首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Gibbs sampling method has been widely used for sequence analysis after it was successfully applied to the problem of identifying regulatory motif sequences upstream of genes. Since then, numerous variants of the original idea have emerged: however, in all cases the application has been to finding short motifs in collections of short sequences (typically less than 100 nucleotides long). In this paper, we introduce a Gibbs sampling approach for identifying genes in multiple large genomic sequences up to hundreds of kilobases long. This approach leverages the evolutionary relationships between the sequences to improve the gene predictions, without explicitly aligning the sequences. We have applied our method to the analysis of genomic sequence from 14 genomic regions, totaling roughly 1.8 Mb of sequence in each organism. We show that our approach compares favorably with existing ab initio approaches to gene finding, including pairwise comparison based gene prediction methods which make explicit use of alignments. Furthermore, excellent performance can be obtained with as little as four organisms, and the method overcomes a number of difficulties of previous comparison based gene finding approaches: it is robust with respect to genomic rearrangements, can work with draft sequence, and is fast (linear in the number and length of the sequences). It can also be seamlessly integrated with Gibbs sampling motif detection methods.  相似文献   

2.
The increasing number of whole genomic sequences of microorganisms has led to the complexity of genome-wide annotation and gene sequence comparison among multiple microorganisms. To address this problem, we have developed nWayComp software that compares DNA and protein sequences of phylogenetically-related microorganisms. This package integrates a series of bioinformatics tools such as BLAST, ClustalW, ALIGN, PHYLIP and PRIMER3 for sequence comparison. It searches for homologous sequences among multiple organisms and identifies genes that are unique to a particular organism. The homologous gene sets are then ranked in the descending order of the sequence similarity. For each set of homologous sequences, a table of sequence identity among homologous genes along with sequence variations such as SNPs and INDELS is developed, and a phylogenetic tree is constructed. In addition, a common set of primers that can amplify all the homologous sequences are generated. The nWayComp package provides users with a quick and convenient tool to compare genomic sequences among multiple organisms at the whole-genome level.  相似文献   

3.
An important computational technique for extracting the wealth of information hidden in human genomic sequence data is to compare the sequence with that from the corresponding region of the mouse genome, looking for segments that are conserved over evolutionary time. Moreover, the approach generalises to comparison of sequences from any two related species. The underlying rationale (which is abundantly confirmed by observation) is that a random mutation in a functional region is usually deleterious to the organism, and hence unlikely to become fixed in the population, whereas mutations in a non-functional region are free to accumulate over time.The potential value of this approach is so attractive that the public and private projects to sequence the human genome are now turning to sequencing the mouse, and you will soon be able to compare the human and mouse sequences of your favourite genomic region.We are currently witnessing an explosion of computer tools for comparative analysis of two genomic sequences. Here the capabilities of two new network servers for comparing genomic sequences from any pair of closely related species are sketched.The Syntenic Gene Prediction Program SGP-I utilises sequence comparisons to enhance the ability to locate protein coding segments in genomic data. PipMaker attempts to determine all conserved genomic regions, regardless of their function.  相似文献   

4.
Prediction of gene sequences and their exon-intron structure in large eukaryotic genomic sequences is one of the central problems of mathematical biology. Solving this problem involves, in particular, high-accuracy splice site recognition. Using statistical analysis of a splice site-containing human gene fragment database, some characteristic features were described for nucleotide sequences in the splicing site neighborhood, the frequencies of all nucleotides and dinucleotides were determined, and those with frequencies increased or decreased in comparison to a random sequence were identified. The results can be used in sequence annotation, splicing site prediction, and the recognition of the gene exon-intron structure.  相似文献   

5.
一种有效的重复序列识别算法   总被引:1,自引:0,他引:1  
李冬冬  王正志  倪青山 《生物信息学》2005,3(4):163-166,174
重复序列的分析是基因组研究中的一个重要课题,进行这一研究的基础则是从基因组序列中快速有效地找出其中的重复序列。一种投影拼接算法,即利用随机投影获得候选片断集合,利用片断拼接对候选片断进行拼接,以发现基因组中的重复序列。分析了算法的计算复杂度,构造了半仿真测试数据,对算法的测试结果表明了其有效性。  相似文献   

6.
《Genomics》2019,111(6):1574-1582
Given the vast amount of genomic data, alignment-free sequence comparison methods are required due to their low computational complexity. k-mer based methods can improve comparison accuracy by extracting an effective feature of the genome sequences. The aim of this paper is to extract k-mer intervals of a sequence as a feature of a genome for high comparison accuracy. In the proposed method, we calculated the distance between genome sequences by comparing the distribution of k-mer intervals. Then, we identified the classification results using phylogenetic trees. We used viral, mitochondrial (MT), microbial and mammalian genome sequences to perform classification for various genome sets. We confirmed that the proposed method provides a better classification result than other k-mer based methods. Furthermore, the proposed method could efficiently be applied to long sequences such as human and mouse genomes.  相似文献   

7.
We present a program UNIREP, written in PowerBASIC for IBM-PCs,that identifies repetitive and unique nucleotide sequences ingenomes or parts of genomes. A key feature of the algorithmis an oligonucleotide representation in a numerical code tomake possible a comparison of all pairs of oligonucleotides(including overlaps) occurring in the analyzed sequence. Thiscomparison assigns a score to each oligo nucleotide, reflectingits similarity/dissimilarity to other oligonucleotides of thesame length in the analyzed sequence. The score is plotted alongthe sequence so that peaks in the plot indicate repetitive regionsand very low values reflect unique sequences. The scores arefiltered to suppress or enhance the unique or repetitive sequencesaccording to the user's wish. UNIREP is extended by auxiliaryprograms HIGHER and LOWER to list nucleotide sequences thathave scores higher or lower than given limits. The potentialof UNIREP is demonstrated using several long nucleotide sequencesincluding the complete genomic sequence of EBV.  相似文献   

8.
9.
Comparison of genomic DNA sequences: solved and unsolved problems   总被引:5,自引:0,他引:5  
MOTIVATION: The DNA sequences of entire genomes are being determined at a rapid rate. Whereas initial genome sequencing efforts were for organisms chosen to be widely spaced in the tree of life, there is a growing emphasis on projects to sequence a species that is sufficiently similar to an already-sequenced species to allow direct comparison of those two DNA sequences. This and other changes in genome sequencing strategies have created a strong need for new methods to compare genomic sequences. RESULTS: We sketch the current state of software for comparing genomic DNA sequences and outline research directions that we believe are likely to result in important advances in practice.  相似文献   

10.
We address the problem of comparing interindividual genomic sequence diversity between two populations. Although the methods are general, for concreteness we focus on comparing two human immunodeficiency virus (HIV) infected populations. From a viral isolate(s) taken from each individual in a sample of persons from each population, suppose one or multiple measurements are made on the genetic sequence of a coding region of HIV. Given a definition of genetic distance between sequences, the goal is to test if the distribution of interindividual distances differs between populations. If distances between all pairs of sequences within each group are used, then data-dependencies arising from the use of multiple sequences from individuals invalidates the use of a standard two-sample test such as the t-test. Where this problem has been recognized, a typical solution has been to apply a standard test to a reduced dataset comprised of one sequence or a consensus sequence from each patient. Disadvantages of this procedure are that the conclusion of the test depends on the choice of utilized sequences, often an arbitrary decision, and exclusion of replicate sequences from the analysis may needlessly sacrifice statistical power. We present a new test free of these drawbacks, which is based on a statistic that linearly combines all possible standard test statistics calculated from independent sequence subsamples. We describe statistical power advantages of the test and illustrate its use by application to nucleotide sequence distances measured from HIV-1 infected populations in southern Africa (GenBank accession numbers AF110959--AF110981) and North America/Europe. The test makes minimal assumptions, is maximally efficient and objective, and is broadly applicable.  相似文献   

11.
Nucleotide sequence of a chicken delta-crystallin gene.   总被引:12,自引:2,他引:10       下载免费PDF全文
We have determined the complete nucleotide sequence of one of the two non-allelic delta-crystallin genes in the chicken, arbitrarily designated delta-gene 1, using a genomic clone (lambda g delta 106) containing the entire gene sequence. By comparison of the genomic sequence and the delta-crystallin cDNA sequence previously determined, we have identified exon sequences in the genomic sequence. Thus, the presence of 17 exons and 16 introns in the gene has been clarified. The delta-crystallin polypeptide deduced from the exon sequences consists of 465 amino acids which is larger, by 19 amino acid residues, than the polypeptide deduced from the cDNA sequence previously reported. Re-examination of the cDNA sequence using the same cDNA clone previously used shows that the present exon sequences are correct and the molecular weight of the deduced delta-crystallin polypeptide is 50,615 daltons instead of the previously reported value of 48,447 daltons. In addition, some structural features of the delta-crystallin gene including putative expression signals are discussed.  相似文献   

12.
Exon discovery by genomic sequence alignment   总被引:5,自引:0,他引:5  
MOTIVATION: During evolution, functional regions in genomic sequences tend to be more highly conserved than randomly mutating 'junk DNA' so local sequence similarity often indicates biological functionality. This fact can be used to identify functional elements in large eukaryotic DNA sequences by cross-species sequence comparison. In recent years, several gene-prediction methods have been proposed that work by comparing anonymous genomic sequences, for example from human and mouse. The main advantage of these methods is that they are based on simple and generally applicable measures of (local) sequence similarity; unlike standard gene-finding approaches they do not depend on species-specific training data or on the presence of cognate genes in data bases. As all comparative sequence-analysis methods, the new comparative gene-finding approaches critically rely on the quality of the underlying sequence alignments. RESULTS: Herein, we describe a new implementation of the sequence-alignment program DIALIGN that has been developed for alignment of large genomic sequences. We compare our method to the alignment programs PipMaker, WABA and BLAST and we show that local similarities identified by these programs are highly correlated to protein-coding regions. In our test runs, PipMaker was the most sensitive method while DIALIGN was most specific. AVAILABILITY: The program is downloadable from the DIALIGN home page at http://bibiserv.techfak.uni-bielefeld.de/dialign/.  相似文献   

13.
14.
15.
A PCR primer sequence is called degenerate if some of its positions have several possible bases. The degeneracy of the primer is the number of unique sequence combinations it contains. We study the problem of designing a pair of primers with prescribed degeneracy that match a maximum number of given input sequences. Such problems occur when studying a family of genes that is known only in part, or is known in a related species. We prove that various simplified versions of the problem are hard, show the polynomiality of some restricted cases, and develop approximation algorithms for one variant. Based on these algorithms, we implemented a program called HYDEN for designing highly-degenerate primers for a set of genomic sequences. We report on the success of the program in an experimental scheme for identifying all human olfactory receptor (OR) genes. In that project, HYDEN was used to design primers with degeneracies up to 10(10) that amplified with high specificity many novel genes of that family, tripling the number of OR genes known at the time.  相似文献   

16.
MOTIVATION: To identify and characterize regions of functional interest in genomic sequence requires full, flexible query access to an integrated, up-to-date view of all related information, irrespective of where it is stored (within an organization or across the Internet) and its format (traditional database, flat file, web site, results of runtime analysis). Wide-ranging multi-source queries often return unmanageably large result sets, requiring non-traditional approaches to exclude extraneous data. RESULTS: Target Informatics Net (TINet) is a readily extensible data integration system developed at GlaxoSmith- Kline (GSK), based on the Object-Protocol Model (OPM) multidatabase middleware system of Gene Logic Inc. Data sources currently integrated include: the Mouse Genome Database (MGD) and Gene Expression Database (GXD), GenBank, SwissProt, PubMed, GeneCards, the results of runtime BLAST and PROSITE searches, and GSK proprietary relational databases. Special-purpose class methods used to filter and augment query results include regular expression pattern-matching over BLAST HSP alignments and retrieving partial sequences derived from primary structure annotations. All data sources and methods are accessible through an SQL-like query language or a GUI, so that when new investigations arise no additional programming beyond query specification is required. The power and flexibility of this approach are illustrated in such integrated queries as: (1) 'find homologs in genomic sequence to all novel genes cloned and reported in the scientific literature within the past three months that are linked to the MeSH term 'neoplasms"; (2) 'using a neuropeptide precursor query sequence, return only HSPs where the target genomic sequences conserve the G[KR][KR] motif at the appropriate points in the HSP alignment'; and (3) 'of the human genomic sequences annotated with exon boundaries in GenBank, return only those with valid putative donor/acceptor sites and start/stop codons'.  相似文献   

17.
The Barley yellow dwarf disease (BYD) was firstly recognized as an aphid transmitted virus disease by Oswald and Houston[1] in 1951. Now, Barley yel-low dwarf viruses (BYDVs) belong to members of the plant virus family Luteoviridae. They are phloem- limited and obligately transmitted in the circula-tive/persistent manner by several species of cereal aphids and can cause significant economic losses worldwide because of damage to barley, wheat, and oats. In China, BYDVs cause mainly yello…  相似文献   

18.
The accelerating growth of the public microbial genomic data imposes substantial burden on the research community that uses such resources.Building databases for non-redundant reference sequences from massive microbial genomic data based on clustering analysis is essential.However,existing clustering algorithms perform poorly on long genomic sequences.In this article,we present Gclust,a parallel program for clustering complete or draft genomic sequences,where clustering is accelerated with a novel parallelization strategy and a fast sequence comparison algorithm using sparse suffix arrays(SSAs).Moreover,genome identity measures between two sequences are calculated based on their maximal exact matches(MEMs).In this paper,we demonstrate the high speed and clustering quality of Gclust by examining four genome sequence datasets.Gclust is freely available for non-commercial use at https://github.com/niu-lab/gclust.We also introduce a web server for clustering user-uploaded genomes at http://niulab.scgrid.cn/gclust.  相似文献   

19.
The complete nucleotide sequence of genomic RNA of BYDV-GAV was determined. It comprised 5685 nucleotides and contained six open reading frames and four un-translated regions. The size and organization of BYDV-GAV genome were similar to those of BYDV PAV-aus. The nucleotide and deduced amino acid sequences of the six ORFs were aligned and compared with those of other luteoviruses. The results showed that there was a high degree of identity between BYDV-GAV and MAV-PS1 in all ORFs except ORF5 and ORF6, which had only 87.4% and 70.2% identities respectively. The reported genomic nucleotide sequence of MAV was shorter than that of BYDV-GAV, but the comparison of the genomic nucleotide sequences for MAV-PS1 and GAV showed 90.4% sequence identity for the same region of the genome. According to the level of sequence similarities, BYDV-GAV should be closely related to BYDV-MAV.  相似文献   

20.
We represent all DNA sequences as points in twelve-dimensional space in such a way that homologous DNA sequences are clustered together, from which a new genomic space is created for global DNA sequences comparison of millions of genes simultaneously. More specifically, basing on the contents of four nucleotides, their distances from the origin and their distribution along the sequences, a twelve-dimensional vector is given to any DNA sequence. The applicability of this analysis on global comparison of gene structures was tested on myoglobin, beta-globin, histone-4, lysozyme, and rhodopsin families. Members from each family exhibit smaller vector distances relative to the distances of members from different families. The vector distance also distinguishes random sequences generated based on same bases composition. Sequence comparisons showed consistency with the BLAST method. Once the new gene is discovered, we can compute the location of this new gene in our genomic space. It is natural to predict that the properties of this new gene are similar to the properties of known genes that are locating near by. Biologists can do various experiments to test these properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号