首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
First Nuclear DNA C-values for 25 Angiosperm Families   总被引:9,自引:8,他引:1  
DNA amount is a widely used biodiversity character. As knownDNA C-values represent the global angiosperm flora poorly, bettercoverage of taxonomic groups is needed, including at the familiallevel. A workshop, sponsored byAnnals of Botany , was held atthe Royal Botanic Gardens, Kew in 1997. Its key aim was to identifymajor gaps in our knowledge of plant DNA C-values and recommendtargets for new work to fill them by international collaboration.In 1997 C-values were known for approx. 150 families, meaningthere was no estimate for most angiosperm families (approx 68%).The workshop recommended a goal of complete familial representationby 2002, as a main target for angiosperms. Bennett et al. (Annalsof Botany86: 859–909, 2000) presented a fifth supplementarylist of angiosperm C-values from 70 original sources which includedfirst C-values for 691 species. Only 12 (1.7%) of these werefirst C-values for unrepresented families, so the need to improvefamilial representation was substantially unmet. We began newwork to address this in September 1999, and now report firstDNA C-values for 25 angiosperm families. Such targeting seemsessential to achieve the goal of familial coverage set by the1997 workshop within 5 years. 4C values range from 0.67 pg (similartoArabidopsis thaliana ) in Amoreuxia wrightii(Cochlospermaceae)to 7.49 pg in Deutzia prunifolia(Hydrangeaceae). These datasupport the view that ancestral angiosperms almost certainlyhad small genomes (defined as 1C  相似文献   

2.
Nuclear DNA C-values Complete Familial Representation in Gymnosperms   总被引:6,自引:3,他引:3  
The gymnosperms are a monophyletic yet diverse group of woodytrees with approx. 730 extant species in 17 families. A recentsurvey showed that DNA C-values were available for approx. 16%of species, but for only 12 of the 17 families. This paper completesfamilial representation reporting first C-values for the fiveremaining families: Boweniaceae, Stangeriaceae, Welwitschiaceae,Cephalotaxaceae and Sciadopityaceae. C-values for nine Ephedraand two Gnetum species are also reported. C-values are now availablefor 152 (21%) species. Analysis confirms that gymnosperms arecharacterized by larger C-values than angiosperms (modal 1Cof gymnosperms = 15.8 pg compared with 0.6 pg in angiosperms)although the range (1C = 2.25–32.20 pg) is smaller thanthat in angiosperms (1C = 0.05–127.4 pg). Given completefamilial coverage for C-values and increasing consensus in gymnospermphylogeny, the phylogenetic component of C-value variation wasalso investigated by comparing the two datasets. This analysisrevealed that ancestral gymnosperms (represented by cycads and/orGinkgo; mean genome size = 14.71 pg) probably had larger genomes thanancestral angiosperms. Copyright 2001 Annals of Botany Company Gymnosperm DNA amounts, C-values, phylogeny, ancestral genome size, Cycadales, Ginkgo, Gnetales, conifers, Pinaceae  相似文献   

3.
Nuclear DNA Amounts in Angiosperms and their Modern Uses--807 New Estimates   总被引:14,自引:4,他引:10  
The DNA amount in the unreplicated haploid nucleus of an organismis known as its C-value. C-values differ about 1000-fold amongangiosperms and are characteristic of taxa. The data are usedin many biological fields, so they should be easily available.Values for 2802 angiosperm species (1%) were estimated during1950–1997, and five collected lists of C-values were publishedfor reference purposes during 1976–1997. Numbers of newangiosperm C-values published recently remained high, necessitatinga further supplementary list. This paper lists DNA C-valuesfor 807 angiosperm species from 70 original sources, including520 (75.2%) from sources published after 1996, and 691 for speciesnot included in any of the previous five lists. There is a continuingneed to estimate accurate DNA C-values for plant taxa, as shownin a workshop on this biodiversity topic sponsored by Annalsof Botany and held at Kew in 1997. Its key aim was to identifymajor gaps in our knowledge of plant DNA amounts and to recommendtargets and priorities for new work to fill them. A target ofestimating first C-values for the next 1% of angiosperm speciesin 5 years was set. The proportion of such C-values in the presentwork (85.6%) is very high; and the number being published (approx.220 per annum) has never been exceeded. In 1997, C-values werestill unknown for most (68%) families, so a target of completecoverage was set. This paper includes first C-values for 12families, but as less than 2% of such values listed here targetednew families, the need to improve familial representation remains.Copyright 2000 Annals of Botany Company Angiosperm DNA amounts, DNA C-values, nuclear genome sizes, plant DNA database  相似文献   

4.
Nuclear DNA Amounts in Pteridophytes   总被引:2,自引:2,他引:0  
DNA amounts (C-value and genome size) are much-used biodiversitycharacters. A workshop held at Kew in 1997 identified majorgaps in our knowledge of plant DNA amounts, recommending targetsfor new work to fill them. Murray reviewed non-angiosperm plantsnoting that representation of pteridophyte species (approx.0.42%) was poor, while locating C-value data for them was verydifficult. The workshop confirmed the need to make data forother groups besides angiosperms accessible for reference purposes.This paper pools DNA C-values for 48 pteridophyte species fromeight original sources into one reference source, and fulfilsa key workshop recommendation for this group. Comparing thesedata shows that nuclear 1C-values in pteridophytes vary approx.1000-fold, from 0.055 pg in Selaginella species to about 55pg in Ophioglossum petiolatum. Genome size estimates for 25pteridophytes vary approx. 200-fold from 0.055 to 10.7 pg, andthe mean genome sizes in diploids and polyploids (5.15 and 4.59pg, respectively) are not significantly different. Wider comparisonsshow that ranges of genome sizes in the major groups of landplants are very different. Those in bryophytes and pteridophytesare narrow compared with those in gymnosperms and angiosperms.The data indicate that the origin of land plants possibly involveda first major increase in genome size in the evolution of vascularplants, while a second such increase occurred later in gymnosperms.C-values for pteridophytes remain very few, but conversely opportunitiesfor new work on them are many. Copyright 2001 Annals of BotanyCompany Pteridophyte DNA amounts, DNA C-values, nuclear genome sizes  相似文献   

5.
BACKGROUND AND AIMS: A key target set at the second Plant Genome Size Workshop, held at the Royal Botanic Gardens, Kew in 2003, was to produce first DNA C-value data for an additional 1 % of angiosperm species, and, within this, to achieve 75 % familial coverage overall (up from approx. 50 %) by 2009. The present study targeted eudicot families for which representation in 2003 (42.5 %) was much lower than monocot (72.8 %) and basal angiosperm (69.0 %) families. METHODS: Flow cytometry or Feulgen microdensitometry were used to estimate nuclear DNA C-values, and chromosome counts were obtained where possible. KEY RESULTS: First nuclear DNA C-values are reported for 20 angiosperm families, including 18 eudicots. This substantially increases familial representation to 55.2 % for angiosperms and 48.5 % for eudicots. CONCLUSIONS: The importance of targeting specific plant families to improve familial nuclear DNA C-value representation is reconfirmed. International collaboration will be increasingly essential to locate and obtain material of unsampled plant families, if the target set by the second Plant Genome Size Workshop is to be met.  相似文献   

6.
Nuclear DNA Amounts in Mosses (Musci)   总被引:7,自引:6,他引:1  
Voglmayr  Hermann 《Annals of botany》2000,85(4):531-546
A comparative investigation into nuclear DNA amounts using flowcytometry and video-based Feulgen densitometry was carried outin 289 accessions of 138 different moss taxa (Bryatae), originatingfrom Austria, Switzerland, Spain, Mexico and the USA. Samplingincluded species from all major moss clades (except Sphagnum).Flow cytometry data agreed highly with the Feulgen data, whichonce again demonstrates the high reliability of both methodsfor DNA amount determination. For the first time, extensivedata on absolute C-values of mosses are available. Haploid DNAcontents (1C) ranged from 0.174 to 2.16 pg, which representsonly about a 12-fold variation. This low C-value variation isremarkable when compared to angiosperms which vary approx. 1000-fold.C-values are usually relatively constant within genera and evenfamilies; however, genera with varying C-values also exist.From the low frequency observed, secondary polyploidy playsonly a minor role in mosses. Possible reasons for the low C-valuevariation are discussed. Copyright 2000 Annals of Botany Company Mosses, Bryatae, genome size, nuclear DNA amounts, C-value variation, Feulgen, flow cytometry, densitometry, image analysis  相似文献   

7.
This paper reports first DNA C-values for 28 angiosperm genera. These include first DNA C-values for 25 families, of which 16 are monocots. Overall familial representation is 47.2 % for angiosperms, but is now much higher for monocots (75 %) and basal angiosperms (73.1 %) than for eudicots (38.7 %). Chromosome counts are reported for 22 taxa, including first records for six genera plus seven species. Unrepresented families will become increasingly enriched for monotypic taxa from obscure locations that are harder to access. Thus, completing familial representation for genome size for angiosperms may prove impossible in any short period, and progress towards this goal will become slower.  相似文献   

8.
Evolution of DNA amounts across land plants (embryophyta)   总被引:4,自引:0,他引:4  
BACKGROUND AND AIMS: DNA C-values in land plants (comprising bryophytes, lycophytes, monilophytes, gymnosperms and angiosperms) vary approximately 1000-fold from approx. 0.11 to 127.4 pg. To understand the evolutionary significance of this huge variation it is essential to evaluate the phylogenetic component. Recent increases in C-value data (e.g. Plant DNA C-values database; release 2.0, January 2003; http://www.rbgkew.org.uk/cval/homepage.html) together with improved consensus of relationships between and within land plant groups makes such an analysis timely. METHODS: Insights into the distribution of C-values in each group of land plants were gained by superimposing available C-value data (4119 angiosperms, 181 gymnosperms, 63 monilophytes, 4 lycophytes and 171 bryophytes) onto phylogenetic trees. To enable ancestral C-values to be reconstructed for clades within land plants, character-state mapping with parsimony and MacClade was also applied. KEY RESULTS AND CONCLUSIONS: Different land plant groups are characterized by different C-value profiles, distribution of C-values and ancestral C-values. For example, the large ( approximately 1000-fold) range yet strongly skewed distribution of C-values in angiosperms contrasts with the very narrow 12-fold range in bryophytes. Further, character-state mapping showed that the ancestral genome sizes of both angiosperms and bryophytes were reconstructed as very small (i.e. < or =1.4 pg) whereas gymnosperms and most branches of monilophytes were reconstructed with intermediate C-values (i.e. >3.5, <14.0 pg). More in-depth analyses provided evidence for several independent increases and decreases in C-values; for example, decreases in Gnetaceae (Gymnosperms) and heterosperous water ferns (monilophytes); increases in Santalales and some monocots (both angiosperms), Pinaceae, Sciadopityaceae and Cephalotaxaceae (Gymnosperms) and possibly in the Psilotaceae + Ophioglossaceae clade (monilophytes). Thus, in agreement with several focused studies within angiosperm families and genera showing that C-values may both increase and decrease, it is apparent that this dynamic pattern of genome size evolution is repeated on a broad scale across land plants.  相似文献   

9.
The evolutionary significance of the c . 1000-fold range of DNA C-values in angiosperms (1C =  c . 0.1–127.4 pg) has often attracted interest. A recent analysis, which superimposed available C-value data onto the angiosperm phylogeny, that placed Ceratophyllaceae as the most basal angiosperm family led to the conclusion that ancestral angiosperms were characterized by small genomes (defined as 1C £ 3.5 pg). However, with the recent increase in DNA sequence data and large-scale phylogenetic analyses, strong support is now provided for Amborellaceae and/or Nymphaeaceae as the most basal angiosperm families, followed by Austrobaileyales (comprising Schisandraceae, Trimeniaceae and Austrobaileyaceae). Together these five families comprise the ANITA grade. The remaining basal angiosperm families (Ceratophyllaceae, Chloranthaceae and magnoliids), together with monocotyledons and eudicotyledons, form a strongly supported clade. A survey showed that C-value data were scarce in the basal angiosperm families, especially the ANITA grade. The present paper addresses these phylogenetic gaps by providing C-value estimates for each family in ANITA, together with C-values for species in Chloranthaceae, Ceratophyllaceae and a previously unrepresented family in the magnoliids, the Winteraceae.  © The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 175–179.  相似文献   

10.
Nuclear DNA amounts in angiosperms: progress, problems and prospects   总被引:15,自引:0,他引:15  
BACKGROUND: The nuclear DNA amount in an unreplicated haploid chromosome complement (1C-value) is a key diversity character with many uses. Angiosperm C-values have been listed for reference purposes since 1976, and pooled in an electronic database since 1997 (http://www.kew.org/cval/homepage). Such lists are cited frequently and provide data for many comparative studies. The last compilation was published in 2000, so a further supplementary list is timely to monitor progress against targets set at the first plant genome size workshop in 1997 and to facilitate new goal setting. SCOPE: The present work lists DNA C-values for 804 species including first values for 628 species from 88 original sources, not included in any previous compilation, plus additional values for 176 species included in a previous compilation. CONCLUSIONS: 1998-2002 saw striking progress in our knowledge of angiosperm C-values. At least 1700 first values for species were measured (the most in any five-year period) and familial representation rose from 30 % to 50 %. The loss of many densitometers used to measure DNA C-values proved less serious than feared, owing to the development of relatively inexpensive flow cytometers and computer-based image analysis systems. New uses of the term genome (e.g. in 'complete' genome sequencing) can cause confusion. The Arabidopsis Genome Initiative C-value for Arabidopsis thaliana (125 Mb) was a gross underestimate, and an exact C-value based on genome sequencing alone is unlikely to be obtained soon for any angiosperm. Lack of this expected benchmark poses a quandary as to what to use as the basal calibration standard for angiosperms. The next decade offers exciting prospects for angiosperm genome size research. The database (http://www.kew.org/cval/homepage) should become sufficiently representative of the global flora to answer most questions without needing new estimations. DNA amount variation will remain a key interest as an integrated strand of holistic genomics.  相似文献   

11.
Nuclear DNA C-values and genome size are important biodiversity characters with fundamental biological significance. Yet C-value data for pteridophytes, a diverse group of vascular plants with approx. 9000 extant species, remain scarce. A recent survey by Bennett and Leitch (2001, Annals of Botany 87: 335-345) found that C-values were reported for only 48 pteridophyte species. To improve phylogenetic representation in this group and to check previously reported estimates, C-values for 30 taxa in 17 families were measured using flow cytometry for all but one species. This technique proved generally applicable, but the ease with which C-value data were generated varied greatly between materials. Comparing the new data with those previously published revealed several large discrepancies. After discounting doubtful data, C-values for 62 pteridophyte species remained acceptable for analysis. The present work has increased the number of such species' C-values by 93 %, and more than doubled the number of families represented (from 10 to 21). Analysis shows that pteridophyte C-values vary approx. 450-fold, from 0-16 pg in Selaginella kraussiana to 72.7 pg in Psilotum nudum var. gasa. Superimposing C-value data onto a robust phylogeny of pteridophytes suggests some possible trends in C-value evolution and highlights areas for future work.  相似文献   

12.
Nuclear DNA amounts in angiosperms: targets, trends and tomorrow   总被引:2,自引:0,他引:2  
BACKGROUND AND AIMS: The amount of DNA in an unreplicated gametic chromosome complement is known as the C-value and is a key biodiversity character of fundamental significance with many practical and predictive uses. Since 1976, Bennett and colleagues have assembled eight compilations of angiosperm C-values for reference purposes and subsequently these have been pooled into the Angiosperm DNA C-values Database (http://data.kew.org/cvalues/). Since the last compilation was published in 2005, a large amount of data on angiosperm genome size has been published. It is therefore timely to bring these data together into a ninth compilation of DNA amounts. Scope The present work lists DNA C-values for 2221 species from 151 original sources (including first values for 1860 species not listed in previous compilations). Combining these data with those published previously shows that C-values are now available for 6287 angiosperm species. KEY FINDINGS: Analysis of the dataset, which is by far the largest of the nine compilations published since 1976, shows that angiosperm C-values are now being generated at the highest rate since the first genome sizes were estimated in the 1950s. The compilation includes new record holders for the smallest (1C = 0·0648 pg in Genlisea margaretae) and largest (1C = 152·23 pg in Paris japonica) genome sizes so far reported, extending the range encountered in angiosperms to nearly 2400-fold. A review of progress in meeting targets set at the Plant Genome Size meetings shows that although representation for genera, geographical regions and some plant life forms (e.g. island floras and parasitic plants) has improved, progress to increase familial representation is still slow. In terms of technique it is now clear that flow cytometry is soon likely to become the only method available for plant genome size estimations. Fortunately, this has been accompanied by numerous careful studies to improve the quality of data generated using this technique (e.g. design of new buffers, increased awareness and understanding of problems caused by cytosolic inhibitors). It is also clear that although the speed of DNA sequencing continues to rise dramatically with the advent of next-generation and third-generation sequencing technologies, 'complete genome sequencing' projects are still unable to generate accurate plant genome size estimates.  相似文献   

13.
Genome sizes for 127 Macaronesian endemic angiosperms from 69 genera and 32 families were estimated using propidium iodide flow cytometry. Only about 30-fold variation in 1C-values was found, ranging from 0.32 pg in Echium bonnetii to 9.52 pg in Scilla dasyantha. Taxa with very small DNA amounts (1C 1.4 pg) were the most dominant group (71.7%), whereas the frequency of other categories was much lower (18.9% and 9.4% in taxa with small (1.41–3.50 pg) and intermediate 1C-values (3.51–14.00 pg), respectively). Comparisons of average C- and Cx-values between Macaronesian endemics and non-Macaronesian representatives always revealed significantly smaller amounts in the former group at various taxonomic levels (genus, family, major phylogenetic lineage). Potential relationship between nuclear DNA content and insular burst of speciation is suggested owing to the marked prevalence of very small genomes among angiosperms that underwent rapid adaptive radiation. Merging all the genome size data on Macaronesian angiosperms available shows that this flora represents the best covered plant assemblage from the phytogeographic point of view.  相似文献   

14.
Nuclear DNA Amounts in Angiosperms--583 New Estimates   总被引:7,自引:1,他引:6  
The amount of DNA in the unreplicated haploid nuclear genome(itsC-value) varies over 600-fold between angiosperm species.Information regarding this character is used in a strikinglywide variety of plant biological fields. Moreover, recent studieshave noted a significant need for more information about thisimportant aspect of genome biodiversity. Bennett and co-authorshave published four collected lists of nuclear DNA amounts inangiosperm species, compiled primarily for reference purposes,including the most recent in 1995 (Annals of Botany76: 113–176).Together they list estimates for over 2500 species which representabout 1% of the global angiosperm flora. Interest in angiospermgenome size has remained high, as shown by the recent publicationof many new estimates, creating a need for a fifth compilation.This paper presents a supplementary list of nuclear DNAC-valuesfrom 37 sources for 471 angiosperm species not listed in theaforementioned compilations, plus additional estimates for 113species already listed by them. It contains estimates for palm,orchid and tropical hardwood species which significantly improvesrepresentation of the global flora. Work is in hand to combinethe genome size data compiled in this and the aforementionedpapers into a unified database, and to present the informationin separate lists, with species in alphabetical and systematicorders, respectively. Meanwhile, the availability of DNAC-valuesfor angiosperm species can be checked on the World Wide Web(http://www.rbgkew.org.uk/cval/database1.html). Angiosperm DNA amounts; DNAC-values; nuclear genome sizes; reference lists; plant DNA database  相似文献   

15.
Background and Aims: In published studies, positive relationships between nucleotypeand the duration of the mitotic cell cycle in angiosperms havebeen reported but the highest number of species analyzed wasapprox. 60. Here an analysis is presented of DNA C-values andcell cycle times in root apical meristems of angiosperms comprising110 measurements, including monocots and eudicots within a settemperature range, and encompassing an approx. 290-fold variationin DNA C-values. Methods: Data for 110 published cell cycle times of seedlings grown attemperatures between 20–25 °C were compared with DNAC-values (58 values for monocots and 52 for eudicots). Regressionanalyses were undertaken for all species, and separately formonocots and eudicots, diploids and polyploids, and annualsand perennials. Cell cycle times were plotted against the nuclearDNA C-values. Key Results: A positive relationship was observed between DNA C-value andcell cycle time for all species and for eudicots and monocotsseparately, regardless of the presence or absence of polyploidvalues. In this sample, among 52 eudicots the maximum cell cyclelength was 18 h, whereas the 58 monocot values ranged from 8–120h. There was a striking additional increase in cell cycle durationin perennial monocots with C-values greater than 25 pg. Indeed,the most powerful relationship between DNA C-value and cellcycle time and the widest range of cell cycle times was in perennialsregardless of ploidy level. Conclusions: DNA replication is identified as a rate limiting step in thecell cycle, the flexibility of DNA replication is explored,and we speculate on how the licensing of initiation points ofDNA replication may be a responsive component of the positivenucleotypic effect of C-value on the duration of the mitoticcell cycle.  相似文献   

16.
Nuclear DNA amounts in Macaronesian angiosperms   总被引:1,自引:0,他引:1  
Nuclear DNA contents for 104 Macaronesian angiosperms, with particular attention on Canary Islands endemics, were analysed using propidium iodide flow cytometry. Prime estimates for more than one-sixth of the whole Canarian endemic flora (including representatives of 11 endemic genera) were obtained. The resulting 1C DNA values ranged from 0.19 to 7.21 pg for Descurainia bourgeauana and Argyranthemum frutescens, respectively (about 38-fold difference). The majority of species, however, possessed (very) small genomes, with C-values <1.6 pg. The tendency towards small nuclear DNA contents and genome sizes was confirmed by comparing average values for Macaronesian and non-Macaronesian representatives of individual families, genera and major phylogenetic lineages. Our data support the hypothesis that the insular selection pressures in Macaronesia favour small C-values and genome sizes. Both positive and negative correlations between infrageneric nuclear DNA amount variation and environmental conditions on Tenerife were also found in several genera.  相似文献   

17.
Nuclear DNA Amounts in Angiosperms   总被引:33,自引:0,他引:33  
Bennett and Smith (Philosophical Transactions of the Royal Societyof London B274:227-274; B334: 309-345) and Bennett, Smith andHeslop-Harrison (Proceedings of the Royal Society of London,B216: 179-199) published lists of nuclear DNA amounts estimatedfor 1612 angiosperm species collected from 163 sources datedbetween 1951 and 1986. Subsequently, interest in genome sizein angiosperms and its significance has continued, and manynew DNA estimates were published during 1986-1994. Their inaccessibility,and the flow of enquiries for such information, shows that afurther compilation is needed. This paper presents a supplementarylist of nuclear DNA C-values for 105 sources for 899 angiospermspecies not listed in the above-mentioned compilations, plus284 additional estimates for 208 species already listed by them.The data are assembled primarily for reference purposes, withspecies listed in alphabetical order, rather than by any taxonomicscheme. Some advantages and limitations of flow cytometry, nowincreasingly used to quantify DNA C-values in plants, are reviewed.Recent reports regarding the occurrence and extent of intraspecificvariation in genome size are also discussed. While some examplesare real, others reflect technical shortcomings. Work has begunto combine the genome size data compiled in this and the above-mentionedpapers into a unified data base, and to present the informationin separate lists, with species in alphabetical and systematicorders, respectively. DNA C-values are now known for 1% of theworld's angiosperm flora, but improved representation of taxonomicgroups, geographical regions and plant life forms is urgentlyneeded.Copyright 1995, 1999 Academic Press Angiosperm DNA amounts, DNA C-values, nuclear genome sizes, intraspecific variation, flow cytometry, reference lists, genome size database  相似文献   

18.
19.
20.
EDITORIAL     
The Annals of Botany, one of the oldest botanical journals incontinuous publication, publishes eclectic and innovative papers,both on-line and in print, in almost every sphere of plant biology.Its policy has been and remains to improve and develop all aspectsof the Journal’s provision for the benefit of authorsand readers alike. In doing so, it aims to meet fully theirdemands for a high level of originality in scientific content,top quality reproduction and prompt publication with wide accessibility.Annals of Botany faces these  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号