首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A short period of global ischemia results in the death of selected subpopulations of neurons. Some advances have been made in understanding events which might contribute to the selectivity of this damage but the cellular changes which culminate in neuronal death remain poorly defined. This overview examines the metabolic state of tissue in the post-ischemic period and the relationship of changes to the development of damage in areas containing ischemia-susceptible neurons. During early recirculation there is substantial recovery of ATP, phosphocreatine and related metabolites in all brain regions. However, this recovery does not signal restitution of normal energy metabolism as reductions of the oxidative metabolism of glucose are seen in many areas and may persist for several days. Furthermore, decreases in pyruvate-supported respiration develop in mitochondria from at least one ischemia-susceptible region at times coincident with the earliest histological evidence of ischemia-induced degeneration. These mitochondrial changes could simply be an early marker of irreversible damage but the available evidence is equally consistent with these contributing to the degenerative process and offering a potential site for therapeutic intervention.Submitted as an Overview article for the volume of Neurochemical Research in honor of Alan N. Davison.  相似文献   

2.
Glial (GLT-1 and GLAST) and neuronal (EAAC1) high-affinity transporters mediate the sodium dependent glutamate reuptake in mammalian brain. Their dysfunction leads to neuronal damage by allowing glutamate to remain in the synaptic cleft for a longer duration. The purpose of the present study is to understand their contribution to the ischemic delayed neuronal death seen in gerbil hippocampus following transient global cerebral ischemia. The protein levels of these three transporters were studied by immunoblotting as a function of reperfusion time (6 h to 7 days) following a 10 min occlusion of bilateral common carotid arteries in gerbils. In the vulnerable hippocampus, there was a significant decrease in the protein levels of GLT-1 (by 36-46%, P < 0.05; between 1 and 3 days of reperfusion) and EAAC1 (by 42-68%, P < 0.05; between 1 and 7 days of reperfusion). Histopathological evaluation showed no neuronal loss up to 2 days of reperfusion but an extensive neuronal loss (by approximately 84%, P < 0.01) at 7 days of reperfusion in the hippocampal CA1 region. The time frame of GLT-1 dysfunction (1-3 days of reperfusion) precedes the initiation of delayed neuronal death (2-3 days of reperfusion). This suggests GLT-1 dysfunction as a contributing factor for the hippocampal neuronal death following transient global cerebral ischemia. Furthermore, decreased EAAC1 levels may contribute to GABAergic dysfunction and excitatory/inhibitory imbalance following transient global ischemia.  相似文献   

3.
During recovery after a transient global cerebral ischemia (TGCI), rat electrocorticogram (ECoG) shows epochs of synchronized activity (SA) alternating with epochs of low amplitude background activity (BA). The aim of this study was to compare the changes in these electrical activities during a 30-min recovery period that followed either a noninjuring (3 minutes, N=10) or an injuring (10 minutes, N=10) TGCI. During TGCI there was a 3 fold reduction in amplitudes of both SA and BA but no changes in frequency. During reperfusion following a 3 minutes TGCI, the amplitudes of both SA and BA recovered to about 70%. During the reperfusion that followed a 10 minutes TGCI, BA showed no recovery, whereas SA recovered to about 40%. During the 30 min reperfusion, there was a timedependent decrease in the frequency of SA, but independent on the duration of TGCI. In contrast, the frequency of the BA did not change during reperfusion. Our data indicate that following cerebral ischemia the recovery of SA can take place independently of BA. The lack of recovery in BA may indicate early subcortical neuronal damage.  相似文献   

4.
Exacerbated activation of glutamate receptor-coupled calcium channels and subsequent increase in intracellular calcium ([Ca2+]i) are established hallmarks of neuronal cell death in acute and chronic neurological diseases. Here we show that pathological [Ca2+]i deregulation occurring after glutamate receptor stimulation is effectively modulated by small conductance calcium-activated potassium (KCa2) channels. We found that neuronal excitotoxicity was associated with a rapid downregulation of KCa2.2 channels within 3 h after the onset of glutamate exposure. Activation of KCa2 channels preserved KCa2 expression and significantly reduced pathological increases in [Ca2+]i providing robust neuroprotection in vitro and in vivo. These data suggest a critical role for KCa2 channels in excitotoxic neuronal cell death and propose their activation as potential therapeutic strategy for the treatment of acute and chronic neurodegenerative disorders.  相似文献   

5.
Resveratrol (3,5,4'-trihydroxystilbene) is a natural polyphenol which is rich in grape seeds and skin. Several studies have revealed that resveratrol possesses neuroprotective effects. In the case of global brain ischemia, there are few reports regarding the protective effect of resveratrol. Therefore, the influence of resveratrol on neuronal damage after transient global brain ischemia remains to be clarified. In the current study, C57BL/6 black mice were subjected to 20 min of transient global brain ischemia and followed by 72 h of reperfusion. Resveratrol (20 or 40 mg/kg, once daily, dissolved in 0.5% carboxymethylcellulose) was administered orally for 7 days before ischemia and daily until the mice were euthanized. The effect of lower or higher dose of resveratrol on neuronal damage, matrix metalloproteinase (MMP) activity and in situ DNA fragmentation (TUNEL) assay in the hippocampus after global ischemia was examined. Neuronal damages were remarkable in CA1 and CA2 pyramidal cell layers after global ischemia. In resveratrol-treated mice (40 mg/kg), neuronal damage was significantly reduced compared with vehicle-treated mice. Mice treated with resveratrol showed reduced MMP-9 activity. Resveratrol also inhibited TUNEL staining. These data suggest that resveratrol, a natural polyphenol, reduces hippocampal neuronal cell damage following transient global ischemia by reducing MMP-9 activity.  相似文献   

6.
G X Wang  G R Li  Y D Wang  T S Yang  Y B Ouyang 《Life sciences》2001,69(23):2801-2810
We have studied the forms of cell death following ischemia/reperfusion, and the influence of diabetes mellitus (DM) as an additional factor. Based on the models of diabetes and middle cerebral artery occlusion (MCAO), characteristics of cell death after ischemia/reperfusion were evaluated synthetically by different methods: pathology, FCM, TUNEL and DNA agarose electrophoresis. The results showed that the occurrence of cerebral injury after ischemia/reperfusion was accompanied by cell necrosis and cell apoptosis. Cell apoptosis was mainly located in the ischemic penumbral (IP) zone around the densely ischemic focus. The ischemic core was characterized by cell necrosis. At the same time, the results showed that the process of ischemic cerebral injury worsened by DM was related to inducing cell apoptosis in IP and mid zone. In conclusion, there existed not only cell apoptosis but cell necrosis in brain damage following focal cerebral ischemia/reperfusion and showed a close, internal relationship between them. Brain damage following cerebral ischemia/reperfusion was worsened distinctly under diabetic conditions.  相似文献   

7.
Mitochondria play important roles as the powerhouse of the cell. After cerebral ischemia, mitochondria overproduce reactive oxygen species (ROS), which have been thoroughly studied with the use of superoxide dismutase transgenic or knockout animals. ROS directly damage lipids, proteins, and nucleic acids in the cell. Moreover, ROS activate various molecular signaling pathways. Apoptosis-related signals return to mitochondria, then mitochondria induce cell death through the release of pro-apoptotic proteins such as cytochrome c or apoptosis-inducing factor. Although the mechanisms of cell death after cerebral ischemia remain unclear, mitochondria obviously play a role by activating signaling pathways through ROS production and by regulating mitochondria-dependent apoptosis pathways.  相似文献   

8.
Oxidative stress and neuronal death/survival signaling in cerebral ischemia   总被引:11,自引:0,他引:11  
It has been demonstrated by numerous studies that apoptotic cell death pathways are implicated in ischemic cerebral injury in ischemia models in vivo. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and the numerous reports suggest the involvement of cell survival/death signaling pathways in the pathogenesis of apoptotic cell death in ischemic lesions. In these models, reoxygenation during reperfusion provides oxygen as a substrate for numerous enzymatic oxidation reactions and for mitochondrial oxidative phosphorylation to produce adenosine triphosphate. Oxygen radicals, the products of these biochemical and physiological reactions, are known to damage cellular lipids, proteins, and nucleic acids and to initiate cell signaling pathways after cerebral ischemia. Genetic manipulation of intrinsic antioxidants and factors in the signaling pathways has provided substantial understanding of the mechanisms involved in cell death/survival signaling pathways and the role of oxygen radicals in ischemic cerebral injury. Future studies of these pathways could provide novel therapeutic strategies in clinical stroke.  相似文献   

9.
Neurons of the mammalian CNS differ in their vulnerability to various disease processes and other insults, particularly in their response to total anoxia/ischemia. In this study we have tested the histological and behavioral modifications induced by experimental conditions of partial cerebral ischemia in the rats. The specific morphological and histological alterations, observed in our experimental conditions of reversiblepartial cerebral ischemia, confirm the selective vulnerability of certain neuronal populations to ischemic injury and are also evidenced by behavioral modifications which may mirror the functional impairment observed in humans after a transitory ischemic attack.  相似文献   

10.
11.
Using a decapitation ischemia model, we studied translocation of proteins to and from the cytosol in normothermic (NT) and hypothermic (HT) rat brains. 2D gel analysis identified 74 proteins whose cytosolic level changed significantly after 15 min of ischemia. HT preserved the cytosolic levels of several glycolytic enzymes, as well as many plasticity related proteins, otherwise decreased following NT ischemia. The levels of redox-related proteins was lower in HT than in NT. Our results indicate that translocation of proteins to and from the cytosol is an important issue during ischemia.  相似文献   

12.
Oxidative stress has been regarded as an important underlying cause for the delayed neuronal death (DND) after cerebral ischemia. In this study, the effects of short-term oral administration of grape polyphenol extract (GPE) on ischemia/reperfusion (I/R) injury in a gerbil global ischemia model were determined. Ischemia was induced by occlusion of the common carotid arteries for 5 min. GPE (30 mg/ml)-containing formula or formula without GPE was administered daily via gavage for 4 days prior to and/or for 4 days after I/R. I/R resulted in hyperlocomotion, extensive DND, oxidative and fragmented DNA damage, and an increase in reactive astrocytes and microglial cells in the hippocampal CA1 region. GPE administration for 4 days prior to I/R and for 4 days after I/R attenuated DND, DNA damage and glial cell activation. However, neuroprotection was more pronounced when GPE was administered for 4 days after I/R than when administered for 4 days prior to I/R. GPE administration after I/R attenuated I/R-induced hyperlocomotion. These findings indicate that oral GPE intake may confer protection against I/R injury and emphasize that early intervention may be an effective therapeutic measure for ameliorating brain injury in stroke.  相似文献   

13.
Tissue inhibitor of metalloproteinase-3 (TIMP-3) is a natural inhibitor of metalloproteinases involved in matrix degradation and ectodomain shedding of many cell-surface proteins, including death receptors and/or their ligands. In the present study, we examined the role of TIMP-3 in Fas-mediated neuronal cell death following cerebral ischemia, using both gene deletion and pharmacological approaches. In culture, exposure of primary cortical neurons to 2 h of oxygen-glucose deprivation (OGD) resulted in delayed neuronal cell death that was dependent on activation of the death receptor, Fas. Cortical cultures derived from timp-3(-/-) mice displayed partial resistance against OGD-induced neuronal cell death and also displayed increased shedding of Fas ligand (FasL) into the culture media, compared to wild-type control cultures. Both the increased neuroprotection and increased FasL shedding in timp-3(-/-) cultures were reversed by addition of exogenous metalloproteinase inhibitors, recombinant TIMP-3 or GM6001. In vivo, timp-3(-/-) mice showed marked resistance to a brief (30 min) middle cerebral artery occlusion (MCAO), but were not protected against more severe lesions induced by 90 min of MCAO. These studies demonstrate that TIMP-3 facilitates Fas-mediated neuronal cell death following OGD and plays a pro-apoptotic role in mild cerebral ischemia.  相似文献   

14.
The actions of tumor necrosis factor-alpha (TNF-alpha) produced by resident brain cells and bone marrow-derived cells in brain following a transient global ischemia were evaluated. In wild-type mice (C57Bl/6J) following 20 min ischemia with bilateral common carotid artery occlusion (BCCAo), TNF-alpha mRNA expression levels in the hippocampus were significantly increased at 3 h and 36 h and exhibited a biphasic expression pattern. There were no hippocampal TNF-alpha mRNA expression levels at early time points in either wild-type mice bone marrow transplanted (BMT)-chimeric-TNF-alpha gene-deficient (T/W) or TNF-alpha gene-deficient mice BMT-TNF-alpha gene-deficient mice (T/T), although TNF-alpha mRNA levels were detectable in T/W BMT mice at 36 h. Histopathological findings showed no intergroup differences between wild-type and TNF-alpha gene-deficient mice at 4 and 7 days after transient ischemia. In addition, nuclear factor-kappaB (NF-kappaB) was activated within 12 h after global cerebral ischemia, but electrophoretic mobility shift assays (EMSA) showed no intergroup differences between wild type and TNF-alpha gene-deficient mice. In summary, early hippocampal TNF-alpha mRNA expression may not be related to bone marrow-derived cells, and secondary TNF-alpha expression as early as 36 h after ischemia probably resulted mainly from endogenous brain cells and possibly a few bone marrow-derived cells. Although we cannot exclude the possibility of the TNF-alpha contribution to the physiologic changes of hippocampus after transient global ischemia, these results indicate that TNF-alpha does not influence the morphological changes of the hippocampal neurons under our study condition.  相似文献   

15.
Journal of Bioenergetics and Biomembranes - Mitochondria are organelles that undergo continuous cycles of fission and fusion. This dynamic nature of mitochondria is important for cell physiology....  相似文献   

16.
Fibronectin performs essential roles in embryonic development and is prominently expressed during tissue repair. Two forms of fibronectin have been identified: plasma fibronectin (pFn), which is expressed by hepatocytes and secreted in soluble form into plasma; and cellular fibronectin (cFn), an insoluble form expressed locally by fibroblasts and other cell types and deposited and assembled into the extracellular matrix. To investigate the role of pFn in vivo, we generated pFn-deficient adult mice using Cre-loxP conditional gene-knockout technology. Here we show that pFn-deficient mice show increased neuronal apoptosis and larger infarction areas following transient focal cerebral ischemia. However, pFn is dispensable for skin-wound healing and hemostasis.  相似文献   

17.
WT Lee  MH Lin  EJ Lee  YC Hung  SH Tai  HY Chen  TY Chen  TS Wu 《PloS one》2012,7(7):e39952
Neuroprotective efficacy of magnolol, 5,5'-dially-2,2'-dihydroxydiphenyl, was investigated in a model of stroke and cultured neurons exposed to glutamate-induced excitotoxicity. Rats were subjected to permanent middle cerebral artery occlusion (pMCAO). Magnolol or vehicle was administered intraperitoneally, at 1 hr pre-insult or 1-6 hrs post-insult. Brain infarction was measured upon sacrifice. Relative to controls, animals pre-treated with magnolol (50-200 mg/kg) had significant infarct volume reductions by 30.9-37.8% and improved neurobehavioral outcomes (P<0.05, respectively). Delayed treatment with magnolol (100 mg/kg) also protected against ischemic brain damage and improved neurobehavioral scores, even when administered up to 4 hrs post-insult (P<0.05, respectively). Additionally, magnolol (0.1 μM) effectively attenuated the rises of intracellular Ca(2+) levels, [Ca(2+)](i), in cultured neurons exposed to glutamate. Consequently, magnolol (0.1-1 μM) significantly attenuated glutamate-induced cytotoxicity and cell swelling (P<0.05). Thus, magnolol offers neuroprotection against permanent focal cerebral ischemia with a therapeutic window of 4 hrs. This neuroprotection may be, partly, mediated by its ability to limit the glutamate-induced excitotoxicity.  相似文献   

18.
19.
20.
Considerable evidence has been accumulated to suggests that blocking the inflammatory reaction promotes neuroprotection and shows therapeutic potential for clinical treatment of ischemic brain injury. Consequently, anti-inflammatory therapies are being explored for prevention and treatment of these diseases. Induction of brain tolerance against ischemia by pretreatment with resveratrol has been found to influence expression of different molecules. It remains unclear, however, whether and how resveratrol preconditioning changes expression of inflammatory mediators after subsequent global cerebral ischemia/reperfusion (I/R). Therefore, we investigated the effect of resveratrol pretreatment on NF-κB inflammatory cascade, COX-2, iNOS and JNK levels in experimental I/R. Adult male rats were subjected to 10min of four-vessel occlusion and sacrificed at selected post-ischemic time points. Resveratrol (30mg/kg) pretreatment was injected intraperitoneally 7days prior to I/R induction. We found that resveratrol treatment before insult remarkably reduced astroglial and microglial activation at 7days after I/R. It greatly attenuated I/R-induced NF-κB and JNK activation with decreased COX-2 and iNOS production. In conclusion, the neuroprotection of resveratrol preconditioning may be due in part to the suppression of the inflammatory response via regulation of NF-κB, COX-2 and iNOS induced by I/R. JNK was also suggested to play a protective role through in neuroprotection of resveratrol, which may also be contributing to reduction in neuroinflammation. The study adds to a growing literature that resveratrol can have important anti-inflammatory actions in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号