首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondria of the yeastlike fungus Moniliella tomentosa oxidize reduced nicotinamide adenine dinucleotide, reduced nicotinamide adenine dinucleotide phosphate, succinate, isocitrate, and lactate. These oxidations are completely inhibited by cyanide or antimycin A in mitochondria isolated from cells grown in the standard medium. On the other hand, the oxidation of all substrates, except lactate, is almost completely insensitive to cyanide or antimycin A in mitochondria from cells grown in the presence of ethidium bromide. In this instance, the oxidation is mainly mediated by an alternate oxidase which can be blocked by salicyl hydroxamic acid. The alternate oxidase can be specifically stimulated by adenosine 5'-monophosphate and this provides a new method for the characterization of the alternate oxidase in mitochondria of M. tomentosa.  相似文献   

2.
1. Whole cells of Acetobacter xylinum were found to contain a quinone of the ubiquinone (coenzyme Q) group. The quinone was isolated from the cells and crystallized. It was identified by its physical, chemical and spectroscopic properties as a ubiquinone with 10 isoprene units (ubiquinone-10). No naphthaquinone was detected in the cells. 2. Cell-free extracts prepared by means of a French pressure cell were separated into three fractions by differential centrifugation. The ubiquinone was located predominantly in the particulate fraction sedimenting at 33000g, which also contained most of the NADH oxidase and malate oxidase activities. The concentration of ubiquinone-10 in extracts was similar to that of the flavoproteins and about three times the concentration of the individual cytochromes. 3. Aerobic incubations of crude extracts with either NADH or malate resulted in reduction of the endogenous ubiquinone-10 to steady-state concentrations of 55 and 40% of the total quinone respectively. In the presence of cyanide more than 95% of the endogenous ubiquinone-10 was reduced by either NADH or malate. 4. The initial rate of reduction of endogenous ubiquinone-10 by malate and the rate of ubiquinol oxidation, in A. xylinum extracts, were found to be compatible with the overall rate of malate oxidation with oxygen. 5. The effects of various respiratory inhibitors on the oxidation-reduction reactions of the endogenous quinone indicate that its position on the respiratory chain is between the malate flavoprotein dehydrogenase and the cytochrome chain.  相似文献   

3.
pH-Dependent Polyol Production in Moniliella tomentosa   总被引:2,自引:1,他引:1       下载免费PDF全文
Production of polyols by the yeastlike fungus Moniliella tomentosa could be increased by growing the organism at constant low pH. Up to 54% increase in yield was obtained. Growth at low pH also results in the production of D-arabitol which is not found in normal media.  相似文献   

4.
The osmophilic yeastlike fungus Moniliella tomentosa is an obligate aerobe and is not susceptible to glucose repression. Respiration is greatest in exponentially growing cells and is then highly sensitive to cyanide. Respiration in older cells or in chloramphenicol-grown cells is mediated by a cyanide-insensitive respiration which is sensitive to salicyl hydroxamic acid. Growth of cells under reduced oxygen does not influence the respiratory capacity of the cells but results in a longer generation time and a lower final cell yield. Low aeration levels and growth in the presence of chloramphenicol have a profound effect on ethanol and polyol production.  相似文献   

5.
The enzymatic properties of NADH:quinone oxidoreductase were examined in Triton X-100 extracts of Bacillus cereus membranes by using the artificial electron acceptors ubiquinone-1 and menadione. Membranes were prepared from B. cereus KCTC 3674 grown aerobically on a complex medium and oxidized with NADH exclusively, whereas deamino-NADH was determined to be poorly oxidized. The NADH oxidase activity was lost completely by solubilization of the membranes with Triton X-100. However, by using the artificial electron acceptors ubiquinone-1 and menadione, NADH oxidation could be observed. The activities of NADH:ubiquinone-1 and NADH:menadione oxidoreductase were enhanced approximately 8-fold and 4-fold, respectively, from the Triton X-100 extracted membranes. The maximum activity of FAD-dependent NADH:ubiquinone-1 oxidoreductase was obtained at about pH 6.0 in the presence of 0.1M NaCl, while the maximum activity of FAD-dependent NADH:menadione oxidoreductase was obtained at about pH 8.0 in the presence of 0.1 M NaCl. The activities of the NADH:ubiquinone-1 and NADH:menadione oxidoreductase were very resistant to such respiratory chain inhibitors as rotenone, capsaicin, and AgNO(3), whereas these activities were sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Based on these results, we suggest that the aerobic respiratory chain-linked NADH oxidase system of B. cereus KCTC 3674 possesses an HQNO-sensitive NADH:quinone oxidoreductase that lacks an energy coupling site containing FAD as a cofactor.  相似文献   

6.
The respiratory quinone composition of the parasitic protozoa Leishmania donovani promastigote was investigated. 1'-oxomenaquinone-7, a chlorobiumquinone was found to be the major isoprenoid quinone. Substantial level of ubiquinone-9 was also present. Isolation and identification of the quinone from the purified plasma membrane yielded mainly 1'-oxomenaquinone-7 and ubiquinone-9; menaquinone was not detected. Membrane bound 1'-oxomenaquinone-7 could be destroyed by near-ultraviolet irradiation, with a concomitant loss or stimulation of plasma membrane electron transport activities. The abilities of different quinones to restore alpha-lipoic acid and ferricyanide reductase activity in near UV-irradiated cell preparations were compared. The order was; conjugate of chlorobiumquinone and sphingosine base approximately conjugate of 2-methyl-3-(1'-oxooctadecyl)-1,4-napthoquinone and octadecylamine > chlorobiumquinone approximately 2-methyl-3-(1'-oxooctadecyl)-1,4-napthoquinone > menaquinone-4 approximately ubiquinone-10. After irradiation with near-UV light, transmembrane alpha-lipoic acid reduction was inhibited, while transmembrane ferricyanide reduction was stimulated. The result obtained indicates that chlorobiumquinone mediates the plasma membrane electron transport between cytosolic reductant and oxygen as well as alpha-lipoic acid. UV-inactivation of chlorobiumquinone shuts down the plasma membrane oxygen uptake and diverts the electron flux towards ferricyanide reduction via ubiquinone-9. Chlorobiumquinone is the only example of a polyisoprenoid quinone containing a side chain carbonyl group from photosynthetic green-sulphur bacteria. Recent work has revealed numerous genes of trypanosomatid sharing common ancestry with plants and/or bacteria. These observations pose some fascinating questions about the evolutionary biology of this important group of parasitic protozoa.  相似文献   

7.
The alternative-oxidase-mediated succinate oxidase activity of Neurospora crassa decreases drastically when mitochondria are fractionated into submitochondrial particles or treated with deoxycholate. The activity, however, can be completely restored in the presence of nucleoside 5'-monophosphates. The purine nucleoside 5'-monophosphates are more effective than the pyrimidine homologues. 5'-GMP gives a 10-fold stimulation of the alternative-oxidase-mediated succinate oxidase activity in submitochondrial particles. A comparison is made with the results obtained earlier with Moniliella tomentosa [Hanssens & Verachtert (1976) J. Bacteriol. 125, 825--835; Vanderleyden, Van Den Eynde & Verachtert (1980) Biochem. J. 186, 309--316].  相似文献   

8.
The respiratory quinone composition of the parasitic protozoa Leishmania donovani promastigote was investigated. 1′-oxomenaquinone-7, a chlorobiumquinone was found to be the major isoprenoid quinone. Substantial level of ubiquinone-9 was also present. Isolation and identification of the quinone from the purified plasma membrane yielded mainly 1′-oxomenaquinone-7 and ubiquinone-9; menaquinone was not detected. Membrane bound 1′-oxomenaquinone-7 could be destroyed by near-ultraviolet irradiation, with a concomitant loss or stimulation of plasma membrane electron transport activities. The abilities of different quinones to restore α-lipoic acid and ferricyanide reductase activity in near UV-irradiated cell preparations were compared. The order was; conjugate of chlorobiumquinone and sphingosine base ? conjugate of 2-methyl-3-(1′-oxooctadecyl)-1,4-napthoquinone and octadecylamine >> chlorobiumquinone ? 2-methyl-3-(1′-oxooctadecyl)-1,4-napthoquinone > menaquinone-4 ? ubiquinone-10. After irradiation with near-UV light, transmembrane α-lipoic acid reduction was inhibited, while transmembrane ferricyanide reduction was stimulated. The result obtained indicates that chlorobiumquinone mediates the plasma membrane electron transport between cytosolic reductant and oxygen as well as α-lipoic acid. UV-inactivation of chlorobiumquinone shuts down the plasma membrane oxygen uptake and diverts the electron flux towards ferricyanide reduction via ubiquinone-9. Chlorobiumquinone is the only example of a polyisoprenoid quinone containing a side chain carbonyl group from photosynthetic green-sulphur bacteria. Recent work has revealed numerous genes of trypanosomatid sharing common ancestry with plants and/or bacteria. These observations pose some fascinating questions about the evolutionary biology of this important group of parasitic protozoa.  相似文献   

9.
The possible role of quinones in the electron transport system of Aerobacter aerogenes was investigated. The only quinone found in measurable amounts in bacteria grown in minimal media under both aerobic and anaerobic conditions was ubiquinone-8. Membrane-bound ubiquinone-8 could be removed by extraction with pentane, or destroyed by ultraviolet irradiation, with a concomitant loss of both reduced nicotinamide adenine dinucleotide (NADH) oxidase and NADH-linked respiratory nitrate reductase activity. In the extracted membrane preparations, these enzymatic activities could be restored, both to the same degree, by incorporation of ubiquinone-6, -8, or -10, but not by incorporation of menaquinones. The NADH oxidation and the nitrate reduction were sensitive to the respiratory inhibitors dicoumarol, lapachol, and cyanide. The results obtained indicate that ubiquinone-8 mediates the electron transport between NADH and oxygen as well as between NADH and nitrate. Branching of the electron transport chain to oxygen and nitrate occurs after an initial common pathway.  相似文献   

10.
NADPH-dependent ubiquinone-1 reductase activity was present in the phagocytic vesicles of pig polymorphonuclear leucocytes. The apparent Km-value of the reductase for NADPH was 29 microM which is similar to that of the NADPH-dependent superoxide formation. Increase of the quinone-reductase activity by increasing the concentrations of ubiquinone-1 was associated with the decrease of the superoxide forming activity, the rate of the NADPH oxidation being constant independent of the quinone concentration. p-Chloromercuribenzoate inhibited both superoxide formation and reduction of the quinone, whereas low concentrations of cetyltrimethylammonium bromide which inhibit the superoxide formation did not inhibit the reduction of the quinone. The reduction of 2,6-dichlorophenolindophenol which has been shown not to be inhibited by both inhibitors. The quinone-reductase activity could be extracted with a mixture of deoxycholate and Tween 20 which extracts the superoxide forming activity. The observations indicate that a region of the superoxide-forming NADPH oxidase between a mercurial-sensitive site and a site sensitive to the cationic detergent is responsible for the reduction of ubiquinone.  相似文献   

11.
Transient absorption changes during reduction of quinone in liposomes by external dithionite, in the absence and presence of initially trapped ferricyanide, were matched with absorption spectra of semiquinone and quinone in the blue region. Plastoquinone, ubiquinone-9 and phylloquinone, each having an isoprenoid side chain were compared with trimethyl-p-benzoquinone, ubiquinone-9 and menadione, which lack a long side chain. Semiquinone transients could only be observed by our spectroscopic technique during reduction of quinones lacking the chain. If Triton X-100 was added to the liposomes preparation semiquinone transients were also observed with the isoprenoid quinones. This result is consistent with the view that isoprenoid quinones build domains in the membranes, in which the life time of the semiquinone might be decreased by fast disproportionation, and to which dithionite has limited access.  相似文献   

12.
The ability of ubiquinone-3, a short chain ubiquinone homologue, to prevent Cu2+ induced oxidation of human low density lipoprotein was investigated. The results are as follows: in the presence of ubiquinone-3 the extent of peroxidation, as determined by the formation of thiobarbituric acid reactive substances, was only one third of that found in its absence; the quinone can also prevent the fragmentation of apolipo-protein B-100 and the increase of the net negative surface charge of the particle.  相似文献   

13.
Ayako Futami  Günter Hauska 《BBA》1979,547(3):597-608
Transient absorption changes during reduction of quinone in liposomes by external dithionite, in the absence and presence of initially trapped ferricyanide, were matched with absorption spectra of semiquinone and quinone in the blue region. Plastoquinone, ubiquinone-9 and phylloquinone, each having an isoprenoid side chain were compared with trimethyl-p-benzoquinone, ubiquinone-9 and menadione, which lack a long side chain.Semiquinone transients could only be observed by our spectroscopic technique during reduction of quinones lacking the chain. If Triton X-100 was added to the liposomes preparation semiquinone transients were also observed with the isoprenoid quinones. This result is consistent with the view that isoprenoid quinones build domains in the membranes, in which the life time of the semiquinone might be decreased by fast disproportionation, and to which dithionite has limited access.  相似文献   

14.
The alternative oxidase of Moniliella tomentosa mitochondria is stimulated by 5'-AMP. This effect may be masked, depending on the isolation procedure of the mitochondria. The preparation of submitochondrial particles results in the expression of the 5'-AMP effect. Two more methods are now described to reveal the 5'-AMP effect whenever it would be masked: (1) switching on the myokinase activity of the mitochondria to deplete them of endogenous 5'-AMP; (2) using detergents (sodium dodecyl sulphate, sodium deoxycholate) in a controlled detergent:protein ratio, or chloroform. The alternative oxidase of detergent-solubilized mitochondria was somewhat less selective towards nucleotides than were intact mitochondria. The effect of nucleotides on quinol oxidation by mitochondrial preparations and on quinol autoxidation was also studied. Mitochondrial oxidation of succinate by the alternative oxidase and autoxidation of quinols behaved similarly in the presence of certain nucleotides. Both reactions were stimulated. Both reactions were also inhibited by salicylhydroxamic acid. These effects on quinol oxidation disappeared when bovine serum albumin or mitochondrial proteins were present. From the results obtained it is not possible to exclude quinol autoxidation as a final step of the alternative oxidase.  相似文献   

15.
Using dithionite difference spectra we have detected cytochrome b in highly purified human neutrophils at a concentration of 0.08 nmol/mg protein. The presence of quinone was identified in lipid extracts at a concentration of approx. 0.06 nmol/mg protein. It was identified as ubiquinone-10 by mass spectrographic analysis. Simultaneous measurements of cytochrome oxidase indicated that these compounds could not be attributed to mitochondrial contamination. These results are compatible with the hypothesis that initiation of the respiratory burst in human neutrophils involves a multicomponent electron-transport system.  相似文献   

16.
The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the pathogen Vibrio cholerae exploits the free energy liberated during oxidation of NADH with ubiquinone to pump sodium ions across the cytoplasmic membrane. The Na+-NQR consists of four membrane-bound subunits NqrBCDE and the peripheral NqrF and NqrA subunits. NqrA binds ubiquinone-8 as well as quinones with shorter prenyl chains (ubiquinone-1 and ubiquinone-2). Here we show that the quinone derivative 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), a known inhibitor of the bc1 and b6f complexes found in mitochondria and chloroplasts, also inhibits quinone reduction by the Na+-NQR in a mixed inhibition mode. Tryptophan fluorescence quenching and saturation transfer difference NMR experiments in the presence of Na+-NQR inhibitor (DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide) indicate that two quinone analog ligands are bound simultaneously by the NqrA subunit with very similar interaction constants as observed with the holoenzyme complex. We conclude that the catalytic site of quinone reduction is located on NqrA. The two ligands bind to an extended binding pocket in direct vicinity to each other as demonstrated by interligand Overhauser effects between ubiquinone-1 and DBMIB or 2-n-heptyl-4-hydroxyquinoline N-oxide, respectively. We propose that a similar spatially close arrangement of the native quinone substrates is also operational in vivo, enhancing the catalytic efficiency during the final electron transfer steps in the Na+-NQR.  相似文献   

17.
Cytochrome bo3 is the major respiratory oxidase located in the cytoplasmic membrane of Escherichia coli when grown under high oxygen tension. The enzyme catalyzes the 2-electron oxidation of ubiquinol-8 and the 4-electron reduction of dioxygen to water. When solubilized and isolated using dodecylmaltoside, the enzyme contains one equivalent of ubiquinone-8, bound at a high affinity site (QH). The quinone bound at the QH site can form a stable semiquinone, and the amino acid residues which hydrogen bond to the semiquinone have been identified. In the current work, it is shown that the tightly bound ubiquinone-8 at the QH site is not displaced by ubiquinol-1 even during enzyme turnover. Furthermore, the presence of high affinity inhibitors, HQNO and aurachin C1–10, does not displace ubiquinone-8 from the QH site. The data clearly support the existence of a second binding site for ubiquinone, the QL site, which can rapidly exchange with the substrate pool. HQNO is shown to bind to a single site on the enzyme and to prevent formation of the stable ubisemiquinone, though without displacing the bound quinone. Inhibition of the steady state kinetics of the enzyme indicates that aurachin C1–10 may compete for binding with quinol at the QL site while, at the same time, preventing formation of the ubisemiquinone at the QH site. It is suggested that the two quinone binding sites may be adjacent to each other or partially overlap.  相似文献   

18.
Using dithionite difference spectra we have detected cytochrome b in highly purified human neutrophils at a concentration of 0.08 nmol/mg protein. The presence of quinone was identified in lipid extracts at a concentration of approx. 0.06 nmol/mg protein. It was identified as ubiquinone-10 by mass spectrographic analysis. Simultaneous measurements of cytochrome oxidase indicated that these compounds could not be attributed to mitochondrial contamination. These results are compatible with the hypothesis that initiation of the respiratory burst in human neutrophils involves a multicomponent electron-transport system.  相似文献   

19.
The membranes of the thermoacidophilic archaeon Sulfolobus metallicus exhibit an oxygen consumption activity of 0.5 nmol O(2) min(-1) mg(-1), which is insensitive to rotenone, suggesting the presence of a type-II NADH dehydrogenase. Following this observation, the enzyme was purified from solubilised membranes and characterised. The pure protein is a monomer with an apparent molecular mass of 49 kDa, having a high N-terminal amino acid sequence similarity towards other prokaryotic enzymes of the same type. It contains a covalently attached flavin, which was identified as being FMN by 31P-NMR spectroscopy, a novelty among type-II NADH dehydrogenases. Metal analysis showed the absence of iron, indicating that no FeS clusters are present in the protein. The average reduction potential of the FMN group was determined to be +160 mV, at 25 degrees C and pH 6.5, by redox titrations monitored by visible spectroscopy. Catalytically, the enzyme is a NADH:quinone oxidoreductase, as it is capable of transferring electrons from NADH to several quinones, including ubiquinone-1, ubiquinone-2 and caldariella quinone. Maximal turnover rates of 195 micromol NADH oxidized min(-1) mg(-1) at 60 degrees C were obtained using ubiquinone-2 as electron acceptor, after enzyme dilution and incubation with phospholipids.  相似文献   

20.
The electron transfer from ubiquinol-2 to ferricytochrome c mediated by ubiquinol:cytochrome c oxidoreductase [E.C. 1.10.2.2] purified from beef heart mitochondria, which contained one equivalent of ubiquinone-10 (Q10), was investigated under initial steady-state conditions. The Q10-depleted enzyme was as active as the Q10-containing one. Double reciprocal plots for the initial steady-state rate versus one of the two substrates at various fixed levels of the other substrate gave parallel straight lines in the absence of any product. Intersecting straight lines were obtained in the presence of a constant level of one of the products, ferrocytochrome c. The other product, ubiquinone-2, did not show any significant effect on the enzymic reaction. Ferrocytochrome c non-competitively inhibited the enzymic reaction against either ubiquinol-2 or ferricytochrome c. These results indicate a Hexa-Uni ping-pong mechanism with one ubiquinol-2 and two ferricytochrome c molecules as the substrates, which involves the irreversible release of ubiquinone-2 as the first product and the irreversible isomerization between the release of the first ferrocytochrome c and the binding of the second ferricytochrome c. Considering the cyclic electron transfer reaction mechanism, this scheme suggests that the binding of quinone or quinol to the enzyme and electron transfer between the iron-sulfur center and cytochrome c1 are rigorously controlled by the electron distribution within the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号