首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABA and the behavioral effects of anxiolytic drugs   总被引:1,自引:0,他引:1  
D J Sanger 《Life sciences》1985,36(16):1503-1513
Much recent research has shown that benzodiazepine binding sites in the central nervous system are associated with GABA receptors. It is therefore possible that the pharmacological and therapeutic effects of benzodiazepines and drugs with similar profiles are mediated through GABAergic mechanisms. In this paper the evidence is considered for a possible involvement of GABA in the behavioral effects of anxiolytic drugs. There are a number of reports that the behavioral actions of anxiolytics can be antagonised by GABA antagonists such as bicuculline or picrotoxin but there are many contradictory findings and these drugs are difficult to use effectively in behavioral studies. In general, GABA agonists do not exert anxiolytic-like behavioral effects after systemic injection but intracerebral administration of muscimol has been shown to produce benzodiazepine-like actions. Although a number of questions remain unanswered, current evidence does not provide strong support for a role for GABA in the behavioral effects of anxiolytic drugs.  相似文献   

2.
A number of antiepileptic medications that modulate GABA(A) mediated synaptic transmission are anxiolytic. The loop diuretics furosemide (Lasix) and bumetanide (Bumex) are thought to have antiepileptic properties. These drugs also modulate GABA(A) mediated signalling through their antagonism of cation-chloride cotransporters. Given that loop diuretics may act as antiepileptic drugs that modulate GABAergic signalling, we sought to investigate whether they also mediate anxiolytic effects. Here we report the first investigation of the anxiolytic effects of these drugs in rat models of anxiety. Furosemide and bumetanide were tested in adult rats for their anxiolytic effects using four standard anxiety models: 1) contextual fear conditioning; 2) fear-potentiated startle; 3) elevated plus maze, and 4) open-field test. Furosemide and bumetanide significantly reduced conditioned anxiety in the contextual fear-conditioning and fear-potentiated startle models. At the tested doses, neither compound had significant anxiolytic effects on unconditioned anxiety in the elevated plus maze and open-field test models. These observations suggest that loop diuretics elicit significant anxiolytic effects in rat models of conditioned anxiety. Since loop diuretics are antagonists of the NKCC1 and KCC2 cotransporters, these results implicate the cation-chloride cotransport system as possible molecular mechanism involved in anxiety, and as novel pharmacological target for the development of anxiolytics. In view of these findings, and since furosemide and bumetanide are safe and well tolerated drugs, the clinical potential of loop diuretics for treating some types of anxiety disorders deserves further investigation.  相似文献   

3.
The effect of cholecystokinin tetrapeptide (CCK(4)) and of different anxiolytic drugs on GABA outflow from the cerebral cortex was investigated in freely moving rats, by using the epidural cup technique. CCK(4) (3-30 microg/kg, i.p.) increased GABA outflow and induced objective signs of anxiety. These neurochemical and behavioral responses were prevented by the CCK(B) antagonist GV150013 at 0.1 microg/kg (i.p.). At higher doses (up to 30 microg/kg) this compound per se reduced GABA release and caused sedation, suggesting the presence of a CCKergic positive tonic modulation on GABA interneurons. Similarly the GABA(A) receptors modulator, diazepam (2mg/kg, i.p.) and the 5-HT(1A) agonist buspirone (3mg/kg, i.p.) reduced GABA outflow and caused the expected behavioral effects (reduced muscle tone, mild 5-HT syndrome) which were prevented by the respective, selective antagonists, flumazenil (1mg/kg, i.p.) and NAN-190 (3mg/kg, i.p.). These findings support the idea that GV150013, diazepam and buspirone inhibit GABAergic cortical activity, through the respective receptors. This neurochemical effect may represent the end-effect of various anxiolytic compounds affecting the cortical circuitry.  相似文献   

4.
Experiments on rats have shown that bicuculline (2 mg/kg) and picrotoxin (2 mg/kg) abolish the anxiolytic action of diazepam (2.5 mg/kg). Bicuculline (2 and 4 mg/kg) decreases while picrotoxin transforms the sedative effect of diazepam to the anxiolytic one. Picrotoxin (2 mg/kg) reduces the sedative action of gamma-acetylenic GABA (100 mg/kg) but does not favour the manifestation of its anxiolytic effect. It is suggested that the GABA-ergic mechanisms play an important role in the sedative effect of diazepam.  相似文献   

5.
M Mizowaki  K Toriizuka  T Hanawa 《Life sciences》2001,69(18):2167-2177
We assessed the anxiolytic effect of Kami-Shoyo-San (Jia-wei-xiao-yao-san; TJ-24), one of a traditional Chinese herbal medicine used for the treatment of menopausal anxiety, by the social interaction (SI) test in male mice. Acute administration of TJ-24 (25-100 mg/kg, p.o.), as well as the gamma-amino-butyric acidA/benzodiazepine (GABA(A)/BZP) receptor agonist diazepam (1-3 mg/kg, i.p.), dose dependently increased the SI time, respectively. The GABA(A) receptor antagonist picrotoxin blocked the effects of TJ-24 and diazepam. TJ-24-induced SI behavior was significantly blocked by the GABA(A)/BZP receptor inverse agonist Ro 15-4513 and the GABA(A)/BZP receptor antagonist flumazenil. In addition, 5alpha-reductase inhibitor finasteride potently blocked the effect of TJ-24 without attenuating the basal level by itself. These findings suggest that TJ-24 shows the anxiolytic effect through the neurosteroid synthesis followed by GABA(A)/BDZ receptor stimulations.  相似文献   

6.
Eight experiments supported the hypotheses that reflexive testosterone release by male mice during sexual encounters reduces male anxiety (operationally defined in terms of behavior on an elevated plus-maze) and that this anxiolysis is mediated by the conversion of testosterone to neurosteroids that interact with GABA(A) receptors. In Experiment 1, a 10-min exposure to opposite-sex conspecifics significantly reduced both male and female anxiety 20 min later (as indexed by increased open-arm time on an elevated plus-maze) compared to control mice not receiving this exposure. In contrast, locomotor activity (as indexed by enclosed-arm entries on the elevated plus-maze) was not significantly affected. The remaining experiments examined only male behavior. In Experiment 2, exposure to female urine alone was anxiolytic while locomotor activity was not significantly affected. Thus, urinary pheromones of female mice likely initiated the events leading to the male anxiolysis. In phase 1 of Experiment 3, sc injections of 500 microg of testosterone significantly reduced anxiety 30 min later while locomotor activity was not significantly affected. Thus, testosterone elevations were associated with reduced male anxiety and the time course consistent with a nongenomic, or very rapid genomic, mechanism of testosterone action. In phase 2 of Experiment 3, the anxiolytic effect of testosterone was dose dependent with a 250 microg sc injection required. Thus, testosterone levels likely must be well above baseline levels (i.e., in the range induced by pulsatile release) in order to induce anxiolysis. In Experiment 4, a high dosage of 5alpha-dihydrotestosterone was more anxiolytic than a high dosage of estradiol benzoate, suggesting that testosterone action may require 5alpha-reduction. In Experiments 5 and 6, 3alpha,5alpha-reduced neurosteroid metabolites of testosterone (androsterone and 3alpha-androstandione) were both anxiolytic at a lower dosage (100 microg/sc injection) than testosterone, supporting the notion that testosterone is converted into neurosteroid metabolites for anxiolytic activity. Experiments 7 and 8 found that either picrotoxin or bicucculine, noncompetitive and competitive antagonists of the GABA(A) receptor, respectively, blocked the anxiolytic effects of testosterone. However, conclusions from these 2 experiments must be tempered by the reduction in locomotor activity that was also seen. The possible brain locations of testosterone action as well as the possible adaptive significance of this anxiolytic response are discussed.  相似文献   

7.
Using a new rat conflict test it was found that 30% of the subjects failed to respond to benzodiazepines and other anxiolytic agents. This value is similar to that reported using more classical procedures such as the Geller-Seifter and Vogel conflict tests. Biochemical analysis of various brain regions from responder (R) and non-responder (NR) subjects revealed no significant differences in 5-HT1, 5-HT2, GABA receptor binding or GABA-activated benzodiazepine binding. However, a small, but significant, increase in basal benzodiazepine binding was noted in the hippocampus of NR rats. These findings suggest that the insensitivity of these animals to anxiolytics is probably unrelated to an alteration in serotonin, GABA or benzodiazepine binding sites in brain.  相似文献   

8.
The phytochemistry and biological activity of Scutellaria lateriflora L. (American skullcap) which has been traditionally used as a sedative and to treat various nervous disorders such as anxiety was studied. In vivo animal behaviour trials were performed to test anxiolytic effects in rats orally administered S. laterifolia extracts. Significant increases in the number of entries into the center of an "open-field arena"; number of unprotected head dips, number of entries and the length of time spent on the open arms of the Elevated Plus-Maze were found. The identification and quantification of the flavonoid, baicalin in a 50% EtOH extract (40 mg/g) and its aglycone baicalein in a 95% EtOH extract (33 mg/g), as well as the amino acids GABA in H2O and EtOH extracts (approximately 1.6 mg/g) and glutamine in a H2O extract (31 mg/g), was performed using HPLC. These compounds may play a role in anxiolytic activity since baicalin and baicalein are known to bind to the benzodiazepine site of the GABAA receptor and since GABA is the main inhibitory neurotransmitter.  相似文献   

9.
Honokiol, an active agent extracted from magnolia bark, has been reported that induces anxiolytic action in a mouse elevated plus-maze test. However, the mechanism of anxiolytic action induced by honokiol remains unclear. This study was to investigate the change in two forms of glutamic acid decarboxylase (GABA synthesized enzymes) GAD65 and GAD67 in the cortex and hippocampus areas while the anxiolytic actions induced by chronic administration of honokiol in mice. Mice treated with 7 daily injection of honokiol (1 mg/kg, p.o.) caused anxiolytic action which was similar to that was induced by 7 daily injection of diazepam (2 mg/kg, p.o.) in the elevated plus-maze test. In addition, the activity of hippocampal GAD65 of honokiol treated mice was significantly increased than that of the vehicle or diazepam treated groups. These data suggest that honokiol causes diazepam-like anxiolytic action, which may be mediated by altering the synthesis of GABA in the brain of mice.  相似文献   

10.
The development of the tranquilizing effect of n-dipropylacetate (n-DPA) selectively increasing the GABA level in the nerve terminals was studied in experiments on cats in comparison with diazepam effect. The changes in the spectrum of emotional-behavioral reactivity were estimated. In doses of 50 and 200 mg/kg n-DPA caused a marked antiphobic effect which was not accompanied by the activating component characteristic of diazepam. The n-DPA-induced increase in the GABA level in the nerve terminals is suggested to be important for the development of the anxiolytic effect of tranquilizers. The total increase in the GABA level in the nerve terminals is suggested to be important for the development of the anxiolytic effect of tranquilizers. The total increase in the GABA content in the brain correlates to a greater extent with the sedative effect of drugs.  相似文献   

11.
Positive modulators at benzodiazepine sites of α2- and α3-containing GABA(A) receptors are believed to be anxiolytic. Negative allosteric modulators of α5-containing GABA(A) receptors enhance cognition. By oocyte two-electrode voltage clamp and subsequent structure-activity relationship studies, we discovered cinnoline and quinoline derivatives that were both positive modulators at α2-/α3-containing GABA(A) receptors and negative modulators at α5-containing GABA(A) receptors. In addition, these compounds showed no functional activity at α1-containing GABA(A) receptors. Such dual functional modulators of GABA(A) receptors might be useful for treating comorbidity of anxiety and cognitive impairments in neurological and psychiatric illnesses.  相似文献   

12.
The effect of orally administrated gamma-aminobutyric acid (GABA) on relaxation and immunity during stress has been investigated in humans. Two studies were conducted. The first evaluated the effect of GABA intake by 13 subjects on their brain waves. Electroencephalograms (EEG) were obtained after 3 tests on each volunteer as follows: intake only water, GABA, or L-theanine. After 60 minutes of administration, GABA significantly increases alpha waves and decreases beta waves compared to water or L-theanine. These findings denote that GABA not only induces relaxation but also reduces anxiety. The second study was conducted to see the role of relaxant and anxiolytic effects of GABA intake on immunity in stressed volunteers. Eight acrophobic subjects were divided into 2 groups (placebo and GABA). All subjects were crossing a suspended bridge as a stressful stimulus. Immunoglobulin A (IgA) levels in their saliva were monitored during bridge crossing. Placebo group showed marked decrease of their IgA levels, while GABA group showed significantly higher levels. In conclusion, GABA could work effectively as a natural relaxant and its effects could be seen within 1 hour of its administration to induce relaxation and diminish anxiety. Moreover, GABA administration could enhance immunity under stress conditions.  相似文献   

13.
Piracetam at a concentration of 10(-6) M was shown to behave as a noncompetitive inhibitor of 3H-imipramine specific binding to rat brain membranes. At the same time piracetam failed to influence specific binding of 3H-mianserin to membranes of guinea-pig cerebellum, which is indicative of its inability to suppress histamine H1 receptors, a component of 3H-imipramine specific binding sites. At a concentration of 10(-4) M piracetam does not change specific binding of 3H-flunitrazepam to rat hippocampal membranes in the absence of GABA, but in the presence of 5 X 10(-5) M GABA, like atypical tranquilizer mebicar, acts as a competitor of 3H-flunitrasepam binding. Though Ro-15 1788 did not suppress anxyolytic piracetam (and mebicar) effect, our results give evidence of a possible involvement of GABA-benzodiazepine supramolecular complex in the anxiolytic activity of piracetam.  相似文献   

14.
The central actions of 1-(2-o-chlorobenzoyl-4-chlorophenyl)-5-glycylaminomethyl-3-dimethylcarbamoyl-1H-1,2,4-triazole hydrochloride dihydrate (450191-S), a potent sleep-inducing and anxiolytic drug, were re-evaluated in terms of the affinity for benzodiazepine (BZP) receptor and the activation of γ-aminobutyric acid (GABA) receptor binding.The 450191-S showed only very low capacity to displace the bindings of [3H]diazepam, [3H]β-carboline-3-carboxylate-ethylester, [3H]Rol5-1788, [3H]Ro5-4864 and [3H]naloxone to cerebral synaptic membranes. Similarly, this drug had a weak and undistinguishable affinity to both BZPtype 1 and 2 receptors determined under the presence of CL 218,872. On the other hand, 450191-S as well as its active metabolites (M-1, M-2, M-A, M-3 and M-4) showed a remarkable activating effect on the GABA receptor binding with low affinity in cerebral synaptic membranes. This enhancement of the low affinity GABA receptor binding was found to be due to the increase of affinity (Kd) but not to the change in Bmax. Furthermore, it has been found that the observed accentuation of low affinity GABA receptor binding is well-correlated with the potency of the central actions of 450191-S such as potentiation of the hypnotic action of barbiturates and muscle relaxation.These results suggest that the central actions of 450191-S may be due to, at least in part, the activation of central GABA receptor binding with low affinity. The present results also suggest that the activation of low affinity GABA receptor binding may be a better criterion than the affinity of BZP receptor for elucidating the central action of a certain type of BZP derivatives.  相似文献   

15.
Positive modulators at the benzodiazepine site of α2- and α3-containing GABA(A) receptors are believed to be anxiolytic. Through oocyte voltage clamp studies, we have discovered two series of compounds that are positive modulators at α2-/α3-containing GABA(A) receptors and that show no functional activity at α1-containing GABA(A) receptors. We report studies to improve this functional selectivity and ultimately deliver clinical candidates. The functional SAR of cinnolines and quinolines that are positive allosteric modulators of the α2- and α3-containing GABA(A) receptors, while simultaneously neutral antagonists at α1-containing GABA(A) receptors, is described. Such functionally selective modulators of GABA(A) receptors are expected to be useful in the treatment of anxiety and other psychiatric illnesses.  相似文献   

16.
1. Phenelzine (PLZ) is an antidepressant with anxiolytic properties. Acute and chronic PLZ administration increase brain GABA levels, an effect due, at least in part, to an inhibition of the activity of the GABA metabolizing enzyme, GABA transaminase (GABA-T).2. Previous preliminary reports have indicated that acute PLZ treatment also elevates brain alanine levels. As with GABA, the metabolism of alanine involves a pyridoxal phosphate-dependent transaminase.3. In the study reported here, the effects of acute PLZ treatment on the levels of various amino acids, some of which are also metabolized by pyridoxal phosphate-dependent transaminases were compared in rat whole brain. Of the 6 amino acids investigated, only GABA and alanine levels were elevated (in a time- and dose-dependent manner).4. The elevation in brain alanine levels could be explained, at least in part, by a time- and dose-dependent inhibitory effect of PLZ on alanine transaminase (ALA-T), although as with GABA the increases are higher than expected from the degree of enzyme inhibition produced. In addition, we also showed that the elevation in alanine levels and the inhibition of alanine transaminase in the brain are retained after 14 days of PLZ treatment, and that PLZ produces a marked increase in extracellular levels of alanine.5. These results are discussed in terms of their relevance to synaptic function and to the pharmacological profile of PLZ.  相似文献   

17.
GABA(A) (gamma-aminobutyric acid type A) receptors mediate most of the 'fast' synaptic inhibition in the mammalian brain and are targeted by many clinically important drugs. Certain naturally occurring pregnane steroids can potently and specifically enhance GABA(A) receptor function in a nongenomic (direct) manner, and consequently have anxiolytic, analgesic, anticonvulsant, sedative, hypnotic and anaesthetic properties. These steroids not only act as remote endocrine messengers, but also can be synthesized in the brain, where they modify neuronal activity locally by modulating GABA(A) receptor function. Such 'neurosteroids' can influence mood and behaviour in various physiological and pathophysiological situations, and might contribute to the behavioural effects of psychoactive drugs.  相似文献   

18.
Doramecin is an antiparasitic drug that may interfere with gamma-aminobutyric acid (GABA) neurotransmission. Some behavioral manifestations are related with GABAergic neurotransmissions as anxiety and seizures. The objective of the present study was to examine the possible central nervous system (CNS) effects of doramectin (100, 300 and 1000 microg/kg, SC) in rats, using anxiety behavioral models, susceptibility to seizures and central neurotransmitter evaluations. The open-field results showed (i) few alterations in locomotion frequency; (ii) a biphasic effect on rearing frequency that may be the consequence of least habituation in open-field; (iii) the reduction of grooming durations might be attributed to a possible anxiolytic effect of doramectin since GABAergic agonists reduced this parameter in apparatus. Our data in the hole board showed no effects in locomotion and rearing frequencies but increased head dipping frequency of rats administered doramectin similarly to anxiolytic drugs. In plus-maze test, doramectin administration increased the number of entries and time into open arms, indicating also an anxiolytic effect. Doramectin protected animals from convulsant effects of picrotoxin, indicative of an anxiolytic pharmacological profile of a drug with GABAergic properties. The alterations observed in central dopaminergic, noradrenergic and serotoninergic neurotransmissions might be the consequence of reinforcement in central GABAergic neurotransmission induced by doramectin. The present results suggest that doramectin has the pharmacological profile of an anxiolytic/anticonvulsant drug with GABAergic properties.  相似文献   

19.
Licorice (Glycyrrhiza glabra, GG) is one of the most frequently used herbal medicines worldwide, and its various biological activities have been widely studied. GG is reported to have neurological properties such as antidepressant, anxiolytic, and anticonvulsant effects. However, its hypnotic effects and the mechanism of GG and its active compounds have not yet been demonstrated. In this study, GG ethanol extract (GGE) dose-dependently potentiated pentobarbital-induced sleep and increased the amount of non-rapid eye movement sleep in mice without decreasing delta activity. The hypnotic effect of GGE was completely inhibited by flumazenil, which is a well-known γ-aminobutyric acid type A-benzodiazepine (GABA(A)-BZD) receptor antagonist, similar to other GABA(A)-BZD receptor agonists (e.g., diazepam and zolpidem). The major flavonoid glabrol was isolated from the flavonoid-rich fraction of GGE; it inhibited [(3)H] flumazenil binding to the GABA(A)-BZD receptors in rat cerebral cortex membrane with a binding affinity (K(i)) of 1.63 μM. The molecular structure and pharmacophore model of glabrol and liquiritigenin indicate that the isoprenyl groups of glabrol may play a key role in binding to GABA(A)-BZD receptors. Glabrol increased sleep duration and decreased sleep latency in a dose-dependent manner (5, 10, 25, and 50mg/kg); its hypnotic effect was also blocked by flumazenil. The results imply that GGE and its flavonoid glabrol induce sleep via a positive allosteric modulation of GABA(A)-BZD receptors.  相似文献   

20.
Diazepam (5 mg/kg, ip) and tracazolate (40 mg/kg, ip), a nonbenzodiazepine anxiolytic, blocked electrically-induced head-turning without producing sedation. Bicuculline and picrotoxin, GABA antagonists, at doses not affecting head-turning (2 mg/kg, ip) antagonized the effects of diazepam and tracazolate on head-turning. However, at the same dose, bicuculline was more effective as an antagonist of diazepam whereas picrotoxin was more effective as an antagonist of tracazolate. These results suggest that benzodiazepine as well as nonbenzodiazepine anxiolytics possess GABAmimetic activity. The difference in potency between bicuculline and picrotoxin as antagonists of diazepam and tracazolate may be related to their reported differences as GABA antagonists (e.g., site of receptor interaction).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号