首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
D Aminoff 《Blood cells》1988,14(1):229-257
Red blood cells (rbcs) have a definite life-span in circulation, 120 days in humans (and 60 days in rat). This involves the turnover of the equivalent of 2 x 10(11) rbcs per day in a normal adult. Many time-dependent physical, chemical, as well as biochemical and immunologic changes are associated with in vivo aging of rbcs in circulation. The major difficulty has been to unravel the complex picture and assign the primary signal responsible for the sequestration of the senescent rbc from circulation. Our current hypothesis based on the results of studies from many laboratories including our own is that it involves the progressive desialation of the most abundant sialoglycoprotein on rbc surface, glycophorin A. The complete desialation of glycophorin results in the exposure of multiple galactose-beta(1,3) N-acetylgalactosamine disaccharide residues on the rbc surface. These sites are recognized by the reticuloendothelial system, and result in the sequestration of those desialated senescent rbcs from circulation. This review summarizes the evidence for and against the immediate acceptance of this hypothesis.  相似文献   

3.
This study investigates the early evolution of vertebrate red blood cell (rbc) carbonic anhydrase (CA) by examining the physiological and molecular properties of rbc CA in teleost fish. When representatives of four different families of teleosts were compared, it was found that differences in overall rbc CA activity were due to different concentrations of CA, rather than differences in the enzymes kinetic properties. Additional molecular analysis of CA from the rbcs of rainbow trout provided further evidence that critical elements of the enzyme, such as the active site, have been highly conserved during vertebrate evolution. The active site of the trout CA differed from that of gar rbc CA at only two amino acid positions. The rainbow trout rbc CA sequence also showed high sequence homology with CA sequences from other fish tissues, and fits into an emerging group of fish CAs that are basal to mammalian CA I, II and III. Northern blot analysis of the tissue expression of the sequenced CA indicated that it is primarily found in the rbcs, but high amounts of cytosolic CA activity were also found in the gill, suggesting the presence of other cytosolic CA isozymes in this species.Abbreviations Az acetazolamide - CA carbonic anhydrase - MP maximum parsimony - NJ neighbour joining - RACE rapid amplification of cDNA ends - rbc red blood cellCommunicated by L.C.-H. Wang  相似文献   

4.
The aging of the red blood cell. A multifactor process   总被引:2,自引:0,他引:2  
Red blood cell (rbc) senescence is associated with loss of surface sialic acid, which is the principal carrier of surface negative charge and determines the electrokinetic behavior of old rbcs. Loss of sialic acid in an old rbc is demonstrated in its decreased electric mobility and lower negative charge density, determined topographically with cationic particle labeling. Surface sialic acid determines also the mutual attraction--repulsion forces, as demonstrated in enhanced aggluinability with cationic molecules, lectins, and blood group antibodies. Loss of sialic acid accompanies ATP-depletion in vitro; thus, a T-antigen site is unmasked. Macrophages have specific receptors to the site as to newly exposed galactose and N-acetyl galactosamine sugars. Furthermore, the involvement of complement molecules in the recognition of old RBCs by macrophages has been shown. This is possibly due to loss of sialic acid or at least a regrouping--relocation of surface anionic sites due to cell shape changes from discocytes to crenated forms, which accompany both in vivo and in vitro rbc aging. In turn, shape changes are apparently controlled by the cytoskeletal network underlying the rbc membrane, which undergoes structural alteration with physiologic aging in changing the dimensions of oligomeric spectrin and the thickness of the spectrin-actin cytoskeletal assembly.  相似文献   

5.
Red blood cells (rbcs) from five different normal humans were separated according to density using a simple procedure. The procedure involved centrifugation for 30 minutes in small glass tubes in the absence of any density gradient medium. This produced a column of rbcs arranged according to their density. Samples of the top 8% of the columns and bottom 8% of the columns were removed from the tubes with a micropipet. From each donor, samples of the least and most dense cells, respectively, were pooled from multiple tubes for each donor and designated "top" and "bottom" cells. These top and bottom cells were compared with unselected (total) cells from the same subjects, respectively. Top cells were larger and bottom cells were smaller than total cells. ATPase activities were operationally defined and measured in saponin lysates of these rbcs. The Ca pump ATPase (both in the calmodulin-activated and calmodulin-independent states [achieved by addition of compound 48/80]) of the top cells exhibited greater activity, and the Ca pump ATPase of bottom cells exhibited lower activity than total cells. It was suggested that loss of Ca pump ATPase activity is associated with rbc aging and may be a determinant of rbc life span. A mechanism for the loss of Ca pump ATPase activity was suggested. This speculative mechanism is based upon selective proteolysis of the Ca pump ATPase by the Ca-activated protease, calpain.  相似文献   

6.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit (RBCS) is encoded by a nuclear RBCS multigene family in many plant species. The contribution of the RBCS multigenes to accumulation of Rubisco holoenzyme and photosynthetic characteristics remains unclear. T-DNA insertion mutants of RBCS1A (rbcs1a-1) and RBCS3B (rbcs3b-1) were isolated among the four Arabidopsis RBCS genes, and a double mutant (rbcs1a3b-1) was generated. RBCS1A mRNA was not detected in rbcs1a-1 and rbcs1a3b-1, while the RBCS3B mRNA level was suppressed to ~20% of the wild-type level in rbcs3b-1 and rbcs1a3b-1 leaves. As a result, total RBCS mRNA levels declined to 52, 79, and 23% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. Rubisco contents showed declines similar to total RBCS mRNA levels, and the ratio of Rubisco-nitrogen to total nitrogen was 62, 78, and 40% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. The effects of RBCS1A and RBCS3B mutations in rbcs1a3b-1 were clearly additive. The rates of CO(2) assimilation at ambient CO(2) of 40 Pa were reduced with decreased Rubisco contents in the respective mutant leaves. Although the RBCS composition in the Rubisco holoenzyme changed, the CO(2) assimilation rates per unit of Rubisco content were the same irrespective of the genotype. These results clearly indicate that RBCS1A and RBCS3B contribute to accumulation of Rubisco in Arabidopsis leaves and that these genes work additively to yield sufficient Rubisco for photosynthetic capacity. It is also suggested that the RBCS composition in the Rubisco holoenzyme does not affect photosynthesis under the present ambient [CO(2)] conditions.  相似文献   

7.
Glycophorin and the fragments isolated from trypsinizing intact rat, dog, sheep and human red blood cells (rbc's) neutralize the hemolytic action of the Portuguese Man-of-War venom. This action can be blocked by rabbit antisheep hemolysin and phytohemagglutinin, a lectin which preferentially binds to glycophorin. Concanavalin A, which binds to band-3 protein of rbc membranes, does not block the neutralizing action of rbc tryptic fragments or glycophorin. The concentrations of rat, dog, human and sheep glycophorin which half neutralize venom induced hemolysis are inversely and linearly proportional to the hemolytic sensitivities of these rbc's to the venom. These data implicate glycophorin as a possible binding site for the hemolytic component of the Portuguese Man-of-War venom.  相似文献   

8.
In order to gain insight into the early evolution of carbonic-anhydrase (CA) isozymes in vertebrates, the main objective of the present study was to determine whether the hearts of an ancient vertebrate species, Petromyzon marinus, possess a membrane-bound CA isozyme. Since a significant amount of CA activity appeared to be strongly associated with the heart membrane fraction after differential centrifugation and washing, further experiments were conducted to examine the inhibitor properties of the CA from the membrane fraction in comparison with lamprey cytoplasmic CA from the red blood cell (rbc) fraction. These experiments showed that the inhibitor properties of the CA from the heart membranes were significantly different from those of the cytoplasmic CA from lamprey rbcs. A final series of experiments showed that the membrane-bound CA in the lamprey heart is not anchored via a glycosylphosphatidylinositol (GPI) linkage. Taken together, the results of these studies indicate that a membrane-bound CA does appear to be present in the hearts of lamprey, but the properties of the membrane-bound CA isozyme in these ancient vertebrates appear to differ from those in more recently evolved groups.Abbreviations Az acetazolamide - CA carbonic anhydrase - GPI glycosylphosphatidylinositol - PI-PLC phosphatidylinositol specific phospholipase C - Rbc red blood cell  相似文献   

9.
Cation loss and hemolysis of various mammalian red cells suspended in isotonic non-electrolyte media were investigated. Sucrose buffered with 10 mM Tris-Hepes, pH 7.4 was used as the non-permeable non-electrolyte. Mammals from which the red cells were derived include the human, guinea pig, rat, rabbit, newborn calf, newborn piglet and pig, all of which contain K as the predominant cation species (HK type) and the dog, cat, sheep and cow, all of which possess Na as the predominant cation species (LK type). Of HK cells, a rapid efflux of K takes place from humans, rats and guinea pigs. Of LK type cells, the dog and cat exhibit an augmented membrane permeability to Na. The governing factors which influence cation permeability are the change in pH, temperature, and ionic strength. In response to increase in pH, the red cells of humans, dogs and cats become more permeable to cations, whereas the red cells of rat and rabbit are unaffected. In response to increase in temperature, HK type cells exhibit augmented K efflux, while the Na loss from the dog and cat cells manifest a well-defined maximum at near 37 degrees C. In all cases, a small substitution of sucrose by an equal number of osmoles of salts results in a dramatic decrease in cation loss. By contrast, the red cells of the rabbit, newborn calf, adult cow, newborn piglet, adult pig and sheep display no discernible increase in ion-permeability under the conditions alluded to above. In some species including the newborn calf, dog, and cat, an extensive hemolysis occurs usually within an hour in isotonic buffered sucrose solution. The osmolarity of sucrose solution affects these cells differently in that as the osmolarity increases from 200--500 mM, hemolytic rates of the calf and dog reach a saturation near 300 mM sucrose, whereas the hemolytic rate of the cat decreases progressively. Common features pertaining to this hemolysis are (1) the intracellular alkalinization process; and (2) the diminution of the cell volume which take place prior to and onset of hemolysis. SITS, a potent anion transport inhibitor, completely protects the cells from hemolysis by inhibiting chloride flux and the concomitant rise in intracellular pH.  相似文献   

10.
The binding of phosphofructokinase and aldolase to the membrane of the intact human erythrocyte was assessed by the rapid hemolysis/filtration method of Kliman and Steck (Kliman, H. J., and Steck, T. L. (1980) J. Biol. Chem. 255, 6314-6321). We found that about 50% of the phosphofructokinase was membrane-bound in fresh red cells prior to hemolysis. Binding was not significantly altered by deoxygenation. Approximately 40% of aldolase was membrane-associated in fresh red cells. In outdated, blood-banked red cells, aldolase was 73% membrane-bound while, following metabolic repletion, 40% of the enzyme was membrane-associated. These results support the hypothesis that certain glycolytic enzymes in the red cell are membrane-bound in a rapidly reversible and metabolically sensitive fashion.  相似文献   

11.
We have taken advantage of the unique properties of nucleated rainbow trout (Oncorhynchus mykiss) red blood cells (rbcs) to demonstrate that beta-adrenergic stimulation with the agonist, isoproterenol, significantly enhanced the heat-induced induction of heat-shock proteins (Hsps) in trout rbcs without affecting hsp expression on its own. Furthermore, this beta-adrenergic potentiation of hsp expression occurred only at physiologically relevant concentrations of adrenergic stimulation. In further experiments, we found that adrenaline increased 100-fold and noradrenaline increased 50-fold in trout after a 1-h heat shock at 25 degrees C, approximately 12 degrees C above acclimation temperature. This is the first time the adrenergic heat-shock response has been described for a temperate fish species. We conclude that beta-adrenergic stimulation enhances hsp expression in trout rbcs following heat stress, indicating physiological regulation of the cellular stress response in fish.  相似文献   

12.
In alstroemeria ( Alstroemeria hybrida ), leaf senescence is effectively retarded by the application of gibberellins and by low fluences of red light. In this study we examined the possible interaction of gibberellins and red light in the regulation of senescence. Determination of endogenous gibberellins revealed that leaf senescence is accompanied by significant changes in the concentrations of non‐ 13‐hydroxylated gibberellins, the onset of senescence coinciding with a dramatic drop in GA4, whereas concentrations of 13‐hydroxylated gibberellins are far less influenced. However, no direct effect of red light on a specific GA‐metabolic step could be determined. When exogenously applied, non‐13‐hydroxylated GAs were more active than the 13‐hydroxylated GAs. It appeared that the effect of red light is additive to that of active GAs. We hypothesise that GA4 and phytochrome control senescence in alstroemeria mainly through separate mechanisms and have independent effects and that the observed differences in gibberellin concentrations are a consequence of delayed leaf senescence rather than a cause for it.  相似文献   

13.
The catecholamines, adrenaline and noradrenaline, are released into the circulation of fish during a variety of physical and environmental disturbances that share the common feature of a requirement for enhanced blood oxygen transport. Indeed, the dominant factor controlling the mobilization of catecholamines from chromaffin tissue is a depression of blood oxygen content usually coinciding with a reduction of hemoglobin-O2 (Hb-O2) binding to 50-60% saturation. The elevation of plasma catecholamine levels, under such conditions, activates a beta-adrenergic cyclic AMP-dependent Na+/H+ exchanger on the red blood cell (rbc) membrane. The adrenergic responsiveness AMP-dependent Na+/H+ exchanger on the red blood cell (rbc) membrane. The adrenergic responsiveness of the rbc Na+/H+ exchanger to catecholamines varies both within and between species. Such inter- and intra-specific differences may reflect, in part, the availability of cell surface beta-adrenoceptors that are functionally coupled to adenylate cyclase. The activation of rbc Na+/H+ exchange and the accompanying profound adjustments of intracellular and extracellular acid-base status, nucleoside triphosphate (NTP) levels, and cooperativity of Hb-O2 binding have important consequences on both O2 and CO2 transfer and transport in the blood that vary markedly at the sites of oxygenation (the gill) and deoxygenation (the tissues) thereby enabling simultaneous amelioration of O2 loading and unloading. At the gill, oxygen transfer is enhanced owing to increases in Hb-O2 affinity and capacity while at the tissues, oxygen delivery is facilitated by a reduction of Hb-O2 affinity. This reduction in affinity at the tissues is a consequence of the combined effects of increased cooperativity of Hb-O2 binding and a rise in venous PCO2 (PvCO2) caused by the titration of HCO3- by H+ extruded by the rbc Na+/H+ exchanger. This elevation of PvCO2 may contribute to the rise in arterial PCO2 (PaCO2) observed after adrenergic activation of rbc Na+/H+ exchange that is caused primarily by impairment of rbc CO2 excretion related to modification of the intracellular acid-base status.  相似文献   

14.
Senescence is the final stage of plant ontogeny before death. Senescence may occur naturally because of age or may be induced by various endogenous and exogenous factors. Despite its destructive character, senescence is a precisely controlled process that follows a well‐defined order. It is often inseparable from programmed cell death (PCD), and a correlation between these processes has been confirmed during the senescence of leaves and petals. Despite suggestions that senescence and PCD are two separate processes, with PCD occurring after senescence, cell death responsible for senescence is accompanied by numerous changes at the cytological, physiological and molecular levels, similar to other types of PCD. Independent of the plant organ analysed, these changes are focused on initiating the processes of cellular structural degradation via fluctuations in phytohormone levels and the activation of specific genes. Cellular structural degradation is genetically programmed and dependent on autophagy. Phytohormones/plant regulators are heavily involved in regulating the senescence of plant organs and can either promote [ethylene, abscisic acid (ABA), jasmonic acid (JA), and polyamines (PAs)] or inhibit [cytokinins (CKs)] this process. Auxins and carbohydrates have been assigned a dual role in the regulation of senescence, and can both inhibit and stimulate the senescence process. In this review, we introduce the basic pathways that regulate senescence in plants and identify mechanisms involved in controlling senescence in ephemeral plant organs. Moreover, we demonstrate a universal nature of this process in different plant organs; despite this process occurring in organs that have completely different functions, it is very similar. Progress in this area is providing opportunities to revisit how, when and which way senescence is coordinated or decoupled by plant regulators in different organs and will provide a powerful tool for plant physiology research.  相似文献   

15.
This study investigates the evolutionary history of vertebrate red blood cell carbonic anhydrase (CA) by characterizing the isozyme properties and nucleotide sequence of an ancient fish, the longnose gar ( Lepisosteus osseus). The inhibitor sensitivities of gar rbc CA closely resembled those for mammalian CA II, as well as those for CAs from more recently evolved fishes. The kinetic properties of gar rbc CA were not closely aligned with either mammalian CA I and CA II, but fit well into an emerging phylogenetic pattern for early vertebrates. Gar rbc CA cDNA was also amplified from mRNA using 5' and 3'-RACE and the open reading frame consisted of 786 bp. This sequence shares approximately 65% identity with the nucleotide and amino acid sequences of both mammalian CA I and CA II. When the amino acid sequences within the active site are compared, gar rbc CA differs from mammalian CA I, CA II and CA VII by 9, 4 and 3 of the 36 amino acids, respectively. Phylogenetic analyses suggest that gar rbc CA diverged before the amniotic CAs (CA I, CA II and CA III), but after CA V and CA VII.  相似文献   

16.
Cell death is most frequently the result of apoptosis, an event that is often controlled by mitochondrial membrane permeabilization (MMP). Recent data reveal unexpected functional links between apoptosis and autophagic cell death, in the sense that MMP can trigger autophagy of damaged mitochondria. Conversely, one of the major signal-transducing molecules involved in the activation of autophagy during apoptosis--the so-called DAP kinase--can induce cell death through MMP. Connections are also emerging between apoptosis, autophagy, replicative senescence and cancer-specific metabolic changes.  相似文献   

17.
18.
This study examines how the different red blood cell (rbc) characteristics in two lower vertebrates, the phylogenetically primitive hagfish and a more recent teleost, the rainbow trout, influence their strategies for blood CO2 transport. Deoxygenation of the blood resulted in a significant increase in rbc CO2 content in hagfish, but there were no significant changes in the CO2 content of plasma or whole blood under these conditions. In contrast, deoxygenation increased the CO2 content of the rbc, plasma and whole blood in the trout. These results demonstrate that the Haldane effect is much less important for CO2 transport in the hagfish as compared to the trout. The relative importance of the rbc and plasma in blood CO2 transport were roughly similar in hagfish and trout and were very different from that previously documented in another primitive vertebrate, the lamprey. In trout, however, the role of the rbc in CO2 carriage was increased upon the addition of the beta-adrenergic agonist isoproterenol (10(-5) M) to the blood. Taken together, these results and those recently collected for lampreys demonstrate that changes in rbc characteristics during vertebrate evolution have probably resulted in several important transitions in the strategy for blood CO2 transport.  相似文献   

19.
为探究汉黄芩苷是否具有抗衰老作用,本研究以果蝇为模型,考察汉黄芩苷对果蝇自然寿命的影响。采用RT-PCR和UPLC-MS/MS 代谢组学技术,探索汉黄芩苷发挥抗衰老作用的潜在机制。结果显示,0.02和0.5 mg/mL 汉黄芩苷均可整体延长果蝇寿命,并能够分别延长果蝇平均寿命5.64%和5.39%,延长最高寿命2.74%和5.12%;与30 d组相比,汉黄芩苷能够显著上调果蝇体内抗氧化酶基因SOD1、SOD2和CAT的表达水平,下调MTH的表达水平。果蝇代谢组学分析共找到17个潜在生物标志物,主要参与氨基酸代谢(D-谷氨酰胺和D-谷氨酸代谢,丙氨酸、天冬氨酸和谷氨酸代谢,精氨酸和脯氨酸代谢,缬氨酸、亮氨酸和异亮氨酸代谢)和能量代谢(氮代谢)。该结果表明,汉黄芩苷延缓衰老与上调抗氧化基因表达和调控不同代谢途径有关。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号