首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A total of 333 fecal specimens from horses in southwestern China were genotyped based on analysis of the small subunit rRNA (SSU rRNA) gene. Cryptosporidium hominis and Cryptosporidium andersoni were identified in 2 and 4 stool specimens, respectively. The identification of C. hominis was confirmed by sequence analysis of the 70‐kDa heat shock protein (HSP70) and oocyst wall protein (COWP) genes. Subtyping analysis of the 60‐kDa glycoprotein (GP60) gene sequence of C. hominis revealed a new rare subtype Id, named IdA15; only three Id isolates have been reported in humans to date. Multilocus sequence typing (MLST) analysis indicated that the C. andersoni subtype was A6, A5, A2, and A1 at the four minisatellite loci (MS1, MS2, MS3, and MS16, respectively). This is the first report to identify the presence of Candersoni and Chominis in horses in southwestern China and the first to identify a rare zoonotic subtype Id of Chominis in horses. These findings suggest that infected horses may act as potential reservoirs of Cryptosporidium to transmit infections to humans.  相似文献   

2.
Dairy industry plays an important role in the agricultural economy of China. To estimate the prevalence and public health significance of cryptosporidiosis in post-weaned and adult dairy cattle in China, during four consecutive years (from 2006 to 2009), a total of 1315 fecal samples from 22 dairy cattle farms in ten prefectures in Henan Province were examined for the presence of Cryptosporidium oocysts. The overall prevalence of Cryptosporidium was 7.9%, with the highest infection rate (11.3%) in 3 to 11-month-old calves and the lowest infection rate (1.0%) in >2-year-old cows (p<0.01). Cryptosporidium-positive samples (n=104) were analyzed by PCR-restriction fragment length polymorphism (RFLP) analysis of the small subunit (SSU) rRNA gene, and 25 representative samples were further analyzed by DNA sequencing of the PCR products. Cryptosporidium bovis and Cryptosporidium andersoni were identified. C. andersoni (84/104) was the predominant species and was found in all age groups, whereas C. bovis (20/104) was only detected in 3 to 11-month-old calves. Thus, C. andersoni appears to be the dominant species in weaned dairy calves and heifers in China, in contrast with its common occurrence in adult cattle in other parts of the world.  相似文献   

3.
A new species of Cryptosporidium is described from the feces of domestic cattle, Bos taurus. Oocysts are structurally similar to those of Cryptosporidium muris described from mice but are larger than those of Cryptosporidium parvum. Oocysts of the new species are ellipsoidal, lack sporocysts, and measure 7.4 x 5.5 microm (range, 6.0-8.1 by 5.0-6.5 microm). The length to width ratio is 1.35 (range, 1.07-1.50). The colorless oocyst wall is < 1 microm thick, lacks a micropyle, and possesses a longitudinal suture at one pole. A polar granule is absent, whereas an oocyst residuum is present. Oocysts were passed fully sporulated and are not infectious to outbred, inbred immunocompetent or immunodeficient mice, chickens or goats. Recent molecular analyses of the rDNA 18S and ITS1 regions and heat-shock protein 70 (HSP-70) genes demonstrate this species to be distinct from C. muris infecting rodents. Based on transmission studies and molecular data, we consider the large form of Cryptosporidium infecting the abomasum of cattle to be a new species and have proposed the name Cryptosporidium andersoni n. sp. for this parasite.  相似文献   

4.
R Wang  F Jian  L Zhang  C Ning  A Liu  J Zhao  Y Feng  M Qi  H Wang  C Lv  G Zhao  L Xiao 《PloS one》2012,7(8):e43782
In this study, nine C. muris and 43 C. andersoni isolates from various animals in China were subtyped by a multilocus sequence typing (MLST) tool. DNA sequence analyses showed the presence of 1-2 subtypes of C. muris and 2-6 subtypes of C. andersoni at each of the four loci (MS1, MS2, MS3, and MS16), nine of which represented new subtypes. Altogether, two C. muris and 10 C. andersoni MLST subtypes were detected. Linkage disequilibrium analysis indicated although the overall population structure of the two parasites was clonal, the Chinese C. andersoni in cattle has an epidemic structure. Three and two clusters were produced in the C. muris and C. andersoni populations by Structure 2.3.3 analysis, with Chinese C. muris and C. andersoni substructures differing from other countries. Thus, this study suggested the prevalence of C. andersoni in China is not attributed to the introduction of dairy cattle. More studies involving more genetic loci and systematic sampling are needed to better elucidate the population genetic structure of C. muris and C. andersoni in the world and the genetic basis for the difference in host specificity among the two most common gastric parasites.  相似文献   

5.
Characteristics of a novel type of bovine Cryptosporidium andersoni   总被引:4,自引:0,他引:4  
We isolated oocysts that resemble Cryptosporidium andersoni from cattle grazing on a farm in Japan. The partial sequences of genes from the isolate were coincident with published sequences of genes of C. andersoni. Since the isolate was able to infect SCID mice, the isolate appears to be a novel type of C. andersoni.  相似文献   

6.
We isolated oocysts that resemble Cryptosporidium andersoni from cattle grazing on a farm in Japan. The partial sequences of genes from the isolate were coincident with published sequences of genes of C. andersoni. Since the isolate was able to infect SCID mice, the isolate appears to be a novel type of C. andersoni.  相似文献   

7.
The present study examined the prevalence and genotypes of Cryptosporidium andersoni in cattle in Shaanxi province, China. A total of 2071 fecal samples (847 from Qinchuan cattle and 1224 from dairy cattle) were examined for the presence of Cryptosporidium oocysts, and 70 samples (3.4%) were C. andersoni-positive and those positive samples were identified by PCR amplification of the small subunit ribosomal RNA (SSU rRNA) and the Cryptosporidium oocyst wall protein (COWP) genes. C. andersoni was the only species found in the examined cattle in this province. Fifty-seven C. andersoni isolates were characterized into 5 MLST subtypes using multilocus sequence typing analysis, including a new subtype in the native beef breed Qinchuan cattle. All of these C. andersoni isolates presented a clonal genetic structure. These findings provide new insights into the genetic structure of C. andersoni isolates in Shaanxi province and basic data of Cryptosporidium prevalence status, which in turn have implications for controlling cryptosporidiosis in this province.  相似文献   

8.
This study was undertaken in order to characterize a Cryptosporidium muris-like parasite isolated from cattle in Hungary and to compare this strain with other Cryptosporidium species. To date, the large-type oocysts isolated from cattle were considered as C. muris described from several mammals. The size, form, and structure of the oocysts of the Hungarian strain were identical with those described by others from cattle. An apparent difference between the morphometric data of C. muris-like parasites isolated from cattle or other mammals was noted, which is similar in magnitude to the differences between Cryptosporidium meleagridis and Cryptosporidium felis or between Cryptosporidium serpentis and Cryptosporidium baileyi. The cross-transmission experiments confirmed the findings of others, as C. muris-like oocysts isolated from cattle fail to infect other mammals. The sequence of the variable region of small subunit (SSU) rRNA gene of the strain was 100% identical with that of the U.S. Cryptosporidium andersoni and C. andersoni-like isolates from cattle. The difference between the SSU rRNA sequence of bovine strains and C. muris is similar in magnitude to the differences between C. meleagridis and Cryptosporidium parvum anthroponotic genotype or between Cryptosporidium wrairi and C. parvum zoonotic genotype. Our findings confirm that the Cryptosporidium species responsible for abomasal cryptosporidiosis and economic losses in the cattle industry should be considered a distinct species, C. andersoni Lindsay, Upton, Owens, Morgan, Mead, and Blagburn, 2000.  相似文献   

9.
10.
11.
Thirty white middle-class 5 yr olds from home daycare centers were examined for Cryptosporidium. Five fecal samples were collected from each child, over a 3-wk period, concentrated by sedimentation, and stained by a modified acid-fast technique. Nine children were positive (30%), 6 of these were asymptomatic (5 of these were under 2 yr old). Two girls and 1 boy, under 2 yr old, had mild diarrhea within 3 wk prior to fecal collection.  相似文献   

12.
Cryptosporidium are commonly identified as intestinal pathogens in humans and animals. Fecal samples from 480 cattle randomly selected from 30 regions in Isfahan, Iran, were examined to investigate the prevalence of Cryptosporidium infection. Cryptosporidium oocysts were identified by using sheather's concentration and the Ziehl-Neelsen modified staining technique in 30 of 480 cattle ranging from less than 6 mo of age to older than 1 yr of age. Infected animals were found in 86.6% (26/30) of regions investigated. Overall prevalence of infection was 6.25%, but higher in cattle less than 6 mo of age (10.8%) and this was statistically significant (P<0.05). Both sexes of cattle were infected with Cryptosporidium parasites, but prevalences were higher in diarrheic (56.7%) than in non-diarrheic (39%) cattle. Cryptosporidium appears to be prevalent in cattle in Isfahan.  相似文献   

13.
Cryptosporidium parvum is an important zoonotic parasite that causes significant economic loss in the animal husbandry industry,especially the cattle industry.As there is no specific vaccine or drug against Cryptosporidium,a rapid and accurate method for the detection of C.parvum is of great significance.In this study,colloidal gold strips were developed based on Cryptosporidium parvum virus 1 (CSpV1) for the detection of C.parvum infection in cattle fecal samples.The colloidal gold solution was prepared by reducing trisodium citrate and the CSpV1 #5 monoclonal antibody was labeled with colloidal gold.A polyclonal antibody against the CSpV1 capsid protein and an anti-mouse IgG antibody were coated on the colloidal gold strips for use in the test and control lines,respectively.Our results showed that the detection sensitivity in fecal samples was up to a 1:64 dilution.There was no cross-reaction with Cryptosporidium andersoni or Giardia in the fecal samples.The different preservation conditions (room temperature,4℃,and 37℃) and preservation time (7,30,60,and 90 days) were analyzed.The data showed that the strips could be preserved for 90 days at 4℃ and for 60 days at room temperature or 37℃.The colloidal gold strips were used to detect the samples of 120 clinical fecal in Changchun,China.The results indicated that the rate of a positive test was 5%(6/120).This study provides a rapid and accurate method for detecting C.parvum infection in cattle and humans.  相似文献   

14.
15.
Samples of sewage influent from 40 sewage treatment works (STW) throughout Norway were examined for Cryptosporidium oocysts and Giardia duodenalis cysts. Both parasites were detected frequently (80% of STW were Cryptosporidium positive; 93% of STW were Giardia positive) and at maximum concentrations of >20,000 parasites/liter. The data suggest giardiasis is more widespread, and/or occurs with greater infection intensity, than cryptosporidiosis in Norway. STW serving higher person equivalents were more likely to be positive and had higher parasite concentrations. Parasite concentrations were used to estimate the proportion of contributing populations that could be clinically infected. For Cryptosporidium, the highest estimates were up to 5 per 100,000 individuals for two populations in eastern Norway. For Giardia, the highest estimate was 40 infected per 100,000 persons (approximately five times the usual national annual average) contributing to an STW in western Norway. As this population experienced a large waterborne giardiasis outbreak 6 months after sampling, it can be speculated that regular challenge with Giardia may occur here. Most Giardia isolates in sewage influent were assemblage A, although some assemblage B isolates were detected. There was substantial heterogeneity, but most samples contained isolates similar to genotype A3. Removal efficiencies at two STW with secondary treatment processes were estimated to be approximately 50% for Cryptosporidium and >80% for Giardia. An STW with minimal treatment had negligible removal of both parasites. Many STW in Norway have minimal treatment and discharge effluent into rivers and lakes, thus, risk of contamination of water courses by Cryptosporidium and Giardia is considerable.  相似文献   

16.
17.
Samples of sewage influent from 40 sewage treatment works (STW) throughout Norway were examined for Cryptosporidium oocysts and Giardia duodenalis cysts. Both parasites were detected frequently (80% of STW were Cryptosporidium positive; 93% of STW were Giardia positive) and at maximum concentrations of > 20,000 parasites/liter. The data suggest giardiasis is more widespread, and/or occurs with greater infection intensity, than cryptosporidiosis in Norway. STW serving higher person equivalents were more likely to be positive and had higher parasite concentrations. Parasite concentrations were used to estimate the proportion of contributing populations that could be clinically infected. For Cryptosporidium, the highest estimates were up to 5 per 100,000 individuals for two populations in eastern Norway. For Giardia, the highest estimate was 40 infected per 100,000 persons (approximately five times the usual national annual average) contributing to an STW in western Norway. As this population experienced a large waterborne giardiasis outbreak 6 months after sampling, it can be speculated that regular challenge with Giardia may occur here. Most Giardia isolates in sewage influent were assemblage A, although some assemblage B isolates were detected. There was substantial heterogeneity, but most samples contained isolates similar to genotype A3. Removal efficiencies at two STW with secondary treatment processes were estimated to be approximately 50% for Cryptosporidium and > 80% for Giardia. An STW with minimal treatment had negligible removal of both parasites. Many STW in Norway have minimal treatment and discharge effluent into rivers and lakes, thus, risk of contamination of water courses by Cryptosporidium and Giardia is considerable.  相似文献   

18.
The protozoan parasite Cryptosporidium is found world-wide and can cause disease in both humans and animals. To study the zoonotic potential of Cryptosporidium in The Netherlands we isolated this parasite from the faeces of infected humans and cattle and genotyped those isolates for several different markers. The overall genotyping results showed: for humans isolates, 70% Cryptosporidium hominis, 19% Cryptosporidium parvum, 10% a combination of C. hominis and C. parvum, and 1% Cryptosporidium felis; and for cattle isolates 100% C. parvum. Analysis of the genetic variants detected for the HSP70, ML1 and GP60 markers showed: for human isolates, one C. hominis and two C. parvum variants (C. parvum and C. parvum NL) for HSP70, one C. hominis and five C. parvum variants (C1, C2, C3, and C2 NL1 and C2 NL2) for ML1, four C. hominis (mainly IbA10G2) and four C. parvum variants (mainly IIaA15G2R1) for GP60; and the cattle isolates only C. parvum (not C. parvum NL1) for HSP70, C1 and C2 for ML1, and 17 different IIa sub-types (mainly IIaA15G2R1) for GP60. Molecular epidemiological analysis of the human data showed a C. hominis peak in autumn. The majority (80%) of the human cases were children aged between 0 and 9 years and >70% of these were caused by C. hominis. Patients >25 years of age were infected mainly with C. parvum. We conclude that C. hominis IbA10G2 is found at high frequencies in autumn in humans and not in cattle. The high prevalence of C. parvum IIaA15G2R1 in both humans and cattle indicates that cattle may be a reservoir for this sub-type in The Netherlands.  相似文献   

19.
The present study describes the complete development of all life cycle stages of Cryptosporidium andersoni in the HCT-8 cell line. The in vitro cultivation protocols were the same as those used for the successful growth of all life cycle stages of Cryptosporidium parvum (Int. J. Parasitol. 31 (2001) 1048). Under these culture conditions, C. andersoni grew and proliferated rapidly with the completion of the entire life cycle within 72h post-infection. The developmental stages of C. andersoni are larger than those of C. parvum enabling easier identification of life cycle stages including a previously unrecognised extracellular stage. The presence of this extracellular stage was further confirmed following its isolation from the faeces of infected cattle using a laser microdissection technique. This stage was present in large numbers and some of them were seen undergoing syzgy. Extraction of DNA from the extracellular stage, followed by polymerase chain reaction-restriction fragment length polymorphism and sequencing of the 18S rDNA confirmed that this is a stage in the life cycle of C. andersoni. In vitro, extracellular stages were always observed moving over the HCT-8 cells infected with C. andersoni. Comparative observations with C. parvum also confirmed the presence of extracellular stages. Extracellular stages were recovered from in vitro culture after 5 days post-infection with the cattle genotype of C. parvum and from infected mice. At least two morphologically different stages (stages one and two) were purified from mice after 72h of infection. The presence and morphological characterisation of extracellular developmental stages in the life cycle of Cryptosporidium confirms its relationship to gregarines and provides important implications for our understanding of the taxonomic and phylogenetic affinities of the genus Cryptosporidium. The growth of C. andersoni in cell culture now provides a means of studying its development, metabolism, and behaviour as well as testing its response to different therapeutic agents.  相似文献   

20.
Cryptosporidium andersoni ATP-binding cassette (CaABC) is an important membrane protein involved in substrate transport across the membrane. In this research, the nucleotide binding domain (NBD) of CaABC gene was amplified by PCR, and the eukaryotic expression vector of pEGFP-C1-CaNBD was reconstructed. Then, the recombinant plasmid of pEGFP-C1-CaNBD was transformed into the mouse intestinal epithelial cells (IECs) to study the iron transportation function of CaABC. The results indicated that NBD region of CaABC gene can significantly elevate the transport efficiency of Ca2+, Mg2+, K+, and HCO3- in IECs (P<0.05). The significance of this study is to find the ATPase inhibitors for NBD region of CaABC gene and to inhibit ATP binding and nutrient transport of CaABC transporter. Thus, C. andersoni will be killed by inhibition of nutrient uptake. This will open up a new way for treatment of cryptosporidiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号