首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
In most eutherian mammals, cholesterol (Chol) comprises approximately 8-10 wt.% or 14-20 mol.% of both alveolar and lamellar body surfactant. It is regarded as an integral component of pulmonary surfactant, yet few studies have concentrated on its function or control. Throughout the evolution of the vertebrates, the contribution of cholesterol relative to surfactant phospholipids decreases, while that of the disaturated phospholipids (DSP) increases. Chol generally appears to dominate in animals with primitive bag-like lungs that lack septation, in the saccular lung of snakes or swimbladders which are not used predominantly for respiration, and also in immature lungs. It is possible that in these systems, cholesterol represents a protosurfactant. Cholesterol is controlled separately from the phospholipid (PL) component in surfactant. For example, in heterothermic mammals such as the fat-tailed dunnart, Sminthopsis crassicaudata, and the microchiropteran bat, Chalinolobus gouldii, and also in the lizard, Ctenophorus nuchalis, the relative amount of Chol increases in cold animals. During the late stages of embryonic development in chickens and lizards, the Chol to PL and Chol to DSP ratios decrease dramatically. While in isolated lizard lungs, adrenaline and acetylcholine stimulate the secretion of surfactant PL, Chol secretion remains unaffected. This is also supported in isolated cell studies of lizards and dunnarts. The rapid changes in the Chol to PL ratio in response to various physiological stimuli suggest that these two components have different turnover rates and may be packaged and processed differently. Infusion of [3H]cholesterol into the rat tail vein resulted in a large increase in Chol specific activity within 30 min in the lamellar body (LB) fraction, but over a 48-h period, failed to appear in the alveolar surfactant fraction. Analysis of the limiting membrane of the lamellar bodies revealed a high (76%) concentration of LB cholesterol. The majority of lamellar body Chol is, therefore, not released into the alveolar compartment, as the limiting membrane fuses with the cell membrane upon exocytosis. It appears unlikely, therefore, that lamellar bodies are the major source of alveolar Chol. It is possible that the majority of alveolar Chol is synthesised endogenously within the lung and stored independently from surfactant phospholipids. The role of cholesterol in the limiting membrane of the lamellar body may be to enable fast and easy processing by maintaining the membrane in a relatively fluid state.  相似文献   

2.
Proteins of halophilic archaea function in high-salt concentrations that inactivate or precipitate homologous proteins from non-halophilic species. Haloadaptation and the mechanism behind the phenomenon are not yet fully understood. In order to obtain useful information, homology modeling studies of dihydrofolate reductases (DHFRs) from halophilic archaea were performed that led to the construction of structural models. These models were subjected to energy minimization, structural evaluation and analysis. Complementary approaches concerning calculations of the amino acid composition and visual inspection of the surfaces and cores of the models, as well as calculations of electrostatic surface potentials, in comparison to non-halophilic DHFRs were also performed. The results provide evidence that sheds some light on the phenomenon of haloadaptation: DHFRs from halophilic archaea may maintain their fold, in high-salt concentrations, by sharing highly negatively charged surfaces and weak hydrophobic cores.  相似文献   

3.
4.
Abstract

Halophiles are extremophilic microorganisms that grow optimally at high salt concentrations by producing a myriad of equally halotolerant enzymes. Structural haloadaptation of these enzymes adept to thriving under high-salt environments, though are not fully understood. Herein, the study attempts an in silico investigation to identify and comprehend the evolutionary structural adaptation of a halotolerant dehalogenase, DehHX (GenBank accession number: KR297065) of the halotolerant Pseudomonas halophila, over its non-halotolerant counterpart, DehMX1 (GenBank accession number KY129692) produced by Pseudomonas aeruginosa. GC content of the halotolerant DehHX DNA sequence was distinctively higher (58.9%) than the non-halotolerant dehalogenases (55% average GC). Its acidic residues, Asp and Glu were 8.27% and 12.06%, respectively, compared to an average 5.5% Asp and 7% Glu, in the latter; but lower contents of basic and hydrophobic residues in the DehHX. The secondary structure of DehHX interestingly revealed a lower incidence of α-helix forming regions (29%) and a higher percentage of coils (57%), compared to 49% and 29% in the non-halotolerant homologues, respectively. Simulation models showed the DehHX is stable under a highly saline environment (25% w/v) by adopting a highly negative-charged surface with a concomitant weakly interacting hydrophobic core. The study thus, established that a halotolerant dehalogenase undergoes notable evolutionary structural changes related to GC content over its non-halotolerant counterpart, in order to adapt and thrive under highly saline environments.

Communicated by Ramaswamy H. Sarma  相似文献   

5.
6.
The activities of fatty acyl-CoA oxidase (FAO) and carnitine palmitoyl transferase (CPT), indices of the capacities of peroxisomal beta-oxidation and mitochondrial beta-oxidation, respectively, were determined in livers of several vertebrate species notable for differences in dietary fatty acid composition. In suckling rats FAO activities were half that in adult rats and CPT/FAO ratios twice that of adult rats. As their milk diet is dominated by medium chain fatty acids, this observation is consistent with current ideas about the role of peroxisomal beta-oxidation in rat liver in oxidation of long chain unsaturated fatty acids. In nectar-feeding hummingbirds (fatty acids synthesized de novo) FAO activities were 50% greater than adult rats and CPT/FAO ratios one-third less than adult rats, suggesting that peroxisomal beta-oxidation is relatively more important in this species, despite a fatty-acid-poor diet. In marine fish (herring, dogfish shark, hagfish) FAO activities were all less than 15% that of rats and undetectable in hagfish. CPT/FAO ratios were greater in herring (8.1) and hagfish (greater than 30) than adult rats (3.1), suggesting that peroxisomal beta-oxidation is relatively less important in these species despite a natural diet containing high levels of long chain polyunsaturated fatty acids. These data are discussed in relation to current ideas about the role of peroxisomes in beta-oxidation of fatty acids.  相似文献   

7.
8.
Ecological and evolutionary insights from species invasions   总被引:14,自引:0,他引:14  
Species invasions provide numerous unplanned and frequently, but imperfectly, replicated experiments that can be used to better understand the natural world. Classic studies by Darwin, Grinnell, Elton and others on these species-invasion experiments provided invaluable insights for ecology and evolutionary biology. Recent studies of invasions have resulted in additional insights, six of which we discuss here; these insights highlight the utility of using exotic species as 'model organisms'. We also discuss a nascent hypothesis that might provide a more general, predictive understanding of invasions and community assembly. Finally, we emphasize how the study of invasions can help to inform our understanding of applied problems, such as extinction, ecosystem function and the response of species to climate change.  相似文献   

9.
There is an active debate about how skeletal elements are encoded along the proximodistal (PD) axis of the developing limb. Our aim here is to see whether consideration of the evolutionary morphology of the limb can contribute to our understanding of patterning mechanisms. Of special interest in this context are animals showing reiterated skeletal elements along the PD axis (e.g., dolphins and plesiosaurs with hyperphalangy). We build on previous hypotheses to propose a two-step model of PD patterning in which specification of broad domains in the early limb bud is distinct from subsequent processes that divides an initial anlage into a segmental pattern to yield individual skeletal elements. This model overcomes a major evolutionary problem with the progress zone model, which has not previously been noted: pleiotropy. Parallels with other developmental systems are briefly discussed.  相似文献   

10.
MacLean RC 《Heredity》2008,100(3):233-239
First principles of thermodynamics imply that metabolic pathways are faced with a trade-off between the rate and yield of ATP production. Simple evolutionary models argue that this trade-off generates a fundamental social conflict in microbial populations: average fitness in a population is highest if all individuals exploit common resources efficiently, but individual reproductive rate is maximized by consuming common resources at the highest possible rate, a scenario known as the tragedy of the commons. In this paper, I review studies that have addressed two key questions: What is the evidence that the rate-yield trade-off is an evolutionary constraint on metabolic pathways? And, if so, what determines evolutionary outcome of the conflicts generated by this trade-off? Comparative studies and microbial experiments provide evidence that the rate-yield trade-off is an evolutionary constraint that is driven by thermodynamic constraints that are common to all metabolic pathways and pathway-specific constraints that reflect the evolutionary history of populations. Microbial selection experiments show that the evolutionary consequences of this trade-off depend on both kin selection and biochemical constraints. In well-mixed populations with low relatedness, genotypes with rapid and efficient metabolism can coexist as a result of negative frequency-dependent selection generated by density-dependent biochemical costs of rapid metabolism. Kin selection can promote the maintenance of efficient metabolism in structured populations with high relatedness by ensuring that genotypes with efficient metabolic pathways gain an indirect fitness benefit from their competitive restraint. I conclude by suggesting avenues for future research and by discussing the broader implications of this work for microbial social evolution.  相似文献   

11.
MacLean RC 《Heredity》2008,100(5):471-477
First principles of thermodynamics imply that metabolic pathways are faced with a trade-off between the rate and yield of ATP production. Simple evolutionary models argue that this trade-off generates a fundamental social conflict in microbial populations: average fitness in a population is highest if all individuals exploit common resources efficiently, but individual reproductive rate is maximized by consuming common resources at the highest possible rate, a scenario known as the tragedy of the commons. In this paper, I review studies that have addressed two key questions: What is the evidence that the rate-yield trade-off is an evolutionary constraint on metabolic pathways? And, if so, what determines evolutionary outcome of the conflicts generated by this trade-off? Comparative studies and microbial experiments provide evidence that the rate-yield trade-off is an evolutionary constraint that is driven by thermodynamic constraints that are common to all metabolic pathways and pathway-specific constraints that reflect the evolutionary history of populations. Microbial selection experiments show that the evolutionary consequences of this trade-off depend on both kin selection and biochemical constraints. In well-mixed populations with low relatedness, genotypes with rapid and efficient metabolism can coexist as a result of negative frequency-dependent selection generated by density-dependent biochemical costs of rapid metabolism. Kin selection can promote the maintenance of efficient metabolism in structured populations with high relatedness by ensuring that genotypes with efficient metabolic pathways gain an indirect fitness benefit from their competitive restraint. I conclude by suggesting avenues for future research and by discussing the broader implications of this work for microbial social evolution.  相似文献   

12.
Cyperaceae are among the 10 most diverse angiosperm families and the third largest among monocots (Christenhusz & Byng,2016), with a critical ecological role in wetlands and in high-latitude and high-elevation ecosystems. Sedges represent an ideal model plant family to study evolutionary biology because of their species richness, global distribution, large discrepancies in lineage diversity, broad range of ecological preferences, and adaptations including multiple origins of C4 photosynthesis and holocentric chromosomes (Larridon et al.,2021a).  相似文献   

13.
14.
The development of molecular techniques for the study of uncultured bacteria allowed the extensive study of the widespread association between insects and intracellular symbiotic bacteria. Most of the bacterial endosymbionts involved in such associations are gamma-proteobacteria, closely related to Escherichia coli. In recent years, five genomes from insect endosymbionts have been sequenced, allowing the performance of extensive genome comparative analysis that, as a complement of phylogenetic studies, and analysis on individual genes, can help to understand the different traits of this particular association, including how the symbiotic process is established, the explanation of the special features of these microbial genomes, the bases of this intimate association and the possible future that awaits the endosymbionts with extremely reduced genomes.  相似文献   

15.
Comparative sequence analysis is contributing to the identification and characterization of genomic regulatory regions with functional roles. It is effective because functionally important regions tend to evolve at a slower rate than do less important regions. The choice of species for comparative analysis is crucial: shared ancestry of a clade of species facilitates the discovery of genomic features important to that clade, whereas increased sequence divergence improves the resolution at which features can be discovered. Recent studies suggest that comparative analyses are useful for all branches of life and that, in the near future, large-scale mammalian comparative sequence analysis will provide the best approach for the comprehensive discovery of human regulatory elements.  相似文献   

16.
ABSTRACT: BACKGROUND: The availability of a large number of recently sequenced vertebrate genomes opens new avenues to integrate cytogenetics and genomics in comparative and evolutionary studies. Cytogenetic mapping can offer alternative means to identify conserved synteny shared by distinct genomes and also to define genome regions that are still not fine characterized even after wide-ranging nucleotide sequence efforts. An efficient way to perform comparative cytogenetic mapping is based on BAC clones mapping by fluorescence in situ hybridization. In this report, to address the knowledge gap on the genome evolution in cichlid fishes, BAC clones of an Oreochromis niloticus library covering the linkage groups (LG) 1, 3, 5, and 7 were mapped onto the chromosomes of 9 African cichlid species. The cytogenetic mapping data were also integrated with BAC-end sequences information of O. niloticus and comparatively analyzed against the genome of other fish species and vertebrates. RESULTS: The location of BACs from LG1, 3, 5, and 7 revealed a strong chromosomal conservation among the analyzed cichlid species genomes, which evidenced a synteny of the markers of each LG. Comparative in silico analysis also identified large genomic blocks that were conserved in distantly related fish groups and also in other vertebrates. CONCLUSIONS: Although it has been suggested that fishes contain plastic genomes with high rates of chromosomal rearrangements and probably low rates of synteny conservation, our results evidence that large syntenic chromosome segments have been maintained conserved during evolution, at least for the considered markers. Additionally, our current cytogenetic mapping efforts integrated with genomic approaches conduct to a new perspective to address important questions involving chromosome evolution in fishes.  相似文献   

17.
The complex evolutionary history of gorillas: insights from genomic data   总被引:3,自引:0,他引:3  
Relatively little is known about the evolutionary and demographichistories of gorillas, one of our closest living relatives.In this study, we used samples from both western (Gorilla gorilla)and eastern (Gorilla beringei) gorillas to infer the timingof the split between these geographically disjunct populationsand to elaborate the demographic history of gorillas. Here wepresent DNA sequences from 16 noncoding autosomal loci from15 western gorillas and 3 eastern gorillas, including 2 noninvasivelysampled free-ranging individuals. We find that the genetic diversityof gorillas is similar to that of chimpanzees but almost twiceas high as that of bonobos and humans. A significantly positiveFu & Li's D was observed for western gorillas, suggestinga complex demographic history with a constant, long-term populationsize and ancestral population structure. Among different population-splitscenarios, our data suggest a complex history of western andeastern gorillas including an initial population split at around0.9–1.6 MYA and subsequent, primarily male-mediated geneflow until approximately 80,000–200,000 years ago. Furthermore,simulations revealed that more gene flow took place from easternto western gorilla populations than vice versa.  相似文献   

18.
19.
Polyadenylation in animal mitochondria is very unique. Unlike other systems, polyadenylation is needed to generate UAA stop codons that are not encoded in mitochondrial (mt) DNA. In some cases, polyadenylation is required for the mt tRNA maturation by editing of its 3' termini. Furthermore, recent studies on human mt poly(A) polymerase (PAP) and PNPase provide new insights and questions for the regulatory mechanism and functional role of polyadenylation in human mitochondria.  相似文献   

20.
Reviews in Fish Biology and Fisheries - Epidemiological evidence and subsequent studies using mammalian models have established a strong correlation between suboptimal nutritional status during...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号