostaglandin dehydrogenase (15-PGDH) binding with its NAD+ cofactor and prostaglandin E2 (PGE2) substrate. The computational studies have led to a three-dimensional (3D) model of the entire 15-PGDH-NAD+-PGE2 complex, demonstrating the detailed binding of PGE2 with 15-PGDH for the first time. This 3D model shows specific interactions of the protein with the cofactor and substrate in qualitative agreement with available experimental data. Our model demonstrates the PGE2-binding cavity of the protein for the first time. The model further leads to an interesting prediction that the catalytic activity of 15-PGDH should also significantly be affected by Gln148, in addition to the previously known three catalytic residues (Ser138, Tyr151, and Lys155). The reported 3D model of 15-PGDH-NAD+-PGE2 complex might be valuable for future rational design of novel inhibitors of 15-PGDH.  相似文献   

10.
We present a homology based model of the ligand binding domain (LBD) of the homopentameric alpha1 glycine receptor (GlyR). The model is based on multiple sequence alignment with other members of the nicotinicoid ligand gated ion channel superfamily and two homologous acetylcholine binding proteins (AChBP) from the freshwater (Lymnaea stagnalis) and saltwater (Aplysia californica) snails with known high resolution structure. Using two template proteins with known structure to model three dimensional structure of a target protein is especially advantageous for sequences with low homology as in the case presented in this paper. The final model was cross-validated by critical evaluation of experimental and published mutagenesis, functional and other biochemical studies. In addition, a complex structure with strychnine antagonist in the putative binding site is proposed based on docking simulation using Autodock program. Molecular dynamics (MD) simulations with simulated annealing protocol are reported on the proposed LBD of GlyR, which is stable in 5 ns simulation in water, as well as for a deformed LBD structure modeled on the corresponding domain determined in low-resolution cryomicroscopy structure of the alpha subunit of the full-length acetylcholine receptor (AChR). Our simulations demonstrate that the beta-sandwich central core of the protein monomer is fairly rigid in the simulations and resistant to deformations in water.  相似文献   

11.
A homology model has been generated for the pore-forming domain of Kir6.2, a component of an ATP-sensitive K channel, based on the x-ray structure of the bacterial channel KcsA. Analysis of the lipid-exposed and pore-lining surfaces of the model reveals them to be compatible with the known features of membrane proteins and Kir channels, respectively. The Kir6.2 homology model was used as the starting point for nanosecond-duration molecular dynamics simulations in a solvated phospholipid bilayer. The overall drift from the model structure was comparable to that seen for KcsA in previous similar simulations. Preliminary analysis of the interactions of the Kir6.2 channel model with K(+) ions and water molecules during these simulations suggests that concerted single-file motion of K(+) ions and water through the selectivity filter occurs. This is similar to such motion observed in simulations of KcsA. This suggests that a single-filing mechanism is conserved between different K channel structures and may be robust to changes in simulation details. Comparison of Kir6.2 and KcsA suggests some degree of flexibility in the filter, thus complicating models of ion selectivity based upon a rigid filter.  相似文献   

12.
We have modeled the structure of human lymphotactin (hLpnt), by homology modeling and molecular dynamics simulations. This chemokine is unique in having a single disulfide bond and a long C-terminal tail. Because other structural classes of chemokines have two pairs of Cys residues, compared to one in Lpnt, and because it has been shown that both disulfide bonds are required for stability and function, the question arises how the Lpnt maintains its structural integrity. The initial structure of hLpnt was constructed by homology modeling. The first 63 residues in the monomer of hLpnt were modeled using the structure of the human CC chemokine, RANTES, whose sequence appeared most similar. The structure of the long C-terminal tail, missing in RANTES, was taken from the human muscle fatty-acid binding protein. In a Protein Data Bank search, this protein was found to contain a sequence that was most homologous to the long tail. Consequently, the modeled hLpnt C-terminal tail consisted of both alpha-helical and beta-motifs. The complete model of the hLpnt monomer consisted of two alpha-helices located above the five-stranded beta-sheet. Molecular dynamics simulations of the solvated initial model have indicated that the stability of the predicted fold is related to the geometry of Pro78. The five-stranded beta-sheet appeared to be preserved only when Pro78 was modeled in the cis conformation. Simulations were also performed both for the C-terminal truncated forms of the hLpnt that contained one or two (CC chemokine-like) disulfide bonds, and for the chicken Lpnt (cLpnt). Our MD simulations indicated that the turn region (T30-G34) in hLpnt is important for the interactions with the receptor, and that the long C-terminal region stabilizes both the turn (T30-G34) and the five-stranded beta-sheet. The major conclusion from our theoretical studies is that the lack of one disulfide bond and the extension of the C-terminus in hLptn are mutually complementary. It is very likely that removal of two Cys residues sufficiently destabilizes the structure of a chemokine molecule, particularly the core beta-sheet, to abolish its biological function. However, this situation is rectified by the long C-terminal segment. The role of this long region is most likely to stabilize the first beta-turn region and alpha-helix H1, explaining how this chemokine can function with a single disulfide bond.  相似文献   

13.
Succinate dehydrogenases and fumarate reductases are complex mitochondrial or bacterial respiratory chain proteins with remarkably similar structures and functions. Succinate dehydrogenase oxidizes succinate and reduces ubiquinone using a flavin adenine dinucleotide cofactor and iron-sulfur clusters to transport electrons. A model of the quaternary structure of the tetrameric Saccharomyces cerevisiae succinate dehydrogenase was constructed based on the crystal structures of the Escherichia coli succinate dehydrogenase, the E. coli fumarate reductase, and the Wolinella succinogenes fumarate reductase. One FAD and three iron-sulfur clusters were docked into the Sdh1p and Sdh2p catalytic dimer. One b-type heme and two ubiquinone or inhibitor analog molecules were docked into the Sdh3p and Sdh4p membrane dimer. The model is consistent with numerous experimental observations. The calculated free energies of inhibitor binding are in excellent agreement with the experimentally determined inhibitory constants. Functionally important residues identified by mutagenesis of the SDH3 and SDH4 genes are located near the two proposed quinone-binding sites, which are separated by the heme. The proximal quinone-binding site, located nearest the catalytic dimer, has a considerably more polar environment than the distal site. Alternative low energy conformations of the membrane subunits were explored in a molecular dynamics simulation of the dimer embedded in a phospholipid bilayer. The simulation offers insight into why Sdh4p Cys-78 may be serving as the second axial ligand for the heme instead of a histidine residue. We discuss the possible roles of heme and of the two quinone-binding sites in electron transport.  相似文献   

14.
Li W  Tang Y  Liu H  Cheng J  Zhu W  Jiang H 《Proteins》2008,71(2):938-949
Cytochrome P450 (P450) 2J2 catalyzes epoxidation of arachidonic acid to eicosatrienoic acids, which are related to a variety of diseases such as coronary artery disease, hypertension, and carcinogenesis. Recent experimental data also suggest that P450 2J2 could be a novel biomarker and a potential target for cancer therapy. However, the active site topology and substrate specificity of this enzyme remain unclear. In this study, a three-dimensional model of human P450 2J2 was first constructed on the basis of the crystal structure of human P450 2C9 in complex with a substrate using homology modeling method, and refined by molecular dynamics simulation. Flexible docking approaches were then employed to dock four ligands into the active site of P450 2J2 in order to probe the ligand-binding modes. By analyzing the results, active site architecture and certain key residues responsible for substrate specificity were identified on the enzyme, which might be very helpful for understanding the enzyme's biological role and providing insights for designing novel inhibitors of P450 2J2.  相似文献   

15.
Mycobacteriophages produce lysins that break down the host cell wall at the end of lytic cycle to release their progenies. The ability to lyse mycobacterial cells makes the lysins significant. Mycobacteriophage Che12 is the first reported temperate phage capable of infecting and lysogenising Mycobacterium tuberculosis. Gp11 of Che12 was found to have Chitinase domain that serves as endolysin (lysin A) for Che12. Structure of gp11 was modeled and evaluated using Ramachandran plot in which 98 % of the residues are in the favored and allowed regions. Che12 lysin A was predicted to act on NAG-NAM-NAG molecules in the peptidoglycan of cell wall. The tautomers of NAG-NAM-NAG molecule were generated and docked with lysin A. The stability and binding affinity of lysin A – NAG-NAM-NAG tautomers were studied using molecular dynamics simulations.  相似文献   

16.
[目的]研究米曲霉木糖醇脱氢酶基因的结构与功能.[方法]克隆测序来源于米曲霉的木糖醇脱氢酶(XDH)基因,利用Swiss-MODEL和Modeller对XDH进行三级结构模建,通过PROCHECK和Prosa2003对得到的4个目标模型进行评价,从中得到一个最佳模型.在同源建模的基础上,通过分子对接软件MolsoftICM-Pro,对辅因子进行对接,预测了XDH与NAD+、Zn2+作用的相关残基.寻找底物木糖醇与XDH结合的可能活性口袋,用Molsoft模拟XDH与木糖醇的对接,预测了酶与底物作用的关键氨基酸残基.[结果]结构分析显示,米曲霉XDH含有醇脱氢酶家族锌指纹结构和典型醇脱氢酶Rossmann折叠的辅酶结合域,属于Medium-chain脱氢酶(MDR)家族.通过对接研究,预测了XDH与NAD+之间形成氢键的氨基酸有Asp206、Arg211、Ser255、Ser301和Arg303,这些氨基酸位于结合域,与Zn2+形成氢键的氨基酸有His72和Glu73,位于催化域,与天然底物木糖醇形成氢键的氨基酸有Ile46、Ile349、Lys350和Thr351,位于催化域.[结论]所得信息对XDH分子定向改造、拓展米曲霉工业应用范围有重要意义.  相似文献   

17.
In spite of availability of moderately protective vaccine and antibiotics, new antibacterial agents are urgently needed to decrease the global incidence of Klebsiella pneumonia infections. MurF ligase, a key enzyme, which participates in the bacterial cell wall assembly, is indispensable to existence of K. pneumonia. MurF ligase lack mammalian vis-à-vis and have high specificity, uniqueness, and occurrence only in eubacteria, epitomizing them as promising therapeutic targets for intervention. In this study, we present a unified approach involving homology modeling and molecular docking studies on MurF ligase enzyme. As part of this study, a homology model of K. pneumonia (MurF ligase) enzyme was predicted for the first time in order to carry out structurebased drug design. The accuracy of the model was further validated using different computational approaches. The comparative molecular docking study on this enzyme was undertaken using different phyto-ligands from Desmodium sp. and a known antibiotic Ciprofloxacin. The docking analysis indicated the importance of hotspots (HIS 281 and ASN 282) within the MurF binding pocket. The Lipinski's rule of five was analyzed for all ligands considered for this study by calculating the ADME/Tox, drug likeliness using Qikprop simulation. Only ten ligands were found to comply with the Lipinski rule of five. Based on the molecular docking results and Lipinki values 6-Methyltetrapterol A was confirmed as a promising lead compound. The present study should therefore play a guiding role in the experimental design and development of 6-Methyltetrapterol A as a bactericidal agent.  相似文献   

18.
To date, no suitable vaccine or specific antiviral drug is available to treat Chikungunya viral (CHIKV) fever. Hence, it is essential to identify drug candidates that could potentially impede CHIKV infection. Here, we present the development of a homology model of nsP2 protein based on the crystal structure of the nsP2 protein of Venezuelan equine encephalitis virus (VEEV). The protein modeled was optimized using molecular dynamics simulation; the junction peptides of a nonstructural protein complex were then docked in order to investigate the possible protein–protein interactions between nsP2 and the proteins cleaved by nsP2. The modeling studies conducted shed light on the binding modes, and the critical interactions with the peptides provide insight into the chemical features needed to inhibit the CHIK virus infection. Energy-optimized pharmacophore mapping was performed using the junction peptides. Based on the results, we propose the pharmacophore features that must be present in an inhibitor of nsP2 protease. The resulting pharmacophore model contained an aromatic ring, a hydrophobic and three hydrogen-bond donor sites. Using these pharmacophore features, we screened a large public library of compounds (Asinex, Maybridge, TOSLab, Binding Database) to find a potential ligand that could inhibit the nsP2 protein. The compounds that yielded a fitness score of more than 1.0 were further subjected to Glide HTVS and Glide XP. Here, we report the best four compounds based on their docking scores; these compounds have IDs of 27943, 21362, ASN 01107557 and ASN 01541696. We propose that these compounds could bind to the active site of nsP2 protease and inhibit this enzyme. Furthermore, the backbone structural scaffolds of these four lead compounds could serve as building blocks when designing drug-like molecules for the treatment of Chikungunya viral fever.  相似文献   

19.
c-Jun-NH2 terminal kinases (JNKs) come under a class of serine/threonine protein kinases and are encoded by three genes, namely JNK1, JNK2 and JNK3. Human JNK1 is a cytosolic kinase belonging to mitogen-activated protein kinase (MAPK) family, which plays a major role in intracrinal signal transduction cascade mechanism. Overexpressed human JNK1, a key kinase interacts with other kinases involved in the etiology of many cancers, such as skin cancer, liver cancer, breast cancer, brain tumors, leukemia, multiple myeloma and lymphoma. Thus, to unveil a novel human JNK1 antagonist, receptor-based pharmacophore modeling was performed with the available eighteen cocrystal structures of JNK1 in the protein data bank. Eighteen e-pharmacophores were generated from the 18 cocrystal structures. Four common e-pharmacophores were developed from the 18 e-pharmacophores, which were used as three-dimensional (3D) query for shape-based similarity screening against more than one million small molecules to generate a JNK1 ligand library. Rigid receptor docking (RRD) performed using GLIDE v6.3 for the 1683 compounds from in-house library and 18 cocrystal ligands with human JNK1 from lower stringency to higher stringency revealed 17 leads. Further to derive the best leads, dock complexes obtained from RRD were studied further with quantum-polarized ligand docking (QPLD), induced fit docking (IFD) and molecular mechanics/generalized Born surface area (MM-GBSA). Four leads have showed lesser binding free energy and better binding affinity towards JNK1 compared to 18 cocrystal ligands. Additionally, JNK1–lead1 complex interaction stability was reasserted using 50?ns MD simulations run and also compared with the best resolute cocrystal structure using Desmond v3.8. Thus, the results obtained from RRD, QPLD, IFD and MD simulations indicated that lead1 might be used as a potent antagonist toward human JNK1 in cancer therapeutics.  相似文献   

20.
With homology modeling techniques, molecular mechanics and molecular dynamics methods, a 3D structure model of N-acetylneuraminate lyase from human (hNAL, EC 4.1.3.3) was created and refined. This model was further assessed by Profile-3D and PROCHECK, which confirms that the refined model is reliable. Furthermore, the docking results of the substrates (sialic acid and KDO) into the active site of hNAL indicate that hNAL can cleave the sialic acid and KDO. Thr51 and Tyr143 may be the key amino acids residues as they have strong hydrogen bonding interactions with the substrates, which is in good agreement with the experimental results by Izard et al. (Structure 2:361–369. doi:10.1016/S0969-2126(00)00038-1 (1994)). From the docking studies, we also suggest that Asp176 and Ser218 only form hydrogen bonds with sialic acid, therefore, they may help sialic acid interact with hNAL steadly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号