首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A trypsin and chymotrypsin inhibitor was partially purified from Bauhenia purpurea seeds and separated from a second inhibitor by Ecteola cellulose chromatography. The factor inhibited bovine trypsin and chymotrypsin as well as pronase trypsin and elastase. It formed a complex with trypsin and with chymotrypsin, but a ternary complex could not be detected. Differences were detected in the effect on trypsin and on chymotrypsin, although one enzyme interfered with the inhibition of the other. The results obtained point to two active centers on the inhibitor for the trypsin and chymotrypsin inhibition such that the one cannot complex with the inhibitor after this inhibitor had complexed with the other.  相似文献   

2.
Two trypsin inhibitors, CPPTI-I and CPPTI-II of Mr 3 250 and 7 850, respectively, were isolated from resting white bush seeds. Both inhibitors are cysteine-rich proteins. In addition to trypsin, they inhibit a trypsin-like enzyme isolated from Streptomyces griseus proteinase but they do not act on chymotrypsin, kallikrein or subtilopeptidase A. The isolated inhibitors contain a lysine residue in position P1 of the reactive site.  相似文献   

3.
Aprotinin is a protease inhibitor found in bovine organs and used as a valuable human therapeutic compound. In this work, a process for the recovery of aprotinin from insulin industrial process effluent via affinity adsorption on immobilized trypsin and chymotrypsin was developed. First, process conditions were set as a result of a study of the effects of pH and ionic strength on pure aprotinin adsorption and desorption utilizing an experimental design methodology. The best conditions obtained with immobilized trypsin as the ligand were adsorption at 0.018 M NaCl and pH 8.7 and desorption at 0.018 M NaCl and pH 2.1. For immobilized chymotrypsin, the best conditions were adsorption at 0.582 M NaCl and pH 8.0 and desorption at 0.582 M NaCl and pH 2.1. Recovery of the inhibitor from the effluent was carried out utilizing a two-step process: trypsin-agarose adsorption followed by chymotrypsin-agarose adsorption. Analysis of the chromatographic fractions by trypsin and chymotrypsin inhibition and capillary electrophoresis assays strongly suggested that the recovered inhibitor is aprotinin.  相似文献   

4.
E J Fodor  H Ako  K A Walsh 《Biochemistry》1975,14(22):4923-4927
Upon fertilization, sea urchin eggs (Stronglyocentrotus pupuratus) release a protease into the surrounding sea water. This protease is in a particulate form which can be solubilized. The soluble form was purified by affinity chromatography on columns of immobilized soybean trypsin inhibitor. The purified enzyme is similar to bovine trypsin both in molecular weight (22500) and in susceptibility to inhibitors such as diisopropyl phosphofluoridate and soybean trypsin inhibitor. In contrast, extracts of unfertilized eggs appear to contain an inactive form of the enzyme which can be activated by dialysis at pH 4.6. The enzyme, as purified from extracts activated in this manner, was similar in its properties to that from fertilized eggs.  相似文献   

5.
Trypsin inhibitory activity from the hemolymph of the tobacco hornworm (Manduca sexta) was purified by affinity chromatography on immobilized trypsin and resolved into two fractions with molecular weights of 14,000 (M. sexta hemolymph trypsin inhibitor (HLTI) A) and 8,000 (HLTI B) by molecular sieve chromatography on Sephadex G-75. Electrophoresis of these inhibitors under reducing conditions on polyacrylamide gels gave molecular weight estimates of 8,300 for HLTI A and 9,100 for HLTI B, suggesting that HLTI A is a dimer and HLTI B is a monomer. Isoelectrofocusing on polyacrylamide gels focused HLTI A as a single band with pI 5.7, whereas HLTI B was resolved into two components with pI values of 5.3 and 7.1. Both inhibitors were stable at 100 degrees C and pH 1.0 for at least 30 min. HLTIs A and B inhibited serine proteases such as trypsin, chymotrypsin, and plasmin, but did not inhibit elastase, papain, pepsin, subtilisin BPN', and thermolysin. In fact, subtilisin BPN' completely inactivated both inhibitors. Both inhibitors formed low-dissociation complexes with trypsin in a 1:1 molar ratio. The inhibition constant for trypsin inhibition by HLTI A was estimated to be 1.45 x 10(-8) M. The HLTI A-chymotrypsin complex did not inhibit trypsin; similarly, the HLTI A-trypsin complex did not inhibit chymotrypsin, indicating that HLTI A has a common binding site for both trypsin and chymotrypsin. The amino-terminal amino acid sequences of HLTIs A and B revealed that both these inhibitors are homologous to bovine pancreatic trypsin inhibitor (Kunitz).  相似文献   

6.
M C Alliegro  H Schuel 《Biochemistry》1985,24(15):3926-3931
A serine protease from sea urchin eggs has been isolated by affinity chromatography on soybean trypsin inhibitor-agarose. Benzamidine hydrochloride was included to minimize autodegradation. We present data on the properties of the protease with respect to molecular weight and its interaction with trypsin inhibitors and substrates. The molecular weight of the enzyme is 47 000 by gel filtration under nonreducing conditions and 35 000 by electrophoresis in the presence of sodium dodecyl sulfate and dithiothreitol. The pH optimum and Km with N alpha-benzoyl-L-arginine ethyl ester (BAEE) are 8.0 and 75 microM, respectively. The specific activity is comparable to that of bovine pancreatic trypsin. Proteolytic activity was measured by beta-casein hydrolysis. The caseinolytic activity is completely inhibited by 1 mumol of soybean trypsin inhibitor (SBTI) per micromole of enzyme. BAEE esterase activity is inhibited competitively by SBTI (Ki = 1.6 nM), lima bean trypsin inhibitor (150 nM), chicken ovomucoid (100 nM), and leupeptin (130 nM). Bowman-Birk inhibitor, benzamidine hydrochloride, and antipain are also inhibitors of the purified enzyme. Inhibition by phenylmethanesulfonyl fluoride and N alpha-p-tosyl-L-lysine chloromethyl ketone indicates the presence of serine and histidine residues in the active center, respectively. The chymotrypsin inhibitor L-1-(tosylamido)-2-phenylethyl chloromethyl ketone is ineffective. The protease is susceptible to autodegradation which can result in the appearance of a minor 23-kilodalton component. The egg protease appears to be similar in many respects to trypsins and trypsin-like enzymes isolated from a wide variety of sources, including sea urchin and mammalian sperm.  相似文献   

7.
A protein capable of inhibiting trypsin and other pancreatic proteases has been purified to homogeneity from Escherichia coli by conventional procedures and affinity chromatography. It is stable for at least 30 min at 100 degrees C and pH 1.0, but it is inactivated by digestion with pepsin. The inhibitor has an apparent molecular weight of 38,000 as determined by gel filtration and must be a homodimer since it contains a single 18,000-dalton subunit upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The inhibitor has an isoelectric point of 6.1. One dimeric molecule of the inhibitor can bind two trypsin molecules to form a mixed tetrameric complex, in which trypsin molecules are completely inhibited. The inhibitor is not digested by the trypsin. When N-benzoyl-DL-arginine-p-nitroanilide was used as a trypsin substrate, half-maximal inhibition was observed at 22 nM. This protein also inhibits chymotrypsin, pancreatic elastase, rat mast cell chymase, and human serosal urokinase, but it does not inhibit human pulmonary tryptase, kallikrein, papain, pepsin, Staphylococcus aureus V8 protease, subtilisin, and thermolysin. Surprisingly, it did not inhibit any of the eight soluble endoproteases recently isolated from E. coli (i.e. proteases Do, Re, Mi, Fa, So, La, Ci, and Pi) nor the chymotrypsin-like (protease I) and trypsin-like (protease II) esterases in E. coli. The inhibitor is localized to the periplasmic space and its level did not change with different growth media or stages of cell growth. The physiological function of this E. coli trypsin inhibitor is unknown. We suggest that E. coli trypsin inhibitor be named "Ecotin."  相似文献   

8.
Two new double-headed protease inhibitors have been isolated from black-eyed peas. The isoinhibitors can be purified to homogeneity with greater than 90% recovery in a four-step procedure by means of sequential affinity chromatography on trypsin-Sepharose and chymotrypsin-Sepharose affinity columns. The isoinhibitors both have molecular weights near 8,000 and both have the same NH1-terminal residue serine. Black-eyed pea chymotrypsin and trypsin inhibitor (BEPCI) has an isoelectric point of 5.1 and inhibits trypsin and chymotrypsin simultaneously. Black-eyed pea trypsin inhibitor (BEPTI) has an isoelectric point of 6.5 and inhibits 2 molecules of trypsin simultaneously. BEPTI binds to chymotrypsin-Sepharose above pH 6 but does not inhibit chymotrypsin in the standard inhibitor assay with 10-3 M substrate. These new inhibitors are distinct from the Ventura inhibitor isolated from Serido black-eyed peas. An endogenous seed protease has been isolated from black-eyed peas by affinity chromatography on soybean inhibitor-carboxymethylcellulose affinity columns. A protease-BEPCI complex has been isolated by ion exchange chromatography. A dual physiological function of inhibition and protection of the seed protease is suggested as a plausible role of seed protease inhibitors.  相似文献   

9.
A trypsin inhibitor from seeds of faba bean (Vicia faba L.) was purified to near homogeneity as judged by native-PAGE with about 11 % recovery using ammonium sulphate fractionation, ion-exchange chromatography on DEAE-cellulose and gel filtration through Sephadex G-100. The inhibitor had a molecular weight of 18 kD as determined by SDS-PAGE and Sephadex G-100. The inhibitor inhibited trypsin and chymotrypsin to the extent of 48 and 12 %, respectively. The inhibtion was of non-competitive type with dissociation constant for the enzyme inhibitor complex in the region of 0.07 mg·ml−1. The inhibtor was stable between pH 4 and 5. It completely lost its activity when heated at 125 °C for 1 h or at 100 °C for 2 h. The inhibitor also lost its activity on exposure to 2-mercaptoethanol. Based on these properties, it could be concluded that Vicia faba trypsin inhibitor belongs to Bowman-Birk type of inhibitors, as it has molecular weight lower than generally observed for Kunitz type inhibitors.  相似文献   

10.
Protease inhibitory activity in jackfruit seed (Artocarpus integrifolia) could be separated into 5 fractions by chromatography on DEAE-cellulose at pH 7.6. A minor fraction (I) that did not bind to the matrix, had antitryptic, antichymotryptic and antielastase activity in the ratio 24:1.9:1.0. Fraction II bound least tightly to the ion exchanger eluting with 0.05 M NaCl and could be resolved into an elastase/chymotrypsin inhibitor and a chymotrypsin/trypsin inhibitor by chromatography on either immobilized trypsin or phenyl Sepharose CL-4B. Fractions III and IV eluted successively with 0.10 M NaCl and 0.15 M NaCl from DEAE-cellulose, inhibited elastase, chymotrypsin and trypsin in the ratio 1.0: 0.53:0.55 and 1.0:8.9:9.8 respectively. Fraction V, most strongly bound to the matrix eluting with 0.3 M NaCl and was a trypsin/chymotrypsin inhibitor accounting for 74% of total antitryptic activity. This inhibitor was purified further. The inhibitor with a molecular weight of 26 kd was found to be a glycoprotein. Galactose, glucose, mannose, fucose, xylose, glucosamine and uronic acid were identified as constitutent units of the inhibitor. Dansylation and electrophoresis in the presence of mercaptoethanol indicated that the inhibitor is made up of more than one polypeptide chain. The inhibitor combined with bovine trypsin and bovine α-chymotrypsin in a stoichiometric manner as indicated by gel chromatography. It had very poor action on subtilisin BPN′, porcine elastase, pronase,Streptomyces caespitosus protease andAspergillus oryzae protease. It powerfully inhibited the caseinolytic activities of rabbit and horse pancreatic preparations and was least effective on human and pig pancreatic extracts. Modification of amino groups, guanido groups and sulphydryl groups of the inhibitor resulted in loss of inhibitory activity. Reduction of disulphide bridges, reduction with sodium borohydride and periodate oxidation also decreased the inhibitory activity.  相似文献   

11.
Two proteic inhibitors (I and II) of serine proteases have been purified from the parasitic worm Parascaris equorum by affinity chromatography on immobilized trypsin followed by preparative electrophoresis. They have an apparent relative molecular mass of 9000 and 7000 as determined by gel filtration, a slightly acid isoelectric point (5.5 and 6.1) and a similar amino acid composition. Both inhibitors lack serine, methionine and tyrosine. They bind bovine trypsin extremely strongly with an association constant, Ka, larger than 10(9) M-1, and form a 1:1 complex with this protease. The Ka values for the binding to bovine chymotrypsin are approximately 3.3 X 10(8) M-1 (inhibitor I) and approximately 2 X 10(6) M-1 (inhibitor II). Inhibitor I interacts also with porcine elastase (Ka approximately 5 X 10(7) M-1), while inhibitor II is inactive towards this enzyme.  相似文献   

12.
An absorbent for the affinity chromatography of trypsin [EC 3.4.21.4] (AP Sepharose) was prepared. The ligand was a mixture of oligopeptides (mainly di- and tripeptides) containing L-arginine as carboxyl termini, and was obtained from a tryptic digest of protamine. Trypsin was absorbed at relatively low pH (7-4), but was not absorbed at the optimum pH of catalysis (8.2). This was clearly explained on the basis of the pH dependence of the interaction of trypsin with its products. Inactivated trypsin, trypsinogen, and chymotrypsin were not absorbed. The absorption of active trypsin was interferred with by either benzamidine or urea. From these observations, it is evident that AP Sepharose is an affinity adsorbent. AP Sepharose was useful for purification of commercial bovine trypsin. A preliminary application for the purification of Streptomyces griseus trypsin was also successful.  相似文献   

13.
Two crude fractions of acid-resistant trypsin inhibitors (apparent molecular masses 44 and 20 kDa, respectively) were prepared from human urine by gel permeation chromatography. From both preparations the pure inhibitors were isolated by high performance liquid chromatography (HPLC). Their N-terminal amino-acid sequences were determined and compared with those of HI-30 and HI-14 as isolated by reversible binding to either immobilized trypsin or immobilized chymotrypsin. The N-terminal amino-acid sequence of the high-molecular mass inhibitor UI-I isolated by HPLC was identical with those of HI-30 and UI-C-I isolated via immobilized trypsin or chymotrypsin, respectively. The low-molecular mass inhibitors UI-II and UI-C-II differ from HI-14 by the N-terminal extension Glu-Val-Thr-Lys-when obtained by HPLC or by the extension Thr-Lys-when obtained via immobilized chymotrypsin, respectively. The comparison of these N-termini with the amino-acid sequence of HI-30 (Ala1-...-Val16-Thr-Glu-Val-Thr-Lys-HI-14) defines the low molecular urinary trypsin inhibitors as proteolytic degradation products of the high-molecular urinary inhibitor. Proteolysis may occur at different bonds. The existing discrepancies in molecular architecture and in molecular masses of the urinary trypsin inhibitors are discussed.  相似文献   

14.
1. A trypsin and chymotrypsin inhibitor was isolated by extraction of chick-pea meal at pH8.3, followed by (NH4)2SO4 precipitation and successive column chromatography on CM-cellulose and calcium phosphate (hydroxyapatite). 2. The inhibitor was pure by polyacrylamide-gel and cellulose acetate electrophoresis and by isoelectric focusing in polyacrylamide gels. 3. The inhibitor had a molecular weight of approx. 10000 as determined by ultracentrifugation and by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate. A molecular weight of 8300 was resolved from its amino acid composition. 4. The inhibitor formed complexes with trypsin and chymotrypsin at molar ratios of 1:1. 5. Limited proteolysis of the inhibitor with trypsin at pH3.75 resulted in hydrolysis of a single-Lys-X-bond and in consequent loss of 85% of the trypsin inhibitory activity and 60% of the chymotrypsin inhibitory activity. Limited proteolysis of the inhibitor with chymotrypsin at pH3.75 resulted in hydrolysis of a single-Tyr-X-bond and in consequent loss of 70% of the trypsin inhibitory activity and in complete loss of the chymotrypsin inhibitory activity. 6. Cleavage of the inhibitor with CNBr followed by pepsin and consequent separation of the products on a Bio Gel P-10 column, yielded two active fragments, A and B. Fragment A inhibited trypsin but not chymotrypsin, and fragment B inhibited chymotrypsin but not trypsin. The specific trypsin inhibitory activity, on a molar ratio, of fragment A was twice that of the native inhibitor, suggesting the unmasking of another trypsin inhibitory site as a result of the cleavage. On the other hand, the specific chymotrypsin inhibitory activity of fragment B was about one-half of that of the native inhibitor, indicating the occurrence of a possible conformational change.  相似文献   

15.
Abstract. The incorporation of soybean trypsin inhibitor (SBTI) into the diet of the buffalo fly, Haematobia irritans exigua (De Meijere), results in increased mortality and reduced fecundity. A trypsin-like enzyme which binds to SBTI was isolated by affinity chromatography on a Sepharose-SBTI column followed by ion-exchange chromatography. The enzyme was inhibited by benzamidine, phenylmethylsulfonyl fluoride, ovomucoid, leupeptin and a-2 macroglobulin. The enzyme was not inhibited by EDTA or p-chloromecuribenzoic acid and had a broad pH optimum of pH 7–9. Vaccination of sheep produced antibodies specific for the trypsin-like enzyme which inhibited enzyme activity in vitro but did not affect the survival of flies maintained in in vitro culture.  相似文献   

16.
The roles of serine proteases involved in the digestion mechanism of the cutworm Spodoptera litura (Lepidoptera: Noctuidae) were examined (in vitro and in vivo) following feeding of plant protease inhibitors. A trypsin inhibitor from Archidendron ellipticum (AeTI) was purified by ammonium sulfate fractionation, ion-exchange chromatography and size-exclusion chromatography (HPLC) and its bioinsecticidal properties against S. litura were compared with Soybean Kunitz trypsin inhibitor (SBTI). AeTI inhibited the trypsin-like activities of the midgut proteases of fifth instar larvae of S. litura by over 70%. Dixon plot analysis revealed competitive inhibition of larval midgut trypsin and chymotrypsin by AeTI, with an inhibition constant (K(i)) of 3.5x10(-9) M and 1.5x10(-9) M, respectively. However, inhibitor kinetics using double reciprocal plots for both trypsin and chymotrypsin inhibitions demonstrated a mixed inhibition pattern. Feeding experiments conducted on different (neonate to ultimate) instars suggested a dose-dependent decrease for both the larval body weight as well as % survival of larva fed on diet containing 50, 100 and 150 microM AeTI. Influence of AeTI on the larval gut physiology indicated a 7-fold decrease of trypsin-like protease activity and a 5-fold increase of chymotrypsin-like protease activity, after being fed with a diet supplemented with 150 microM AeTI. This study suggests that although the early (1st to 3rd) larval instars of S. litura are susceptible to the trypsin inhibitory action of AeTI, the later instars may facilitate the development of new serine proteases, insensitive to the inhibitor.  相似文献   

17.
A protein proteinase inhibitor was purified from a seed extract of amaranth (Amaranthus hypochondriacus) by precipitation with (NH4)2SO4, gel-filtration chromatography, ion-exchange chromatography, and reverse-phase high-performance liquid chromatography. It is a 69-amino acid protein with a high content of valine, arginine, and glutamic acid, but lacking in methionine. The inhibitor has a relative molecular weight of 7400 and an isoelectric point of 7.5. It is a serine proteinase inhibitor that recognizes chymotrypsin, trypsin, and trypsin-like proteinase activities extracted from larvae of the insect Prostephanus truncatus. This inhibitor belongs to the potato-I inhibitor family, showing the closest homology (59.5%) with the Lycopersicum peruvianum trypsin inhibitor, and (51%) with the proteinase inhibitor 5 extracted from the seeds of Cucurbita maxima. The position of the lysine-aspartic acid residues present in the active site of the amaranth inhibitor are found in almost the same relative position as in the inhibitor from C. maxima.  相似文献   

18.
棉铃虫幼虫中肠主要蛋白酶活性的鉴定   总被引:25,自引:3,他引:25  
根据棉铃虫Helicoverpa armigera(Hubner)中肠酶液对蛋白酶专性底物在不同pH下的水解作用,棉铃虫中肠的3种丝氨酸蛋白酶得到鉴定。它们是:强碱性类胰蛋白酶,水 解a-N-苯甲酰-DL-精氨酸-p-硝基苯胺的最适pH在10.50以上;弱碱性类胰蛋白酶,水解p-甲苯磺酰-L-精氨酸甲酯的最适pH为8.50~9.00;类胰凝乳蛋白酶, 水解N一苯甲酰-L-酪氨酸乙酯的最适pH亦为8.50-9.00。中肠总蛋白酶活性用偶 氮酪蛋白测定,最适pH亦在10.50以上。Ca2+对昆虫蛋白酶无影响,Mg2+仅对弱碱性类胰蛋白酶有激活作用。对苯甲基磺酰氟和甲基磺酰-L-赖氨酸氯甲基酮对弱碱性类胰蛋白酶的抑制作用较强,而对强碱性类胰蛋白酶的抑制作用较弱。甲基磺酰-L苯丙氨酸氯甲基酮除能抑制类胰凝乳蛋白酶外,还能激活弱碱性类胰蛋白酶。对牛胰蛋白酶有强抑制作用的卵粘蛋白抑制剂对昆虫蛋白酶却无抑制作用。大豆胰蛋白酶抑制剂对该虫的3种丝氨酸蛋白酶均有强的抑制作用。  相似文献   

19.
Abstract After ammonium sulphate precipitation, Sephadex G-75 gel filtration, Lys-Sepharose 4B affinity chromatography and elution from electrophoresis, the fibrinolytic protease (TAFP) was isolated and purified from the extract of T. amaenus Walker gut. It appeared a single band corresponding to molecular weight of approximately 67kD on SDS-PAGE and an probably pI of 7.2 on IEF. On fibrin plate and plasminogen-free fibrin plate (heated at 85°C for 30 minutes to eliminate plasminogen), TAFP showed same fibrinolytic activity. The result might indicate that TAFP is a fibrinolytic enzyme degrading fibrin, as well as a plasminogen activator degrading fibrin via activating plasminogen. The result of chromogenic substrates indicated that TAFP possesses trypsin-like activity specifically degrading argininyl amide bond or peptide bond, but has no chymotrypsin activity. TAFP was almost inhibited powerfully by antipain, PMSF, soybean trypsin inhibitor and soybean Bowman-Birk inhibitor. However, leupeptin, antitrypsin and TLCK was more powerful effective inhibitors of TAFP. Optimal reaction pH of TAFP was 7.5, and it was stable in 5.5–7.0 of pH range.  相似文献   

20.
Seven new trypsin inhibitors, CyPTI I-VII, were purified from ripe seeds of Cyclanthera pedata by affinity chromatography on immobilized chymotrypsin in the presence of 5 M NaCl followed by preparative native PAGE at pH 8.9. The CyPTIs (Cyclanthera pedata trypsin inhibitors) belong to a well-known squash inhibitor family. They contain 28-30 amino acids and have molecular weights from 3031 to 3367 Da. All the isolated inhibitors strongly inhibit bovine beta-trypsin (K(a)>10(11) M(-1)) and, more weakly, bovine alpha-chymotrypsin (K(a) approximately 10(4)-10(6) M(-1)). In the presence of 3 M NaCl the association constants of CyPTIs with alpha-chymotrypsin increased a few hundred fold. Taking advantage of this phenomenon, a high concentration of NaCl was used to isolate the inhibitors by affinity chromatography on immobilized chymotrypsin. It was found that although one of them, CyPTI IV, had split the Asn25-Gly26 peptide bond, its inhibitory activity remained unchanged. The hydrolyzed bond is located downstream of the reactive site. Presumably, the inhibitor is a naturally occurring, double-chain protein arising during posttranslational modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号