首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
The activity of hypoxanthine/guanine phosphoribosyltransferase (HGPRT) was examined in the livers and kidneys of two genetic lines of chickens selected for different plasma uric acid levels. Previous work demonstrated that the high-uric acid line (HUA) had significantly greater de novo uric acid synthesis rates in kidney tissue compared to the low-uric acid line (LUA). In addition, phosphoribosylpyrophosphate (PRPP) synthetase and xanthine dehydrogenase activities in livers and kidneys were significantly higher in the HUA compared to the LUA line. PRPP pool sizes were also significantly higher in both livers and kidneys of HUA birds. HGPRT activities in livers of HUA birds were significantly (P less than 0.05) greater than in LUA birds. The mean value of liver HGPRT was 7.36 +/- 0.25 pmole inosine-5'-monophosphate (IMP) and 6.05 +/- 0.27 pmole IMP produced/micrograms protein/hr, respectively, for the HUA and LUA lines. There were no significant differences (P greater than 0.05) in kidney HGPRT activities between the two groups. The mean value of kidney HGPRT was 52.87 +/- 1.62 pmole IMP and 50.72 +/- 1.62 pmole IMP produced/micrograms protein/hr, respectively, for the HUA and LUA line. Elevated liver HGPRT may serve to enhance the regeneration of PRPP in the HUA liver. Elevated liver PRPP synthetase and PRPP pool size suggest an increased flux through the de novo purine biosynthetic pathway in HUA birds. The resulting additional pyrophosphate from the glutamine PRPP amidotransferase reaction would stimulate recovery of PRPP and spare the system from a substantial loss of energy.  相似文献   

2.
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is a key enzyme of the purine recycling pathway that catalyzes the conversion of 5-phospho-ribosyl-α-1-pyrophosphate and guanine or hypoxanthine to guanosine monophosphate (GMP) or inosine monophosphate (IMP), respectively, and pyrophosphate (PPi). We report the first crystal structure of a fungal 6-oxopurine phosphoribosyltransferase, the Saccharomyces cerevisiae HGPRT (Sc-HGPRT) in complex with GMP. The crystal structures of full length protein with (WT1) or without (WT2) sulfate that mimics the phosphate group in the PPi binding site were solved by molecular replacement using the structure of a truncated version (Δ7) solved beforehand by multiwavelength anomalous diffusion. Sc-HGPRT is a dimer and adopts the overall structure of class I phosphoribosyltransferases (PRTs) with a smaller hood domain and a short two-stranded parallel β-sheet linking the N- to the C-terminal end. The catalytic loops in WT1 and WT2 are in an open form while in Δ7, due to an inter-subunit disulfide bridge, the catalytic loop is in either an open or closed form. The closure is concomitant with a peptide plane flipping in the PPi binding loop. Moreover, owing the flexibility of a GGGG motif conserved in fungi, all the peptide bonds of the phosphate binding loop are in trans conformation whereas in nonfungal 6-oxopurine PRTs, one cis-peptide bond is required for phosphate binding. Mutations affecting the enzyme activity or the previously characterized feedback inhibition by GMP are located at the nucleotide binding site and the dimer interface.  相似文献   

3.
4.
Human hypoxanthine-guanine phosphoribosyltransferase (HGPRT) catalyses the synthesis of the purine nucleoside monophosphates, IMP and GMP, by the addition of a 6-oxopurine base, either hypoxanthine or guanine, to the 1-beta-position of 5-phospho-alpha-d-ribosyl-1-pyrophosphate (PRib-PP). The mechanism is sequential, with PRib-PP binding to the free enzyme prior to the base. After the covalent reaction, pyrophosphate is released followed by the nucleoside monophosphate. A number of snapshots of the structure of this enzyme along the reaction pathway have been captured. These include the structure in the presence of the inactive purine base analogue, 7-hydroxy [4,3-d] pyrazolo pyrimidine (HPP) and PRib-PP.Mg2+, and in complex with IMP or GMP. The third structure is that of the immucillinHP.Mg(2+).PP(i) complex, a transition-state analogue. Here, the first crystal structure of free human HGPRT is reported to 1.9A resolution, showing that significant conformational changes have to occur for the substrate(s) to bind and for catalysis to proceed. Included in these changes are relative movement of subunits within the tetramer, rotation and extension of an active-site alpha-helix (D137-D153), reorientation of key active-site residues K68, D137 and K165, and the rearrangement of three active-site loops (100-128, 165-173 and 186-196). Toxoplasma gondii HGXPRT is the only other 6-oxopurine phosphoribosyltransferase structure solved in the absence of ligands. Comparison of this structure with human HGPRT reveals significant differences in the two active sites, including the structure of the flexible loop containing K68 (human) or K79 (T.gondii).  相似文献   

5.
A Héroux  E L White  L J Ross  D W Borhani 《Biochemistry》1999,38(44):14485-14494
The crystal structures of the guanosine 5'-monophosphate (GMP) and inosine 5'-monophosphate (IMP) complexes of Toxoplasma gondii hypoxanthine-guanine phosphoribosyltransferase (HGPRT) have been determined at 1.65 and 1.90 A resolution. These complexes, which crystallize in space groups P2(1) (a = 65.45 A, b = 90.84 A, c = 80. 26 A, and beta = 92.53 degrees ) and P2(1)2(1)2(1) (a = 84.54 A, b = 102.44 A, and c = 108.83 A), each comprise a tetramer in the crystallographic asymmetric unit. All active sites in the tetramers are fully occupied by the nucleotide. Comparison of these structures with that of the xanthosine 5'-monophosphate (XMP)-pyrophosphate-Mg(2+) ternary complex reported in the following article [Héroux, A., et al. (1999) Biochemistry 38, 14495-14506] shows how T. gondii HGPRT is able to recognize guanine, hypoxanthine, and xanthine as substrates, and suggests why the human enzyme cannot use xanthine efficiently. Comparison with the apoenzyme reveals the structural changes that occur upon binding of purines and ribose 5'-phosphate to HGPRT. Two structural features important to the HGPRT mechanism, a previously unrecognized active site loop (loop III', residues 180-184) and an active site peptide bond (Leu78-Lys79) that adopts both the cis and the trans configurations, are presented.  相似文献   

6.
BACKGROUND: Hypoxanthine-guanine phosphoribosyltransferases (HGPRTs) are well-recognized antiparasitic drug targets. HGPRT is also a paradigmatic representative of the phosphoribosyltransferase family of enzymes, which includes other important biosynthetic and salvage enzymes and drug targets. To better understand the reaction mechanism of this enzyme, we have crystallized HGPRT from the apicomplexan protozoan Toxoplasma gondii as a ternary complex with a substrate and a substrate analog. RESULTS: The crystal structure of T. gondii HGPRT with the substrate Mg2+-PRPP and a nonreactive substrate analog, 9-deazaguanine, bound in the active site has been determined at 1.05 A resolution and refined to a free R factor of 15.4%. This structure constitutes the first atomic-resolution structure of both a phosphoribosyltransferase and the central metabolic substrate PRPP. This pre-transition state complex provides a clearer understanding of the structural basis for catalysis by HGPRT. CONCLUSIONS: Three types of substrate deformation, chief among them an unexpected C2'-endo pucker adopted by the PRPP ribose ring, raise the energy of the ground state. A cation-pi interaction between Tyr-118 and the developing oxocarbenium ion in the ribose ring helps to stabilize the transition state. Enforced substrate propinquity coupled with optimal reactive geometry for both the substrates and the active site residues with which they interact contributes to catalysis as well.  相似文献   

7.
Phosphoribosyltransferases (PRTs) bind 5′-phospho-α-d-ribosyl-1′-pyrophosphate (PRPP) and transfer its phosphoribosyl group (PRib) to specific nucleophiles. Anthranilate PRT (AnPRT) is a promiscuous PRT that can phosphoribosylate both anthranilate and alternative substrates, and is the only example of a type III PRT. Comparison of the PRPP binding mode in type I, II and III PRTs indicates that AnPRT does not bind PRPP, or nearby metals, in the same conformation as other PRTs. A structure with a stereoisomer of PRPP bound to AnPRT from Mycobacterium tuberculosis (Mtb) suggests a catalytic or post-catalytic state that links PRib movement to metal movement. Crystal structures of Mtb-AnPRT in complex with PRPP and with varying occupancies of the two metal binding sites, complemented by activity assay data, indicate that this type III PRT binds a single metal-coordinated species of PRPP, while an adjacent second metal site can be occupied due to a separate binding event. A series of compounds were synthesized that included a phosphonate group to probe PRPP binding site. Compounds containing a “bianthranilate”-like moiety are inhibitors with IC50 values of 10–60 μM, and Ki values of 1.3–15 μM. Structures of Mtb-AnPRT in complex with these compounds indicate that their phosphonate moieties are unable to mimic the binding modes of the PRib or pyrophosphate moieties of PRPP. The AnPRT structures presented herein indicated that PRPP binds a surface cleft and becomes enclosed due to re-positioning of two mobile loops.  相似文献   

8.
S Chen  J W Burgner  J M Krahn  J L Smith  H Zalkin 《Biochemistry》1999,38(36):11659-11669
Single tryptophan residues were incorporated into each of three peptide segments that play key roles in the structural transition of ligand-free, inactive glutamine phosphoribosylpyrophosphate (PRPP) amidotransferase to the active enzyme-substrate complex. Intrinsic tryptophan fluorescence and fluorescence quenching were used to monitor changes in a phosphoribosyltransferase (PRTase) "flexible loop", a "glutamine loop", and a C-terminal helix. Steady state fluorescence changes resulting from substrate binding were used to calculate binding constants and to detect the structural rearrangements that coordinate reactions at active sites for glutamine hydrolysis and PRTase catalysis. Pre-steady state kinetics of enzyme.PRPP and enzyme.PRPP.glutamine complex formation were determined from stopped-flow fluorescence measurements. The kinetics of the formation of the enzyme.PRPP complex were consistent with a model with two or more steps in which rapid equilibrium binding of PRPP is followed by a slow enzyme isomerization. This isomerization is ascribed to the closing of the PRTase flexible loop and is likely the rate-limiting step in the reaction of PRPP with NH(3). The pre-steady state kinetics for binding glutamine to the binary enzyme. PRPP complex could also be fit to a model involving rapid equilibrium binding of glutamine followed by an enzyme isomerization step. The changes monitored by fluorescence account for the interconversions between "end state" structures determined previously by X-ray crystallography and define an intermediate enzyme.PRPP conformer.  相似文献   

9.
Cao H  Pietrak BL  Grubmeyer C 《Biochemistry》2002,41(10):3520-3528
Quinolinate phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) catalyzes the formation of nicotinate mononucleotide, carbon dioxide, and pyrophosphate from 5-phosphoribosyl 1-pyrophosphate (PRPP) and quinolinic acid (QA, pyridine 2,3-dicarboxylic acid). The enzyme is the only type II PRTase whose X-ray structure is known. Here we determined the kinetic mechanism of the enzyme from Salmonella typhimurium. Equilibrium binding studies show that PRPP and QA each form binary complexes with the enzyme, with K(D) values (53 and 21 microM, respectively) similar to their K(M) values (30 and 25 microM, respectively). Although neither PP(i) nor NAMN products bound well to the enzyme, 130-fold tighter binding of PP(i) (K(D) = 75 microM) and NAMN (K(D) = 6 microM) in a ternary complex was observed. Phthalic acid (K(D) = 21 microM) and PRPP each caused a 2.5-fold tightening of the other's binding. Isotope trapping experiments indicated that the E.QA complex is catalytically competent, whereas the E.PRPP complex could not be trapped. Pre-steady-state kinetics gave a linear rate of NAMN formation, indicating that on-enzyme phosphoribosyl transfer chemistry is rate-determining. Isotope trapping from the steady state revealed that nearly all QA and about one-third of PRPP in ternary enzyme.QA.PRPP complexes could be trapped as the product. Substrate inhibition by PRPP was observed. These data demonstrate a predominantly ordered kinetic mechanism in which productive binding of quinolinic acid precedes that of PRPP. An E.PRPP complex exists as a nonproductive side branch.  相似文献   

10.
Wang GP  Hansen MR  Grubmeyer C 《Biochemistry》2012,51(22):4406-4415
Residue-to-alanine mutations and a two-amino acid deletion have been made in the highly conserved catalytic loop (residues 100-109) of Salmonella typhimurium OMP synthase (orotate phosphoribosyltransferase, EC 2.4.2.10). As described previously, the K103A mutant enzyme exhibited a 10(4)-fold decrease in k(cat)/K(M) for PRPP; the K100A enzyme suffered a 50-fold decrease. Alanine mutations at His105 and Glu107 produced 40- and 7-fold decreases in k(cat)/K(M), respectively, and E101A, D104A, and G106A were slightly faster than the wild-type (WT) in terms of k(cat), with minor effects on k(cat)/K(M). Equilibrium binding of OMP or PRPP in binary complexes was affected little by loop mutation, suggesting that the energetics of ground-state binding have little contribution from the catalytic loop, or that a favorable binding energy is offset by costs of loop reorganization. Pre-steady-state kinetics for mutants showed that K103A and E107A had lost the burst of product formation in each direction that indicated rapid on-enzyme chemistry for WT, but that the burst was retained by H105A. Δ102Δ106, a loop-shortened enzyme with Ala102 and Gly106 deleted, showed a 10(4)-fold reduction of k(cat) but almost unaltered K(D) values for all four substrate molecules. The 20% (i.e., 1.20) intrinsic [1'-(3)H]OMP kinetic isotope effect (KIE) for WT is masked because of high forward and reverse commitment factors. K103A failed to express intrinsic KIEs fully (1.095 ± 0.013). In contrast, H105A, which has a smaller catalytic lesion, gave a [1'-(3)H]OMP KIE of 1.21 ± 0.0005, and E107A (1.179 ± 0.0049) also gave high values. These results are interpreted in the context of the X-ray structure of the complete substrate complex for the enzyme [Grubmeyer, C., Hansen, M. R., Fedorov, A. A., and Almo, S. C. (2012) Biochemistry 51 (preceding paper in this issue, DOI 10.1021/bi300083p )]. The full expression of KIEs by H105A and E107A may result from a less secure closure of the catalytic loop. The lower level of expression of the KIE by K103A suggests that in these mutant proteins the major barrier to catalysis is successful closure of the catalytic loop, which when closed, produces rapid and reversible catalysis.  相似文献   

11.
The crystal structure of a chimera of Plasmodium falciparum (Pf) and human hypoxanthine guanine phosphoribosyltransferases (HGPRT), which consists of the core of the protein from the human enzyme and the hood region from the Pf enzyme, has been determined as a complex with the product guanosine monophosphate (GMP). The chimera can utilize hypoxanthine, guanine, and xanthine as substrates, similar to the Pf enzyme. It exists as a monomer-dimer mixture in solution, but shifts to a tetramer on addition of phosphoribosyl pyrophosphate (PRPP). The structural studies reveal that the asymmetric unit of the crystal consists of two monomers of the chimeric HGPRT. Surprisingly, the dimer interface of the chimera is the less extensive AC interface of the parent HGPRTs. An analysis of the crystal structures of the various human HGPRTs provides an explanation for the oligomeric characteristics of the chimera. Pro93 and Tyr197 form part of crucial interactions holding together the AB interface in the unliganded or GMP-bound forms of HGPRT, while Pro93 and His26 interact at the interface after binding of PRPP. Replacement of Tyr197 of human HGPRT by Ile207 in the chimera disrupts the interaction at the AB interface in the absence of PRPP. In the presence of PRPP, the interaction between Pro93 and His26 could restore the AB interface, shifting the chimeric enzyme to a tetrameric state. The structure provides valuable insights into the differences in the AB interface between Pf and human HGPRTs, which may be useful for designing selective inhibitors against the parasite enzyme.  相似文献   

12.
Human lymphoblasts derived from normal and hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficient individuals have been maintained in permanent tissue culture, and comparative studies of their purine metabolism have been undertaken. In agreement with previous observations in fibroblasts, the HGPRT-deficient lymphoblasts (less than 2% normal HGPRT activity) demonstrate threefold increases in the production of purines by the de novo pathway and four- to eightfold increases in intracellular concentrations of 5-phosphoribosyl 1-pyrophosphate (PRPP). The activities of the enzymes of purine metabolism responsible for production and utilization of PRPP were measured under optimal conditions in each cell line. The activities of adenine phosphoribosyltransferase (APRT), PRPP synthetase, and PRPP amidotransferase were independent of cell density and were not significantly different in the two cell lines. The K m values of the common substrate, PRPP, were determined in normal lymphoblast extracts for APRT (K m of 0.033 mM), HGPRT (K m of 0.074 mM), and PRPP amidotransferase (K m of 0.3 m M). The relatively low affinity of PRPP amidotransferase for PRPP suggests that deficiency of the HGPRT enzyme with its attendant increase in PRPP concentration should be accompanied by increased in vivo activity of PRPP amidotransferase, the first and presumed rate-limiting enzyme of de novo purine biosynthesis.This work was supported in part by National Institutes of Health Grants AM-05646, AM-13622, and GM-17702.  相似文献   

13.
ATP-phosphoribosyltransferase (ATP-PRT), the first enzyme of the histidine pathway, is a complex allosterically regulated enzyme, which controls the flow of intermediates through this biosynthetic pathway. The crystal structures of Escherichia coli ATP-PRT have been solved in complex with the inhibitor AMP at 2.7A and with product PR-ATP at 2.9A (the ribosyl-triphosphate could not be resolved). On the basis of binding of AMP and PR-ATP and comparison with type I PRTs, the PRPP and parts of the ATP-binding site are identified. These structures clearly identify the AMP as binding in the 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP)-binding site, with the adenosine ring occupying the ATP-binding site. Comparison with the recently solved Mycobacterium tuberculosis ATP-PRT structures indicates that histidine is solely responsible for the large conformational changes observed between the hexameric forms of the enzyme. The role of oligomerisation in inhibition and the structural basis for the synergistic inhibition by histidine and AMP are discussed.  相似文献   

14.
Inosine triphosphatase (ITPA) is a ubiquitous key regulator of cellular non-canonical nucleotide levels. It breaks down inosine and xanthine nucleotides generated by deamination of purine bases. Its enzymatic action prevents accumulation of ITP and reduces the risk of incorporation of potentially mutagenic inosine nucleotides into nucleic acids. Here we describe the crystal structure of human ITPA in complex with its prime substrate ITP, as well as the apoenzyme at 2.8 and 1.1A, respectively. These structures show for the first time the site of substrate and Mg2+ coordination as well as the conformational changes accompanying substrate binding in this class of enzymes. Enzyme substrate interactions induce an extensive closure of the nucleotide binding grove, resulting in tight interactions with the base that explain the high substrate specificity of ITPA for inosine and xanthine over the canonical nucleotides. One of the dimer contact sites is made up by a loop that is involved in coordinating the metal ion in the active site. We predict that the ITPA deficiency mutation P32T leads to a shift of this loop that results in a disturbed affinity for nucleotides and/or a reduced catalytic activity in both monomers of the physiological dimer.  相似文献   

15.
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT, E.C. 2.4.2.8) from Artemia cysts exhibits maximum activity at 70°C. Its thermal stability has been examined following enzymatic activity as a function of temperature. Cold-induced renaturation experiments of samples heated at increasing temperatures showed that reversibility of thermal inactivation depends on the incubation time and final temperature. Prolonged incubation of the thermoinactivated enzyme at 0°C did not afford any further increase of the catalytic activity at 37°C. The complex substrate PRPP:Mg protects HGPRT from thermal inactivation. However, incubations with hypoxanthine rendered a less thermostable enzyme at any temperature tested. The irreversible inactivation of HGPRT proceeds in two exponential steps. The analysis of the apparent rate constants for the fast and the slow phases, λ1 and λ2 as per the Lumry and Eyring model suggests the existence of more than three states in the thermal denaturation pathway of the free enzyme. In the presence of PRPP:Mg the irreversible process follows a single exponential and proceeds very slowly below 70°C. PRPP:Mg also protects the enzyme from inactivation by NEM and pCMB, suggesting that -SH groups may be in the vicinity of the active site  相似文献   

16.
Guanine phosphoribosyltransferase (GPRTase) from Giardia lamblia, an enzyme required for guanine salvage and necessary for the survival of this parasitic protozoan, has been kinetically characterized. Phosphoribosyltransfer proceeds through an ordered sequential mechanism common to many related purine phosphoribosyltransferases (PRTases) with alpha-D-5-phosphoribosyl-1-pyrophosphate (PRPP) binding to the enzyme first and guanosine monophosphate (GMP) dissociating last. The enzyme is a highly unique purine PRTase, recognizing only guanine as its purine substrate (K(m) = 16.4 microM) but not hypoxanthine (K(m) > 200 microM) nor xanthine (no reaction). It also catalyzes both the forward (kcat = 76.7 s-1) and reverse (kcat = 5.8.s-1) reactions at significantly higher rates than all the other purine PRTases described to date. However, the relative catalytic efficiencies favor the forward reaction, which can be attributed to an unusually high K(m) for pyrophosphate (PPi) (323.9 microM) in the reverse reaction, comparable only with the high K(m) for PPi (165.5 microM) in Tritrichomonas foetus HGXPRTase-catalyzed reverse reaction. As the latter case was due to the substitution of threonine for a highly conserved lysine residue in the PPi-binding loop [Munagala et al. (1998) Biochemistry 37, 4045-4051], we identified a corresponding threonine residue in G. lamblia GPRTase at position 70 by sequence alignment, and then generated a T70K mutant of the enzyme. The mutant displays a 6.7-fold lower K(m) for PPi with a twofold increase in the K(m) for PRPP. Further attempts to improve PPi binding led to the construction of a T70K/A72G double mutant, which displays an even lower K(m) of 7.9 microM for PPi. However, mutations of the nearby Gly71 to Glu, Arg, or Ala completely inactivate the GPRTase, suggesting the requirement of flexibility in the putative PPi-binding loop for enzyme catalysis, which is apparently maintained by the glycine residue. We have thus tentatively identified the PPi-binding loop in G. lamblia GPRTase, and attributed the relatively higher catalytic efficiency in the forward reaction to the unusual loop structure for poor PPi binding in the reverse reaction.  相似文献   

17.
We have developed a method of relating changes in hypoxanthine guanine phosphoribosyl transferase (HGPRTase) activity to the rate of phosphoribosyl pyrophosphate (PRPP) synthesis in isolated cell lines and in co-cultures of different cell lines. Using this approach, we have determined the response of the HGPRTase activity of communication-competent and communication-incompetent cells to changes in PRPP content. The HGPRTase activity of HGPRT+ communication-competent NS cells responds to changes of their own PRPP level, as well as to changes of the PRPP level of HGPRT- cells with which they are co-cultured. In contrast, the HGPRTase activity of the HGPRT+, but communication-incompetent L929 cells responds to changes of their own PRPP content but not to changes of the PRPP content of the cocultured HGPRT- cells. These and other experiments show that PRPP is freely exchangeable between communication-competent cells and that the intracellular activity of HGPRTase in one cell can be regulated by changes in the levels of its substrate in another cell through metabolic cooperation. The results also indicate that HGPRTase normally functions at a small fraction of its total activity, and that this can be greatly increased by raising the intracellular PRPP levels. Furthermore, it is found that when communication-competent cells establish intercellular communication, they share a common pool of PRPP and of purine nucleotides. This approach can be used as the basis of a biochemical method for the quantitation of metabolic cooperation between cells.  相似文献   

18.
Munagala N  Basus VJ  Wang CC 《Biochemistry》2001,40(14):4303-4311
The hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRTase), a type I PRTase, from Tritrichomonas foetus, is a potential target for antitritrichomonal chemotherapy. Structural data on all the type I PRTases reveal a highly flexible, 11-14-amino acid loop, presumably covering the active site. With the exception of a highly conserved Ser-Tyr dipeptide, the other amino acids constituting the loop vary widely among different PRTases. The roles of the conserved Ser73 and Tyr74 residues in the loop and the dynamics of the loop in T. foetus HGXPRTase were investigated using site-directed mutants, stop-flow kinetics, chemical modification, and two-dimensional (1)H-(15)N heteronuclear NMR relaxation experiments. S73A, Y74F, and Y74E mutants of HGXPRTase exhibited a 5-7-fold increase in K(m) for guanine and a 3-5-fold increase in K(m) for PRPP compared to that of the wild type, reflecting the decreased affinity of binding for the two substrates. The k(cat)'s for these mutant-catalyzed reactions, however, do not change appreciably from that of the wild-type enzyme. Stopped-flow fluorescence with a Y74W mutant showed no apparent quenching by adding either PRPP or GMP alone. When both PRPP and guanine were added together, however, the fluorescence was rapidly quenched, followed by a slow recovery as the enzyme-catalyzed reaction progressed, suggesting movement of the loop during catalysis. In the presence of 9-deazaguanine and PRPP, the rapidly quenched fluorescence was not recovered, suggesting a closed loop form. The accessibility of Trp74 in the flexible loop of the mutant enzyme was also analyzed using N-bromosuccinimide (NBS), which reacts specifically with the tryptophan residue. NBS reacted with the only tryptophan in the Y74W mutant enzyme and rendered the enzyme inactive. GMP or PRPP alone failed to protect the enzyme from NBS inactivation. However, the presence of both 9-deazaguanine and PPRP protected the enzyme, allowing it to retain up to 70% of its activity. An S75H mutant, labeled with [(15)N]histidine, was used in the (1)H-(15)N NMR study. Spectra obtained in the presence of enzyme substrates indicated an apparent stabilization of the loop only in the presence of 9-deazaguanine and PRPP. These experimental results thus clearly demonstrated stabilization of the flexible loop upon binding of both PRPP and guanine and suggested its involvement in enzyme catalysis.  相似文献   

19.
Most of the nitrogen transported from the nodules of nitrogen-fixing soybean plants is in the form of the ureides allantoin and allantoic acid. Recent work has shown that ureides are formed in the plant fraction of the nodule from de novo purine biosynthesis and purine oxidation. 5-Phosphoribosylpyrophosphate amidotransferase (PRAT), which catalyzes the first committed step of purine biosynthesis, has been purified 1500-fold from soybean root nodules. The enzyme had an apparent Mr of 8 X 10(6), but this estimate may have been for an aggregation of several purine biosynthetic activities. PRAT showed a pH optimum of pH 8.0, and Km values were 18 and 0.4 mM for glutamine and 5-phosphoribosyl-1-pyrophosphate (PRPP), respectively. The reaction required Mg2+, and PRPPMg3- was shown to be the reactive molecular species of PRPP. Ammonia could replace glutamine as a substrate, and the Vm with ammonia was twice that obtained when glutamine was the substrate. The initial-rate kinetics showed sequential addition of substrates to the enzyme. Product inhibition data was consistent with the order of product release being phosphoribosylamine, PPi, and glutamate. The enzyme was subject to regulation by end products of the purine biosynthetic pathway. IMP and GMP inhibited competitively with PRPP and promoted cooperativity in the binding of this substrate; there was no cooperativity in the binding of IMP to the enzyme. XMP was a linear competitive inhibitor with PRPP. The results are discussed in terms of the key regulatory point occupied by PRAT in the pathway of ureide biogenesis.  相似文献   

20.
Hypoxanthine‐guanine‐xanthine phosphoribosyltransference (HGXPRT), a key enzyme in the purine salvage pathway of the malarial parasite, Plasmodium falciparum (Pf), catalyses the conversion of hypoxanthine, guanine, and xanthine to their corresponding mononucleotides; IMP, GMP, and XMP, respectively. Out of the five active site loops (I, II, III, III', and IV) in PfHGXPRT, loop III' facilitates the closure of the hood over the core domain which is the penultimate step during enzymatic catalysis. PfHGXPRT mutants were constructed wherein Trp 181 in loop III' was substituted with Ser, Thr, Tyr, and Phe. The mutants (W181S, W181Y and W181F), when examined for xanthine phosphoribosylation activity, showed an increase in Km for PRPP by 2.1‐3.4 fold under unactivated condition and a decrease in catalytic efficiency by more than 5‐fold under activated condition as compared to that of the wild‐type enzyme. The W181T mutant showed 10‐fold reduced xanthine phosphoribosylation activity. Furthermore, molecular dynamics simulations of WT and in silico W181S/Y/F/T PfHGXPRT mutants bound to IMP.PPi.Mg2+ have been carried out to address the effect of the mutation of W181 on the overall dynamics of the systems and identify local changes in loop III'. Dynamic cross‐correlation analyses show a communication between loop III' and the substrate binding site. Differential cross‐correlation maps indicate altered communication among different regions in the mutants. Changes in the local contacts and hydrogen bonding between residue 181 with the nearby residues cause altered substrate affinity and catalytic efficiency of the mutant enzymes. Proteins 2016; 84:1658–1669. © 2016 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号